Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Using X-ray Footprinting and Mass Spectrometry to Study the Structure and Function of Membrane Proteins

Author(s): Sayan Gupta*

Volume 26, Issue 1, 2019

Page: [44 - 54] Pages: 11

DOI: 10.2174/0929866526666181128142401

Price: $65

Abstract

Background: Membrane proteins are crucial for cellular sensory cascades and metabolite transport, and hence are key pharmacological targets. Structural studies by traditional highresolution techniques are limited by the requirements for high purity and stability when handled in high concentration and nonnative buffers. Hence, there is a growing requirement for the use of alternate methods in a complementary but orthogonal approach to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of X-ray radiolytic labeling in combination with mass spectroscopy, commonly known as X-ray Footprinting and Mass Spectrometry (XFMS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both lowresolution biophysical methods and high-resolution structural data, XFMS is capable of providing valuable insights into structure and dynamics of membrane proteins, which have been difficult to obtain by standalone high-resolution structural techniques. The XFMS method has also demonstrated a unique capability for identification of structural waters and their dynamics in protein cavities at both a high degree of spatial and temporal resolution, and thus capable of identifying conformational hot-spots in transmembrane proteins.

Conclusion: We provide a perspective on the place of XFMS amongst other structural biology methods and showcase some of the latest developments in its usage for studying conformational changes in membrane proteins.

Keywords: Hydroxyl-radical footprinting, oxidative labeling, mass spectrometry, ion channels, transporters, radiolysis.

