[1]
Carpenter, E.P.; Beis, K.; Cameron, A.D.; Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol., 2008, 18(5), 581-586.
[2]
Hong, M.; Zhang, Y.; Hu, F. Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem., 2012, 63, 1-24.
[3]
Ubarretxena-Belandia, I.; Stokes, D.L. Present and future of membrane protein structure determination by electron crystallography. Adv. Protein Chem. Struct. Biol., 2010, 81, 33-60.
[4]
Goldie, K.N.; Abeyrathne, P.; Kebbel, F.; Chami, M.; Ringler, P.; Stahlberg, H. Cryo-electron microscopy of membrane proteins. Methods Mol. Biol., 2014, 1117, 325-341.
[5]
Bartesaghi, A.; Subramaniam, S. Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr. Opin. Struct. Biol., 2009, 19(4), 402-407.
[6]
Schmidt-Krey, I. Electron crystallography of membrane proteins: Two-dimensional crystallization and screening by electron microscopy. Methods, 2007, 41(4), 417-426.
[7]
Breyton, C.; Gabel, F.; Lethier, M.; Flayhan, A.; Durand, G.; Jault, J.M.; Juillan-Binard, C.; Imbert, L.; Moulin, M.; Ravaud, S.; Härtlein, M.; Ebel, C. Small angle neutron scattering for the study of solubilised membrane proteins. Eur. Phys. J.E. Soft Matter, 2013, 36(7), 71.
[8]
Jeschke, G. DEER distance measurements on proteins. Annu. Rev. Phys. Chem., 2012, 63, 419-446.
[9]
Gupta, S.; Feng, J.; Chan, L.J.; Petzold, C.J.; Ralston, C.Y. Synchrotron X-ray footprinting as a method to visualize water in proteins. J. Synchrotron Radiat., 2016, 23(Pt 5), 1056-1069.
[10]
Xu, G.; Chance, M.R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev., 2007, 107(8), 3514-343.
[11]
Gilmore, J.M.; Washburn, M.P. Advances in shotgun proteomics and the analysis of membrane proteomes. J. Proteomics, 2010, 73(11), 2078-2091.
[12]
Savas, J.N.; Stein, B.D.; Wu, C.C.; Yates, J.R., III Mass spectrometry accelerates membrane protein analysis. Trends Biochem. Sci., 2011, 36(7), 388-396.
[13]
Schey, K.L.; Grey, A.C.; Nicklay, J.J. Mass spectrometry of membrane proteins: A focus on aquaporins. Biochemistry, 2013, 52(22), 3807-3817.
[14]
Angel, T.E.; Gupta, S.; Jastrzebska, B.; Palczewski, K.; Chance, M.R. Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14367-14372.
[15]
Lu, Y.; Zhang, H.; Niedzwiedzki, D.M.; Jiang, J.; Blankenship, R.E.; Gross, M.L. Fast photochemical oxidation of proteins maps the topology of intrinsic membrane proteins: Light-harvesting complex 2 in a nanodisc. Anal. Chem., 2016, 88(17), 8827-8834.
[16]
Pirrone, G.F.; Iacob, R.E.; Engen, J.R. Applications of hydrogen/deuterium exchange MS from 2012 to 2014. Anal. Chem., 2015, 87(1), 99-118.
[17]
Hebling, C.M.; Morgan, C.R.; Stafford, D.W.; Jorgenson, J.W.; Rand, K.D.; Engen, J.R. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry. Anal. Chem., 2010, 82(13), 5415-5419.
[18]
Weerasekera, R.; Schmitt-Ulms, G. Crosslinking strategies for the study of membrane protein complexes and protein interaction interfaces. Biotechnol. Genet. Eng. Rev., 2006, 23, 41-62.
[19]
Pan, J.; Borchers, C.H. Top-down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: Implications for biosimilars. Proteomics, 2014, 14(10), 1249-1258.
[20]
Orban, T.; Jastrzebska, B.; Gupta, S.; Wang, B.; Miyagi, M.; Chance, M.R.; Palczewski, K. Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure, 2012, 20(5), 826-840.
[21]
Pan, Y.; Piyadasa, H.; O’Neil, J.D.; Konermann, L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: The glycerol facilitator. J. Mol. Biol., 2012, 416(3), 400-413.
[22]
Debelyy, M.O.; Waridel, P.; Quadroni, M.; Schneiter, R.; Conzelmann, A. Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins. PLoS One, 2017, 12(10), e0186840.
[23]
Fischer, L.; Chen, Z.A.; Rappsilber, J. Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J. Proteomics, 2013, 88, 120-128.
[24]
Wecksler, A.T.; Kalo, M.S.; Deperalta, G. Mapping of Fab-1:VEGF interface using carboxyl group footprinting mass spectrometry. J. Am. Soc. Mass Spectrom., 2015, 26(12), 2077-2080.
[25]
Gupta, S.; Bavro, V.N.; D’Mello, R.; Tucker, S.J.; Vénien-Bryan, C.; Chance, M.R. Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure, 2010, 18(7), 839-846.
[26]
Gupta, S.; Chai, J.; Cheng, J.; D’Mello, R.; Chance, M.R.; Fu, D. Visualizing the kinetic power stroke that drives proton-coupled zinc (II) transport. Nature, 2014, 512(7512), 101.
[27]
Marcoux, J.; Wang, S.C.; Politis, A.; Reading, E.; Ma, J.; Biggin, P.C.; Zhou, M.; Tao, H.; Zhang, Q.; Chang, G.; Morgner, N. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9704-9709.
[28]
Laganowsky, A.; Reading, E.; Hopper, J.T.; Robinson, C.V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc., 2013, 8(4), 639.
[29]
Morgner, N.; Kleinschroth, T.; Barth, H.D.; Ludwig, B.; Brutschy, B. A novel approach to analyze membrane proteins by laser mass spectrometry: From protein subunits to the integral complex. J. Am. Soc. Mass Spectrom., 2007, 18(8), 1429-1438.
[30]
Gupta, S.; Celestre, R.; Petzold, C.J.; Chance, M.R.; Ralston, C. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source. J. Synchrotron Radiat., 2014, 21(4), 690-699.
[31]
Takamoto, K.; Chance, M.R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct., 2006, 35, 251-276.
[32]
Kamal, J.K.; Chance, M.R. Modeling of protein binary complexes using structural mass spectrometry data. Protein Sci., 2008, 17(1), 79-94.
[33]
Guan, J.Q.; Almo, S.C.; Chance, M.R. Synchrotron radiolysis and mass spectrometry: A new approach to research on the actin cytoskeleton. Acc. Chem. Res., 2004, 37(4), 221-229.
[34]
Kiselar, J.G.; Mahaffy, R.; Pollard, T.D.; Almo, S.C.; Chance, M.R. Visualizing Arp2/3 complex activation mediated by binding of ATP and WASp using structural mass spectrometry. Proc. Natl. Acad. Sci. USA, 2007, 104(5), 1552-1557.
[35]
Gupta, S.; Sullivan, M.; Toomey, J.; Kiselar, J.; Chance, M.R. The Beamline X28C of the center for synchrotron biosciences: A national resource for biomolecular structure and dynamics experiments using synchrotron footprinting. J. Synchrotron Radiat., 2007, 14(Pt 3), 233-243.
[36]
Sullivan, M.R.; Rekhi, S.; Bohon, J.; Gupta, S.; Abel, D.; Toomey, J.; Chance, M.R. Installation and testing of a focusing mirror at beamline X28C for high flux X-ray radiolysis of biological macromolecules. Rev. Sci. Instrum., 2008, 79(2 Pt 1), 025101.
[37]
Bohon, J.; Jennings, L.D.; Phillips, C.M.; Licht, S.; Chance, M.R. Synchrotron protein footprinting supports substrate translocation by ClpA via ATP-induced movements of the D2 loop. Structure, 2008, 16(8), 1157-1165.
[38]
Tullius, T.D.; Dombroski, B.A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science, 1985, 230(4726), 679-681.
[39]
Hambly, D.M.; Gross, M.L. Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom., 2005, 16(12), 2057-2063.
[40]
Maleknia, S.D.; Downard, K.M. On-plate deposition of oxidized proteins to facilitate protein footprinting studies by radical probe mass spectrometry. Rapid Commun. Mass Spectrom., 2012, 26(19), 2311-2318.
[41]
Maleknia, S.D.; Chance, M.R.; Downard, K.M. Electrospray-assisted modification of proteins: A radical probe of protein structure. Rapid Commun. Mass Spectrom., 1999, 13(23), 2352-2358.
[42]
Gupta, S.; D’Mello, R.; Chance, M.R. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14882-14887.
[43]
Gupta, S.; Bavro, V.N.; D’Mello, R.; Tucker, S.J.; Vénien-Bryan, C.; Chance, M.R. Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure, 2010, 18(7), 839-846.
[44]
Ball, P. Water as an active constituent in cell biology. Chem. Rev., 2008, 108(1), 74-108.
[45]
Renthal, R. Buried water molecules in helical transmembrane proteins. Protein Sci., 2008, 17(2), 293-298.
[46]
Angel, T.E.; Chance, M.R.; Palczewski, K. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8555-8560.
[47]
Padayatti, P.S.; Wang, L.; Gupta, S.; Orban, T.; Sun, W.; Salom, D.; Jordan, S.R.; Palczewski, K.; Chance, M.R. A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4). Mol. Cell. Proteomics, 2013, 12(5), 1259-1271.
[48]
Gustavsson, M.; Wang, L.; van Gils, N.; Stephens, B.S.; Zhang, P.; Schall, T.J.; Yang, S.; Abagyan, R.; Chance, M.R.; Kufareva, I.; Handel, T.M. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat. Commun., 2017, 8, 14135.
[49]
Aryal, P.; Sansom, M.S.; Tucker, S.J. Hydrophobic gating in ion channels. J. Mol. Biol., 2015, 427(1), 121-130.
[50]
Swartz, K.J. Towards a structural view of gating in potassium channels. Nat. Rev. Neurosci., 2004, 5(12), 905-916.
[51]
Tao, X.; Avalos, J.L.; Chen, J.; MacKinnon, R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science, 2009, 326(5960), 1668-1674.
[52]
Uysal, S.; Vásquez, V.; Tereshko, V.; Esaki, K.; Fellouse, F.A.; Sidhu, S.S.; Koide, S.; Perozo, E.; Kossiakoff, A. Crystal structure of full-length KcsA in its closed conformation. Proc. Natl. Acad. Sci. USA, 2009, 106(16), 6644-6649.
[53]
Ostmeyer, J.; Chakrapani, S.; Pan, A.C.; Perozo, E.; Roux, B. Recovery from slow inactivation in K+ channels is controlled by water molecules. Nature, 2013, 501(7465), 121-124.
[54]
Bavro, V.N.; De Zorzi, R.; Schmidt, M.R.; Muniz, J.R.; Zubcevic, L.; Sansom, M.S.; Vénien-Bryan, C.; Tucker, S.J. Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nat. Struct. Mol. Biol., 2012, 19(2), 158-163.
[55]
Zimmerberg, J.; Parsegian, V.A. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature, 1986, 323(6083), 36-39.
[56]
Thompson, A.N.; Posson, D.J.; Parsa, P.V.; Nimigean, C.M. Molecular mechanism of pH sensing in KcsA potassium channels. Proc. Natl. Acad. Sci. USA, 2008, 105(19), 6900-6905.
[57]
Uysal, S.; Cuello, L.G.; Cortes, D.M.; Koide, S.; Kossiakoff, A.A.; Perozo, E. Mechanism of activation gating in the full-length KcsA K+ channel. Proc. Natl. Acad. Sci. USA, 2011, 108(29), 11896-11899.
[58]
Raghuraman, H.; Islam, S.M.; Mukherjee, S.; Roux, B.; Perozo, E. Dynamics transitions at the outer vestibule of the KcsA potassium channel during gating. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1831-1836.
[59]
Chao, Y.; Fu, D. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J. Biol. Chem., 2004, 279(13), 12043-12050.
[60]
Lu, M.; Fu, D. Structure of the zinc transporter YiiP. Science, 2007, 317(5845), 1746-1748.
[61]
Lu, M.; Chai, J.; Fu, D. Structural basis for autoregulation of the zinc transporter YiiP. Nat. Struct. Mol. Biol., 2009, 16(10), 1063-1067.
[62]
Kaur, P.; Kiselar, J.; Yang, S.; Chance, M.R. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS). Mol. Cell. Proteomics, 2015, 14(4), 1159-1168.
[63]
Kaur, P.; Kiselar, J.G.; Chance, M.R. Integrated algorithms for high-throughput examination of covalently labeled biomolecules by structural mass spectrometry. Anal. Chem., 2009, 81(19), 8141-8149.