Graphical Abstract

[1]
Carpenter, E.P.; Beis, K.; Cameron, A.D.; Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol., 2008, 18(5), 581-586.
[2]
Hong, M.; Zhang, Y.; Hu, F. Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem., 2012, 63, 1-24.
[3]
Ubarretxena-Belandia, I.; Stokes, D.L. Present and future of membrane protein structure determination by electron crystallography. Adv. Protein Chem. Struct. Biol., 2010, 81, 33-60.
[4]
Goldie, K.N.; Abeyrathne, P.; Kebbel, F.; Chami, M.; Ringler, P.; Stahlberg, H. Cryo-electron microscopy of membrane proteins. Methods Mol. Biol., 2014, 1117, 325-341.
[5]
Bartesaghi, A.; Subramaniam, S. Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr. Opin. Struct. Biol., 2009, 19(4), 402-407.
[6]
Schmidt-Krey, I. Electron crystallography of membrane proteins: Two-dimensional crystallization and screening by electron microscopy. Methods, 2007, 41(4), 417-426.
[7]
Breyton, C.; Gabel, F.; Lethier, M.; Flayhan, A.; Durand, G.; Jault, J.M.; Juillan-Binard, C.; Imbert, L.; Moulin, M.; Ravaud, S.; Härtlein, M.; Ebel, C. Small angle neutron scattering for the study of solubilised membrane proteins. Eur. Phys. J.E. Soft Matter, 2013, 36(7), 71.
[8]
Jeschke, G. DEER distance measurements on proteins. Annu. Rev. Phys. Chem., 2012, 63, 419-446.
[9]
Gupta, S.; Feng, J.; Chan, L.J.; Petzold, C.J.; Ralston, C.Y. Synchrotron X-ray footprinting as a method to visualize water in proteins. J. Synchrotron Radiat., 2016, 23(Pt 5), 1056-1069.
[10]
Xu, G.; Chance, M.R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev., 2007, 107(8), 3514-343.
[11]
Gilmore, J.M.; Washburn, M.P. Advances in shotgun proteomics and the analysis of membrane proteomes. J. Proteomics, 2010, 73(11), 2078-2091.
[12]
Savas, J.N.; Stein, B.D.; Wu, C.C.; Yates, J.R., III Mass spectrometry accelerates membrane protein analysis. Trends Biochem. Sci., 2011, 36(7), 388-396.
[13]
Schey, K.L.; Grey, A.C.; Nicklay, J.J. Mass spectrometry of membrane proteins: A focus on aquaporins. Biochemistry, 2013, 52(22), 3807-3817.
[14]
Angel, T.E.; Gupta, S.; Jastrzebska, B.; Palczewski, K.; Chance, M.R. Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14367-14372.
[15]
Lu, Y.; Zhang, H.; Niedzwiedzki, D.M.; Jiang, J.; Blankenship, R.E.; Gross, M.L. Fast photochemical oxidation of proteins maps the topology of intrinsic membrane proteins: Light-harvesting complex 2 in a nanodisc. Anal. Chem., 2016, 88(17), 8827-8834.
[16]
Pirrone, G.F.; Iacob, R.E.; Engen, J.R. Applications of hydrogen/deuterium exchange MS from 2012 to 2014. Anal. Chem., 2015, 87(1), 99-118.
[17]
Hebling, C.M.; Morgan, C.R.; Stafford, D.W.; Jorgenson, J.W.; Rand, K.D.; Engen, J.R. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry. Anal. Chem., 2010, 82(13), 5415-5419.
[18]
Weerasekera, R.; Schmitt-Ulms, G. Crosslinking strategies for the study of membrane protein complexes and protein interaction interfaces. Biotechnol. Genet. Eng. Rev., 2006, 23, 41-62.
[19]
Pan, J.; Borchers, C.H. Top-down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: Implications for biosimilars. Proteomics, 2014, 14(10), 1249-1258.
[20]
Orban, T.; Jastrzebska, B.; Gupta, S.; Wang, B.; Miyagi, M.; Chance, M.R.; Palczewski, K. Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure, 2012, 20(5), 826-840.
[21]
Pan, Y.; Piyadasa, H.; O’Neil, J.D.; Konermann, L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: The glycerol facilitator. J. Mol. Biol., 2012, 416(3), 400-413.
[22]
Debelyy, M.O.; Waridel, P.; Quadroni, M.; Schneiter, R.; Conzelmann, A. Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins. PLoS One, 2017, 12(10), e0186840.
[23]
Fischer, L.; Chen, Z.A.; Rappsilber, J. Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J. Proteomics, 2013, 88, 120-128.
[24]
Wecksler, A.T.; Kalo, M.S.; Deperalta, G. Mapping of Fab-1:VEGF interface using carboxyl group footprinting mass spectrometry. J. Am. Soc. Mass Spectrom., 2015, 26(12), 2077-2080.
[25]
Gupta, S.; Bavro, V.N.; D’Mello, R.; Tucker, S.J.; Vénien-Bryan, C.; Chance, M.R. Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure, 2010, 18(7), 839-846.
[26]
Gupta, S.; Chai, J.; Cheng, J.; D’Mello, R.; Chance, M.R.; Fu, D. Visualizing the kinetic power stroke that drives proton-coupled zinc (II) transport. Nature, 2014, 512(7512), 101.
[27]
Marcoux, J.; Wang, S.C.; Politis, A.; Reading, E.; Ma, J.; Biggin, P.C.; Zhou, M.; Tao, H.; Zhang, Q.; Chang, G.; Morgner, N. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9704-9709.
[28]
Laganowsky, A.; Reading, E.; Hopper, J.T.; Robinson, C.V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc., 2013, 8(4), 639.
[29]
Morgner, N.; Kleinschroth, T.; Barth, H.D.; Ludwig, B.; Brutschy, B. A novel approach to analyze membrane proteins by laser mass spectrometry: From protein subunits to the integral complex. J. Am. Soc. Mass Spectrom., 2007, 18(8), 1429-1438.
[30]
Gupta, S.; Celestre, R.; Petzold, C.J.; Chance, M.R.; Ralston, C. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source. J. Synchrotron Radiat., 2014, 21(4), 690-699.
[31]
Takamoto, K.; Chance, M.R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct., 2006, 35, 251-276.
[32]
Kamal, J.K.; Chance, M.R. Modeling of protein binary complexes using structural mass spectrometry data. Protein Sci., 2008, 17(1), 79-94.
[33]
Guan, J.Q.; Almo, S.C.; Chance, M.R. Synchrotron radiolysis and mass spectrometry: A new approach to research on the actin cytoskeleton. Acc. Chem. Res., 2004, 37(4), 221-229.
[34]
Kiselar, J.G.; Mahaffy, R.; Pollard, T.D.; Almo, S.C.; Chance, M.R. Visualizing Arp2/3 complex activation mediated by binding of ATP and WASp using structural mass spectrometry. Proc. Natl. Acad. Sci. USA, 2007, 104(5), 1552-1557.
[35]
Gupta, S.; Sullivan, M.; Toomey, J.; Kiselar, J.; Chance, M.R. The Beamline X28C of the center for synchrotron biosciences: A national resource for biomolecular structure and dynamics experiments using synchrotron footprinting. J. Synchrotron Radiat., 2007, 14(Pt 3), 233-243.
[36]
Sullivan, M.R.; Rekhi, S.; Bohon, J.; Gupta, S.; Abel, D.; Toomey, J.; Chance, M.R. Installation and testing of a focusing mirror at beamline X28C for high flux X-ray radiolysis of biological macromolecules. Rev. Sci. Instrum., 2008, 79(2 Pt 1), 025101.
[37]
Bohon, J.; Jennings, L.D.; Phillips, C.M.; Licht, S.; Chance, M.R. Synchrotron protein footprinting supports substrate translocation by ClpA via ATP-induced movements of the D2 loop. Structure, 2008, 16(8), 1157-1165.
[38]
Tullius, T.D.; Dombroski, B.A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science, 1985, 230(4726), 679-681.
[39]
Hambly, D.M.; Gross, M.L. Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom., 2005, 16(12), 2057-2063.
[40]
Maleknia, S.D.; Downard, K.M. On-plate deposition of oxidized proteins to facilitate protein footprinting studies by radical probe mass spectrometry. Rapid Commun. Mass Spectrom., 2012, 26(19), 2311-2318.
[41]
Maleknia, S.D.; Chance, M.R.; Downard, K.M. Electrospray-assisted modification of proteins: A radical probe of protein structure. Rapid Commun. Mass Spectrom., 1999, 13(23), 2352-2358.
[42]
Gupta, S.; D’Mello, R.; Chance, M.R. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14882-14887.
[43]
Gupta, S.; Bavro, V.N.; D’Mello, R.; Tucker, S.J.; Vénien-Bryan, C.; Chance, M.R. Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure, 2010, 18(7), 839-846.
[44]
Ball, P. Water as an active constituent in cell biology. Chem. Rev., 2008, 108(1), 74-108.
[45]
Renthal, R. Buried water molecules in helical transmembrane proteins. Protein Sci., 2008, 17(2), 293-298.
[46]
Angel, T.E.; Chance, M.R.; Palczewski, K. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8555-8560.
[47]
Padayatti, P.S.; Wang, L.; Gupta, S.; Orban, T.; Sun, W.; Salom, D.; Jordan, S.R.; Palczewski, K.; Chance, M.R. A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4). Mol. Cell. Proteomics, 2013, 12(5), 1259-1271.
[48]
Gustavsson, M.; Wang, L.; van Gils, N.; Stephens, B.S.; Zhang, P.; Schall, T.J.; Yang, S.; Abagyan, R.; Chance, M.R.; Kufareva, I.; Handel, T.M. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat. Commun., 2017, 8, 14135.
[49]
Aryal, P.; Sansom, M.S.; Tucker, S.J. Hydrophobic gating in ion channels. J. Mol. Biol., 2015, 427(1), 121-130.
[50]
Swartz, K.J. Towards a structural view of gating in potassium channels. Nat. Rev. Neurosci., 2004, 5(12), 905-916.
[51]
Tao, X.; Avalos, J.L.; Chen, J.; MacKinnon, R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science, 2009, 326(5960), 1668-1674.
[52]
Uysal, S.; Vásquez, V.; Tereshko, V.; Esaki, K.; Fellouse, F.A.; Sidhu, S.S.; Koide, S.; Perozo, E.; Kossiakoff, A. Crystal structure of full-length KcsA in its closed conformation. Proc. Natl. Acad. Sci. USA, 2009, 106(16), 6644-6649.
[53]
Ostmeyer, J.; Chakrapani, S.; Pan, A.C.; Perozo, E.; Roux, B. Recovery from slow inactivation in K+ channels is controlled by water molecules. Nature, 2013, 501(7465), 121-124.
[54]
Bavro, V.N.; De Zorzi, R.; Schmidt, M.R.; Muniz, J.R.; Zubcevic, L.; Sansom, M.S.; Vénien-Bryan, C.; Tucker, S.J. Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nat. Struct. Mol. Biol., 2012, 19(2), 158-163.
[55]
Zimmerberg, J.; Parsegian, V.A. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature, 1986, 323(6083), 36-39.
[56]
Thompson, A.N.; Posson, D.J.; Parsa, P.V.; Nimigean, C.M. Molecular mechanism of pH sensing in KcsA potassium channels. Proc. Natl. Acad. Sci. USA, 2008, 105(19), 6900-6905.
[57]
Uysal, S.; Cuello, L.G.; Cortes, D.M.; Koide, S.; Kossiakoff, A.A.; Perozo, E. Mechanism of activation gating in the full-length KcsA K+ channel. Proc. Natl. Acad. Sci. USA, 2011, 108(29), 11896-11899.
[58]
Raghuraman, H.; Islam, S.M.; Mukherjee, S.; Roux, B.; Perozo, E. Dynamics transitions at the outer vestibule of the KcsA potassium channel during gating. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1831-1836.
[59]
Chao, Y.; Fu, D. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J. Biol. Chem., 2004, 279(13), 12043-12050.
[60]
Lu, M.; Fu, D. Structure of the zinc transporter YiiP. Science, 2007, 317(5845), 1746-1748.
[61]
Lu, M.; Chai, J.; Fu, D. Structural basis for autoregulation of the zinc transporter YiiP. Nat. Struct. Mol. Biol., 2009, 16(10), 1063-1067.
[62]
Kaur, P.; Kiselar, J.; Yang, S.; Chance, M.R. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS). Mol. Cell. Proteomics, 2015, 14(4), 1159-1168.
[63]
Kaur, P.; Kiselar, J.G.; Chance, M.R. Integrated algorithms for high-throughput examination of covalently labeled biomolecules by structural mass spectrometry. Anal. Chem., 2009, 81(19), 8141-8149.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy