Review Article

新的结核病候选疫苗

卷 27, 期 31, 2020

页: [5095 - 5118] 页: 24

弟呕挨: 10.2174/0929867326666181126112124

价格: $65

摘要

肺结核排在艾滋病之前,是每年影响和杀死许多人的第九大致死原因。药物的疗效受到耐多药(MDR)和广泛耐药(XDR)等一系列问题的制约。与此同时,已有90多年历史的唯一获批疫苗卡介苗(卡介苗)的效力不够。因此,开发新的结核病预防和免疫治疗疫苗至关重要。本文综述了结核病流行情况、免疫系统对结核病的反应以及结核病疫苗的研究和开发的最新进展。本文介绍了几种正在进行临床试验的疫苗以及基于ram的候选疫苗。

关键词: 结核病,疫苗,肪阿拉伯甘露糖,免疫治疗,反应,LAM基候选药物。

[1]
Radosevic, K.; Wieland, C.W.; Rodriguez, A.; Weverling, G.J.; Mintardjo, R.; Gillissen, G.; Vogels, R.; Skeiky, Y.A.; Hone, D.M.; Sadoff, J.C.; van der Poll, T.; Havenga, M.; Goudsmit, J. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect. Immun., 2007, 75(8), 4105-4115.
[http://dx.doi.org/10.1128/IAI.00004-07] [PMID: 17526747]
[2]
World Health Organization; Global Tuberculosis Report, 2019.Available at:. http://www.who.int/tb/publications/global_report/en/
[3]
Connell, D.W.; Berry, M.; Cooke, G.; Kon, O.M. Update on tuberculosis: TB in the early 21st century. Eur. Respir. Rev., 2011, 20(120), 71-84.
[http://dx.doi.org/10.1183/09059180.00000511] [PMID: 21632795]
[4]
Joe, M.; Sun, D.; Taha, H.; Completo, G.C.; Croudace, J.E.; Lammas, D.A.; Besra, G.S.; Lowary, T.L. The 5-deoxy-5-methylthio-xylofuranose residue in mycobacterial lipoarabinomannan. Absolute stereochemistry, linkage position, conformation and immunomodulatory activity. J. Am. Chem. Soc., 2006, 128(15), 5059-5072.
[http://dx.doi.org/10.1021/ja057373q] [PMID: 16608340]
[5]
Wang, L.; Feng, S.; An, L.; Gu, G.; Guo, Z. Synthetic and immunological studies of mycobacterial lipoarabinomannan oligosaccharides and their protein conjugates. J. Org. Chem., 2015, 80(20), 10060-10075.
[http://dx.doi.org/10.1021/acs.joc.5b01686] [PMID: 26375482]
[6]
Andersen, P.; Doherty, T.M. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol., 2005, 3(8), 656-662.
[http://dx.doi.org/10.1038/nrmicro1211] [PMID: 16012514]
[7]
Trunz, B.B.; Fine, P.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 2006, 367(9517), 1173-1180.
[http://dx.doi.org/10.1016/S0140-6736(06)68507-3] [PMID: 16616560]
[8]
Källenius, G.; Pawlowski, A.; Hamasur, B.; Svenson, S.B. Mycobacterial glycoconjugates as vaccine candidates against tuberculosis. Trends Microbiol., 2008, 16(10), 456-462.
[http://dx.doi.org/10.1016/j.tim.2008.07.007] [PMID: 18774297]
[9]
Black, G.F.; Weir, R.E.; Floyd, S.; Bliss, L.; Warndorff, D.K.; Crampin, A.C.; Ngwira, B.; Sichali, L.; Nazareth, B.; Blackwell, J.M.; Branson, K.; Chaguluka, S.D.; Donovan, L.; Jarman, E.; King, E.; Fine, P.E.; Dockrell, H.M. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet, 2002, 359(9315), 1393-1401.
[http://dx.doi.org/10.1016/S0140-6736(02)08353-8] [PMID: 11978337]
[10]
Lalor, M.K.; Ben-Smith, A.; Gorak-Stolinska, P.; Weir, R.E.; Floyd, S.; Blitz, R.; Mvula, H.; Newport, M.J.; Branson, K.; McGrath, N.; Crampin, A.C.; Fine, P.E.; Dockrell, H.M. Population differences in immune responses to bacille calmette-guérin vaccination in infancy. J. Infect. Dis., 2009, 199(6), 795-800.
[http://dx.doi.org/10.1086/597069] [PMID: 19434928]
[11]
Mansoor, N.; Scriba, T.J.; de Kock, M.; Tameris, M.; Abel, B.; Keyser, A.; Little, F.; Soares, A.; Gelderbloem, S.; Mlenjeni, S.; Denation, L.; Hawkridge, A.; Boom, W.H.; Kaplan, G.; Hussey, G.D.; Hanekom, W.A. HIV-1 infection in infants severely impairs the immune response induced by bacille calmette-guérin vaccine. J. Infect. Dis., 2009, 199(7), 982-990.
[http://dx.doi.org/10.1086/597304] [PMID: 19236280]
[12]
Kaufmann, S.H. Is the development of a new tuberculosis vaccine possible? Nat. Med., 2000, 6(9), 955-960.
[http://dx.doi.org/10.1038/79631] [PMID: 10973302]
[13]
Govindarajan, K.K.; Chai, F.Y. BCG adenitis-need for increased awareness. Malays. J. Med. Sci., 2011, 18(2), 66-69.
[PMID: 22135589]
[14]
Abebe, F.; Bjune, G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin. Exp. Immunol., 2009, 157(2), 235-243.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03967.x] [PMID: 19604263]
[15]
Lerner, T.R.; Borel, S.; Gutierrez, M.G. The innate immune response in human tuberculosis. Cell. Microbiol., 2015, 17(9), 1277-1285.
[http://dx.doi.org/10.1111/cmi.12480] [PMID: 26135005]
[16]
Allen, M.; Bailey, C.; Cahatol, I.; Dodge, L.; Yim, J.; Kassissa, C.; Luong, J.; Kasko, S.; Pandya, S.; Venketaraman, V. Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front. Immunol., 2015, 6, 508.
[http://dx.doi.org/10.3389/fimmu.2015.00508] [PMID: 26500648]
[17]
Cheng, Y.; Schorey, J.S. Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection. Eur. J. Immunol., 2013, 43(12), 3279-3290.
[http://dx.doi.org/10.1002/eji.201343727] [PMID: 23943377]
[18]
Kaufmann, S.H. Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect. Dis., 2011, 11(8), 633-640.
[http://dx.doi.org/10.1016/S1473-3099(11)70146-3] [PMID: 21798463]
[19]
Silva, C.L.; Bonato, V.L.; Lima, K.M.; Coelho-Castelo, A.A.; Faccioli, L.H.; Sartori, A.; De Souza, A.O.; Leão, S.C. Cytotoxic T cells and mycobacteria. FEMS Microbiol. Lett., 2001, 197(1), 11-18.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10575.x] [PMID: 11287139]
[20]
Kaufmann, S.H.; Parida, S.K. Changing funding patterns in tuberculosis. Nat. Med., 2007, 13(3), 299-303.
[http://dx.doi.org/10.1038/nm0307-299] [PMID: 17342144]
[21]
Kaufmann, S.H.; Hussey, G.; Lambert, P.H. New vaccines for tuberculosis. Lancet, 2010, 375(9731), 2110-2119.
[http://dx.doi.org/10.1016/S0140-6736(10)60393-5] [PMID: 20488515]
[22]
Kaufmann, S.H. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity, 2010, 33(4), 567-577.
[http://dx.doi.org/10.1016/j.immuni.2010.09.015] [PMID: 21029966]
[23]
van Crevel, R.; Ottenhoff, T.H.; van der Meer, J.W. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2002, 15(2), 294-309.
[http://dx.doi.org/10.1128/CMR.15.2.294-309.2002] [PMID: 11932234]
[24]
Li, H.; Javid, B. Antibodies and tuberculosis: finally coming of age? Nat. Rev. Immunol., 2018, 18(9), 591-596.
[http://dx.doi.org/10.1038/s41577-018-0028-0] [PMID: 29872140]
[25]
Aagaard, C.; Dietrich, J.; Doherty, M.; Andersen, P. TB vaccines: current status and future perspectives. Immunol. Cell Biol., 2009, 87(4), 279-286.
[http://dx.doi.org/10.1038/icb.2009.14] [PMID: 19350048]
[26]
Doherty, T.M.; Andersen, P. Vaccines for tuberculosis: novel concepts and recent progress. Clin. Microbiol. Rev., 2005, 18(4), 687-702.
[http://dx.doi.org/10.1128/CMR.18.4.687-702.2005] [PMID: 16223953]
[27]
Bavaro, T.; Piubelli, L.; Amicosante, M.; Terreni, M. From new diagnostic targets to recombinant proteins and semi-synthetic protein-based vaccines. Curr. Org. Synth., 2016, 20(11), 1150-1168.
[http://dx.doi.org/10.2174/1385272819666150810204736]]
[28]
Bekmurzayeva, A.; Sypabekova, M.; Kanayeva, D. Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2013, 93(4), 381-388.
[http://dx.doi.org/10.1016/j.tube.2013.03.003] [PMID: 23602700]
[29]
Huygen, K. The immunodominant T-cell epitopes of the mycolyl-transferases of the antigen 85 complex of M. tuberculosis. Front. Immunol., 2014, 5, 321.
[http://dx.doi.org/10.3389/fimmu.2014.00321] [PMID: 25071781]
[30]
Lightbody, K.A.; Girvin, R.M.; Pollock, D.A.; Mackie, D.P.; Neill, S.D.; Pollock, J.M. Recognition of a common mycobacterial T-cell epitope in MPB59 of Mycobacterium bovis. Immunology, 1998, 93(3), 314-322.
[http://dx.doi.org/10.1046/j.1365-2567.1998.00449.x] [PMID: 9640240]
[31]
Mustafa, A.S.; Shaban, F.A.; Abal, A.T.; Al-Attiyah, R.; Wiker, H.G.; Lundin, K.E.; Oftung, F.; Huygen, K. Identification and HLA restriction of naturally derived Th1-cell epitopes from the secreted Mycobacterium tuberculosis antigen 85B recognized by antigen-specific human CD4(+) T-cell lines. Infect. Immun., 2000, 68(7), 3933-3940.
[http://dx.doi.org/10.1128/IAI.68.7.3933-3940.2000] [PMID: 10858206]
[32]
Valle, M.T.; Megiovanni, A.M.; Merlo, A.; Li Pira, G.; Bottone, L.; Angelini, G.; Bracci, L.; Lozzi, L.; Huygen, K.; Manca, F. Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory mycobacterial antigen Ag85. Clin. Exp. Immunol., 2001, 123(2), 226-232.
[http://dx.doi.org/10.1046/j.1365-2249.2001.01450.x] [PMID: 11207652]
[33]
Kadir, N.A.; Sarmiento, M.E.; Acosta, A.; Norazmi, M-N. Cellular and humoral immunogenicity of recombinant Mycobacterium smegmatis expressing Ag85B epitopes in mice. Int. J. Mycobacteriol., 2016, 5(1), 7-13.
[http://dx.doi.org/10.1016/j.ijmyco.2015.09.006] [PMID: 26927984]
[34]
Skjøt, R.L.V.; Oettinger, T.; Rosenkrands, I.; Ravn, P.; Brock, I.; Jacobsen, S.; Andersen, P. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect. Immun., 2000, 68(1), 214-220.
[http://dx.doi.org/10.1128/IAI.68.1.214-220.2000] [PMID: 10603390]
[35]
Brandt, L.; Oettinger, T.; Holm, A.; Andersen, A.B.; Andersen, P. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. J. Immunol., 1996, 157(8), 3527-3533.
[PMID: 8871652]
[36]
Harboe, M.; Malin, A.S.; Dockrell, H.S.; Wiker, H.G.; Ulvund, G.; Holm, A.; Jørgensen, M.C.; Andersen, P. B-cell epitopes and quantification of the ESAT-6 protein of Mycobacterium tuberculosis. Infect. Immun., 1998, 66(2), 717-723.
[http://dx.doi.org/10.1128/IAI.66.2.717-723.1998] [PMID: 9453632]
[37]
Temporini, C.; Bavaro, T.; Tengattini, S.; Serra, I.; Marrubini, G.; Calleri, E.; Fasanella, F.; Piubelli, L.; Marinelli, F.; Pollegioni, L.; Speranza, G.; Massolini, G.; Terreni, M. Liquid chromatography-mass spectrometry structural characterization of neo glycoproteins aiding the rational design and synthesis of a novel glycovaccine for protection against tuberculosis. J. Chromatogr. A, 2014, 1367, 57-67.
[http://dx.doi.org/10.1016/j.chroma.2014.09.041] [PMID: 25282312]
[38]
Li, L.; Yang, B.; Yu, S.; Zhang, X.; Lao, S.; Wu, C. Human CD8+ T cells from TB pleurisy respond to four immunodominant epitopes in Mtb CFP10 restricted by HLA-B alleles. PLoS One, 2013, 8(12)e82196
[http://dx.doi.org/10.1371/journal.pone.0082196] [PMID: 24349220]
[39]
Roche, P.W.; Feng, C.G.; Britton, W.J. Human T-cell epitopes on the Mycobacterium tuberculosis secreted protein MPT64. Scand. J. Immunol., 1996, 43(6), 662-670.
[http://dx.doi.org/10.1046/j.1365-3083.1996.d01-260.x] [PMID: 8658056]
[40]
Oettinger, T.; Andersen, A.B. Cloning and B-cell-epitope mapping of MPT64 from Mycobacterium tuberculosis H37Rv. Infect. Immun., 1994, 62(5), 2058-2064.
[http://dx.doi.org/10.1128/IAI.62.5.2058-2064.1994] [PMID: 7513311]
[41]
Mustafa, A.S. In silico binding predictions for identification of HLA-DR-promiscuous regions and epitopes of Mycobacterium tuberculosis protein MPT64 (Rv1980c) and their recognition by human Th1 cells. Med. Princ. Pract., 2010, 19(5), 367-372.
[http://dx.doi.org/10.1159/000316375] [PMID: 20639660]
[42]
Bertholet, S.; Ireton, G.C.; Kahn, M.; Guderian, J.; Mohamath, R.; Stride, N.; Laughlin, E.M.; Baldwin, S.L.; Vedvick, T.S.; Coler, R.N.; Reed, S.G. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J. Immunol., 2008, 181(11), 7948-7957.
[http://dx.doi.org/10.4049/jimmunol.181.11.7948] [PMID: 19017986]
[43]
Zhou, T.; Xu, L.; Dey, B.; Hessell, A.J.; Van Ryk, D.; Xiang, S.H.; Yang, X.; Zhang, M.Y.; Zwick, M.B.; Arthos, J.; Burton, D.R.; Dimitrov, D.S.; Sodroski, J.; Wyatt, R.; Nabel, G.J.; Kwong, P.D. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445(7129), 732-737.
[http://dx.doi.org/10.1038/nature05580] [PMID: 17301785]
[44]
Horwitz, M.A.; Harth, G.; Dillon, B.J.; Masleša-Galić’, S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13853-13858.
[http://dx.doi.org/10.1073/pnas.250480397] [PMID: 11095745]
[45]
Orme, I.M. Tuberculosis vaccine types and timings. Clin. Vaccine Immunol., 2015, 22(3), 249-257.
[http://dx.doi.org/10.1128/CVI.00718-14] [PMID: 25540272]
[46]
Grode, L.; Seiler, P.; Baumann, S.; Hess, J.; Brinkmann, V.; Nasser Eddine, A.; Mann, P.; Goosmann, C.; Bandermann, S.; Smith, D.; Bancroft, G.J.; Reyrat, J.M.; van Soolingen, D.; Raupach, B.; Kaufmann, S.H. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille calmette-guérin mutants that secrete listeriolysin. J. Clin. Invest., 2005, 115(9), 2472-2479.
[http://dx.doi.org/10.1172/JCI24617] [PMID: 16110326]
[47]
Grode, L.; Ganoza, C.A.; Brohm, C.; Weiner, J., III; Eisele, B.; Kaufmann, S.H. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31(9), 1340-1348.
[http://dx.doi.org/10.1016/j.vaccine.2012.12.053] [PMID: 23290835]
[48]
Saiga, H.; Nieuwenhuizen, N.; Gengenbacher, M.; Koehler, A.B.; Schuerer, S.; Moura-Alves, P.; Wagner, I.; Mollenkopf, H.J.; Dorhoi, A.; Kaufmann, S.H. The Recombinant BCG Δ ureC: HLY vaccine targets the AIM2 inflammasome to induce autophagy and inflammation. J. Infect. Dis., 2015, 211(11), 1831-1841.
[http://dx.doi.org/10.1093/infdis/jiu675] [PMID: 25505299]
[49]
Kaufmann, S.H.; Cotton, M.F.; Eisele, B.; Gengenbacher, M.; Grode, L.; Hesseling, A.C.; Walzl, G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev. Vaccines, 2014, 13(5), 619-630.
[http://dx.doi.org/10.1586/14760584.2014.905746] [PMID: 24702486]
[50]
Loxton, A.G.; Knaul, J.K.; Grode, L.; Gutschmidt, A.; Meller, C.; Eisele, B.; Johnstone, H.; van der Spuy, G.; Maertzdorf, J.; Kaufmann, S.H.E.; Hesseling, A.C.; Walzl, G.; Cotton, M.F. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin. Vaccine Immunol., 2017, 24(2), e00439-e00416.
[http://dx.doi.org/10.1128/CVI.00439-16] [PMID: 27974398]
[51]
Desel, C.; Dorhoi, A.; Bandermann, S.; Grode, L.; Eisele, B.; Kaufmann, S.H.; Recombinant, B.C.G. Recombinant BCG ΔureC HLY+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J. Infect. Dis., 2011, 204(10), 1573-1584.
[http://dx.doi.org/10.1093/infdis/jir592] [PMID: 21933877]
[52]
Larsen, M.H.; Biermann, K.; Chen, B.; Hsu, T.; Sambandamurthy, V.K.; Lackner, A.A.; Aye, P.P.; Didier, P.; Huang, D.; Shao, L.; Wei, H.; Letvin, N.L.; Frothingham, R.; Haynes, B.F.; Chen, Z.W.; Jacobs, W.R., Jr Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine, 2009, 27(34), 4709-4717.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.050] [PMID: 19500524]
[53]
Arbues, A.; Aguilo, J.I.; Gonzalo-Asensio, J.; Marinova, D.; Uranga, S.; Puentes, E.; Fernandez, C.; Parra, A.; Cardona, P.J.; Vilaplana, C.; Ausina, V.; Williams, A.; Clark, S.; Malaga, W.; Guilhot, C.; Gicquel, B.; Martin, C. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 2013, 31(42), 4867-4873.
[http://dx.doi.org/10.1016/j.vaccine.2013.07.051] [PMID: 23965219]
[54]
Gonzalo-Asensio, J.; Marinova, D.; Martin, C.; Aguilo, N. MTBVAC: Attenuating the human pathogen of Tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front. Immunol., 2017, 8, 1803.
[http://dx.doi.org/10.3389/fimmu.2017.01803] [PMID: 29326700]
[55]
Stucki, D.; Brites, D.; Jeljeli, L.; Coscolla, M.; Liu, Q.; Trauner, A.; Fenner, L.; Rutaihwa, L.; Borrell, S.; Luo, T.; Gao, Q.; Kato-Maeda, M.; Ballif, M.; Egger, M.; Macedo, R.; Mardassi, H.; Moreno, M.; Tudo Vilanova, G.; Fyfe, J.; Globan, M.; Thomas, J.; Jamieson, F.; Guthrie, J.L.; Asante-Poku, A.; Yeboah-Manu, D.; Wampande, E.; Ssengooba, W.; Joloba, M.; Henry Boom, W.; Basu, I.; Bower, J.; Saraiva, M.; Vaconcellos, S.E.G.; Suffys, P.; Koch, A.; Wilkinson, R.; Gail-Bekker, L.; Malla, B.; Ley, S.D.; Beck, H.P.; de Jong, B.C.; Toit, K.; Sanchez-Padilla, E.; Bonnet, M.; Gil-Brusola, A.; Frank, M.; Penlap Beng, V.N.; Eisenach, K.; Alani, I.; Wangui Ndung’u, P.; Revathi, G.; Gehre, F.; Akter, S.; Ntoumi, F.; Stewart-Isherwood, L.; Ntinginya, N.E.; Rachow, A.; Hoelscher, M.; Cirillo, D.M.; Skenders, G.; Hoffner, S.; Bakonyte, D.; Stakenas, P.; Diel, R.; Crudu, V.; Moldovan, O.; Al-Hajoj, S.; Otero, L.; Barletta, F.; Jane Carter, E.; Diero, L.; Supply, P.; Comas, I.; Niemann, S.; Gagneux, S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet., 2016, 48(12), 1535-1543.
[http://dx.doi.org/10.1038/ng.3704] [PMID: 27798628]
[56]
Martin, C.; Williams, A.; Hernandez-Pando, R.; Cardona, P.J.; Gormley, E.; Bordat, Y.; Soto, C.Y.; Clark, S.O.; Hatch, G.J.; Aguilar, D.; Ausina, V.; Gicquel, B. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine, 2006, 24(17), 3408-3419.
[http://dx.doi.org/10.1016/j.vaccine.2006.03.017] [PMID: 16564606]
[57]
Aguilo, N.; Gonzalo-Asensio, J.; Alvarez-Arguedas, S.; Marinova, D.; Gomez, A.B.; Uranga, S.; Spallek, R.; Singh, M.; Audran, R.; Spertini, F.; Martin, C. Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis. Nat. Commun., 2017, 8, 16085.
[http://dx.doi.org/10.1038/ncomms16085] [PMID: 28706226]
[58]
Clark, S.; Lanni, F.; Marinova, D.; Rayner, E.; Martin, C.; Williams, A. Revaccination of guinea pigs with the live attenuated Mycobacterium tuberculosis vaccine MTBVAC improves BCG’s protection against tuberculosis. J. Infect. Dis., 2017, 216(5), 525-533.
[http://dx.doi.org/10.1093/infdis/jix030] [PMID: 28329234]
[59]
Sambandamurthy, V.K.; Derrick, S.C.; Jalapathy, K.V.; Chen, B.; Russell, R.G.; Morris, S.L.; Jacobs, W.R., Jr Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect. Immun., 2005, 73(2), 1196-1203.
[http://dx.doi.org/10.1128/IAI.73.2.1196-1203.2005] [PMID: 15664964]
[60]
Sambandamurthy, V.K.; Derrick, S.C.; Hsu, T.; Chen, B.; Larsen, M.H.; Jalapathy, K.V.; Chen, M.; Kim, J.; Porcelli, S.A.; Chan, J.; Morris, S.L.; Jacobs, W.R., Jr Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine, 2006, 24(37-39), 6309-6320.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.097] [PMID: 16860907]
[61]
Tang, J.; Yam, W.C.; Chen, Z. Mycobacterium tuberculosis infection and vaccine development. Tuberculosis (Edinb.), 2016, 98, 30-41.
[http://dx.doi.org/10.1016/j.tube.2016.02.005] [PMID: 27156616]
[62]
Andersen, P.; Kaufmann, S.H. Novel vaccination strategies against tuberculosis. Cold Spring Harb. Perspect. Med., 2014, 4(6)a018523
[http://dx.doi.org/10.1101/cshperspect.a018523] [PMID: 24890836]
[63]
Andersen, P.; Andersen, A.B.; Sørensen, A.L.; Nagai, S. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J. Immunol., 1995, 154(7), 3359-3372.
[PMID: 7897219]
[64]
van Dissel, J.T.; Arend, S.M.; Prins, C.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Klein, M.R.; Rosenkrands, I.; Ottenhoff, T.H.; Kromann, I.; Doherty, T.M.; Andersen, P. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine, 2010, 28(20), 3571-3581.
[http://dx.doi.org/10.1016/j.vaccine.2010.02.094] [PMID: 20226890]
[65]
van Dissel, J.T.; Soonawala, D.; Joosten, S.A.; Prins, C.; Arend, S.M.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Hoff, S.T.; Rosenkrands, I.; Kromann, I.; Ottenhoff, T.H.; Doherty, T.M.; Andersen, P. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine, 2011, 29(11), 2100-2109.
[http://dx.doi.org/10.1016/j.vaccine.2010.12.135] [PMID: 21256189]
[66]
Ottenhoff, T.H.; Doherty, T.M.; van Dissel, J.T.; Bang, P.; Lingnau, K.; Kromann, I.; Andersen, P. First in humans: a new molecularly defined vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-specific Th1-cell like responses. Hum. Vaccin., 2010, 6(12), 1007-1015.
[http://dx.doi.org/10.4161/hv.6.12.13143] [PMID: 21178394]
[67]
Gong, W.; Liang, Y.; Wu, X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum. Vaccin. Immunother., 2018, 14(7), 1697-1716.
[http://dx.doi.org/10.1080/21645515.2018.1458806] [PMID: 29601253]
[68]
Skeiky, Y.A.; Dietrich, J.; Lasco, T.M.; Stagliano, K.; Dheenadhayalan, V.; Goetz, M.A.; Cantarero, L.; Basaraba, R.J.; Bang, P.; Kromann, I.; McMclain, J.B.; Sadoff, J.C.; Andersen, P. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen. Vaccine, 2010, 28(4), 1084-1093.
[http://dx.doi.org/10.1016/j.vaccine.2009.10.114] [PMID: 19896449]
[69]
Andersen, P.; Doherty, T.M.; Pai, M.; Weldingh, K. The prognosis of latent tuberculosis: can disease be predicted? Trends Mol. Med., 2007, 13(5), 175-182.
[http://dx.doi.org/10.1016/j.molmed.2007.03.004] [PMID: 17418641]
[70]
Norrby, M.; Vesikari, T.; Lindqvist, L.; Maeurer, M.; Ahmed, R.; Mahdavifar, S.; Bennett, S.; McClain, J.B.; Shepherd, B.M.; Li, D.; Hokey, D.A.; Kromann, I.; Hoff, S.T.; Andersen, P.; de Visser, A.W.; Joosten, S.A.; Ottenhoff, T.H.M.; Andersson, J.; Brighenti, S. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: two phase I dose escalation trials. Vaccine, 2017, 35(12), 1652-1661.
[http://dx.doi.org/10.1016/j.vaccine.2017.01.055] [PMID: 28216183]
[71]
Von Eschen, K.; Morrison, R.; Braun, M.; Ofori-Anyinam, O.; De Kock, E.; Pavithran, P.; Koutsoukos, M.; Moris, P.; Cain, D.; Dubois, M-C.; Cohen, J.; Ballou, W.R. The candidate tuberculosis vaccine Mtb72F/AS02a: tolerability and immunogenicity in humans. Hum. Vaccin., 2009, 5(7), 475-482.
[http://dx.doi.org/10.4161/hv.8570] [PMID: 19587528]
[72]
Reed, S.G.; Coler, R.N.; Dalemans, W.; Tan, E.V.; DeLa Cruz, E.C.; Basaraba, R.J.; Orme, I.M.; Skeiky, Y.A.; Alderson, M.R.; Cowgill, K.D.; Prieels, J.P.; Abalos, R.M.; Dubois, M.C.; Cohen, J.; Mettens, P.; Lobet, Y. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc. Natl. Acad. Sci. USA, 2009, 106(7), 2301-2306.
[http://dx.doi.org/10.1073/pnas.0712077106] [PMID: 19188599]
[73]
Tsenova, L.; Harbacheuski, R.; Moreira, A.L.; Ellison, E.; Dalemans, W.; Alderson, M.R.; Mathema, B.; Reed, S.G.; Skeiky, Y.A.; Kaplan, G. Evaluation of the Mtb72F polyprotein vaccine in a rabbit model of tuberculous meningitis. Infect. Immun., 2006, 74(4), 2392-2401.
[http://dx.doi.org/10.1128/IAI.74.4.2392-2401.2006] [PMID: 16552069]
[74]
Brandt, L.; Skeiky, Y.A.; Alderson, M.R.; Lobet, Y.; Dalemans, W.; Turner, O.C.; Basaraba, R.J.; Izzo, A.A.; Lasco, T.M.; Chapman, P.L.; Reed, S.G.; Orme, I.M. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun., 2004, 72(11), 6622-6632.
[http://dx.doi.org/10.1128/IAI.72.11.6622-6632.2004] [PMID: 15501795]
[75]
Spertini, F.; Audran, R.; Lurati, F.; Ofori-Anyinam, O.; Zysset, F.; Vandepapelière, P.; Moris, P.; Demoitié, M.A.; Mettens, P.; Vinals, C.; Vastiau, I.; Jongert, E.; Cohen, J.; Ballou, W.R. The candidate tuberculosis vaccine Mtb72F/AS02 in PPD positive adults: a randomized controlled phase I/II study. Tuberculosis (Edinb.), 2013, 93(2), 179-188.
[http://dx.doi.org/10.1016/j.tube.2012.10.011] [PMID: 23219236]
[76]
Leroux-Roels, I.; Forgus, S.; De Boever, F.; Clement, F.; Demoitié, M.A.; Mettens, P.; Moris, P.; Ledent, E.; Leroux-Roels, G.; Ofori-Anyinam, O. M72 Study Group. Improved CD4+ T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine, 2013, 31(17), 2196-2206.
[http://dx.doi.org/10.1016/j.vaccine.2012.05.035] [PMID: 22643213]
[77]
Cohen, J.; Hughes, E.; Day, C.; de Kock, M.; Geldenhuys, H.; Gelderbloem, S.; Hawkridge, A.; Hussey, G.; Mahomed, H.; Makhethe, L. Induction and regulation of T cell immunity by the novel TB vaccine M72/AS01 in South African adults. Am. J. Respir. Crit. Care Med., 2013, 188(4), 492-502.
[http://dx.doi.org/10.1164/rccm.201208-1385oc]] [PMID: 23306546]
[78]
Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; Diacon, A.; Blatner, G.L.; Demoitié, M.A.; Tameris, M.; Malahleha, M.; Innes, J.C.; Hellström, E.; Martinson, N.; Singh, T.; Akite, E.J.; Khatoon Azam, A.; Bollaerts, A.; Ginsberg, A.M.; Evans, T.G.; Gillard, P.; Tait, D.R. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med., 2018, 379(17), 1621-1634.
[http://dx.doi.org/10.1056/NEJMoa1803484] [PMID: 30280651]
[79]
Kwon, B.E.; Ahn, J.H.; Min, S.; Kim, H.; Seo, J.; Yeo, S.G.; Ko, H.J. Development of new preventive and therapeutic vaccines for tuberculosis. Immune Netw., 2018, 18(2)e17
[http://dx.doi.org/10.4110/in.2018.18.e17] [PMID: 29732235]
[80]
Dye, C. Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat. Rev. Microbiol., 2009, 7(1), 81-87.
[http://dx.doi.org/10.1038/nrmicro2048] [PMID: 19079354]
[81]
Coler, R.N.; Bertholet, S.; Pine, S.O.; Orr, M.T.; Reese, V.; Windish, H.P.; Davis, C.; Kahn, M.; Baldwin, S.L.; Reed, S.G. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J. Infect. Dis., 2013, 207(8), 1242-1252.
[http://dx.doi.org/10.1093/infdis/jis425] [PMID: 22891286]
[82]
Orme, I.M. Vaccine development for tuberculosis: current progress. Drugs, 2013, 73(10), 1015-1024.
[http://dx.doi.org/10.1007/s40265-013-0081-8] [PMID: 23794129]
[83]
Lin, P.L.; Dietrich, J.; Tan, E.; Abalos, R.M.; Burgos, J.; Bigbee, C.; Bigbee, M.; Milk, L.; Gideon, H.P.; Rodgers, M.; Cochran, C.; Guinn, K.M.; Sherman, D.R.; Klein, E.; Janssen, C.; Flynn, J.L.; Andersen, P. The multistage vaccine H56 boosts the effects of BCG to protect Cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Invest., 2012, 122(1), 303-314.
[http://dx.doi.org/10.1172/JCI46252] [PMID: 22133873]
[84]
Aagaard, C.; Hoang, T.; Dietrich, J.; Cardona, P.J.; Izzo, A.; Dolganov, G.; Schoolnik, G.K.; Cassidy, J.P.; Billeskov, R.; Andersen, P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med., 2011, 17(2), 189-194.
[http://dx.doi.org/10.1038/nm.2285] [PMID: 21258338]
[85]
Luabeya, A.K.K.; Kagina, B.M.; Tameris, M.D.; Geldenhuys, H.; Hoff, S.T.; Shi, Z.; Kromann, I.; Hatherill, M.; Mahomed, H.; Hanekom, W.A.; Andersen, P.; Scriba, T.J.; Schoeman, E.; Krohn, C.; Day, C.L.; Africa, H.; Makhethe, L.; Smit, E.; Brown, Y.; Suliman, S.; Hughes, E.J.; Bang, P.; Snowden, M.A.; McClain, B.; Hussey, G.D. H56-032 Trial Study Group. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 2015, 33(33), 4130-4140.
[http://dx.doi.org/10.1016/j.vaccine.2015.06.051] [PMID: 26095509]
[86]
Draper, S.J.; Heeney, J.L. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol., 2010, 8(1), 62-73.
[http://dx.doi.org/10.1038/nrmicro2240] [PMID: 19966816]
[87]
Abel, B.; Tameris, M.; Mansoor, N.; Gelderbloem, S.; Hughes, J.; Abrahams, D.; Makhethe, L.; Erasmus, M.; de Kock, M.; van der Merwe, L.; Hawkridge, A.; Veldsman, A.; Hatherill, M.; Schirru, G.; Pau, M.G.; Hendriks, J.; Weverling, G.J.; Goudsmit, J.; Sizemore, D.; McClain, J.B.; Goetz, M.; Gearhart, J.; Mahomed, H.; Hussey, G.D.; Sadoff, J.C.; Hanekom, W.A. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respir. Crit. Care Med., 2010, 181(12), 1407-1417.
[http://dx.doi.org/10.1164/rccm.200910-1484OC] [PMID: 20167847]
[88]
McShane, H.; Pathan, A.A.; Sander, C.R.; Keating, S.M.; Gilbert, S.C.; Huygen, K.; Fletcher, H.A.; Hill, A.V. Recombinant modified vaccinia virus ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med., 2004, 10(11), 1240-1244.
[http://dx.doi.org/10.1038/nm1128] [PMID: 15502839]
[89]
Goonetilleke, N.P.; McShane, H.; Hannan, C.M.; Anderson, R.J.; Brookes, R.H.; Hill, A.V. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille calmette-guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus ankara. J. Immunol., 2003, 171(3), 1602-1609.
[http://dx.doi.org/10.4049/jimmunol.171.3.1602] [PMID: 12874255]
[90]
Beveridge, N.E.; Price, D.A.; Casazza, J.P.; Pathan, A.A.; Sander, C.R.; Asher, T.E.; Ambrozak, D.R.; Precopio, M.L.; Scheinberg, P.; Alder, N.C.; Roederer, M.; Koup, R.A.; Douek, D.C.; Hill, A.V.; McShane, H. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur. J. Immunol., 2007, 37(11), 3089-3100.
[http://dx.doi.org/10.1002/eji.200737504] [PMID: 17948267]
[91]
Chondro, F. New tuberculosis vaccine to support tuberculosis elimination. Universa Medicina, 2018, 37(2), 85-87.
[http://dx.doi.org/10.18051/UnivMed.2018.v37.85-87]
[92]
Santosuosso, M.; McCormick, S.; Zhang, X.; Zganiacz, A.; Xing, Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun., 2006, 74(8), 4634-4643.
[http://dx.doi.org/10.1128/IAI.00517-06] [PMID: 16861651]
[93]
Smaill, F.; Jeyanathan, M.; Smieja, M.; Medina, M.F.; Thanthrige-Don, N.; Zganiacz, A.; Yin, C.; Heriazon, A.; Damjanovic, D.; Puri, L.; Hamid, J.; Xie, F.; Foley, R.; Bramson, J.; Gauldie, J.; Xing, Z. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci. Transl. Med., 2013, 5(205)205ra134
[http://dx.doi.org/10.1126/scitranslmed.3006843] [PMID: 24089406]
[94]
Méndez-Samperio, P. Global efforts in the development of vaccines for tuberculosis: requirements for improved vaccines against Mycobacterium tuberculosis. Scand. J. Immunol., 2016, 84(4), 204-210.
[http://dx.doi.org/10.1111/sji.12465] [PMID: 27454335]
[95]
Evans, T.G.; Schrager, L.; Thole, J. Status of vaccine research and development of vaccines for tuberculosis. Vaccine, 2016, 34(26), 2911-2914.
[http://dx.doi.org/10.1016/j.vaccine.2016.02.079] [PMID: 26973073]
[96]
Dockrell, H.M. Towards new TB vaccines: what are the challenges? Pathog. Dis., 2016, 74(4)ftw016
[http://dx.doi.org/10.1093/femspd/ftw016] [PMID: 26960944]
[97]
Khoshnood, S.; Heidary, M.; Haeili, M.; Drancourt, M.; Darban-Sarokhalil, D.; Nasiri, M.J.; Lohrasbi, V. Novel vaccine candidates against Mycobacterium tuberculosis. Int. J. Biol. Macromol., 2018. 120(Pt A), 180-188..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.037] [PMID: 30098365]
[98]
Hawkridge, T.; Mahomed, H. Prospects for a new, safer and more effective TB vaccine. Paediatr. Respir. Rev., 2011, 12(1), 46-51.
[http://dx.doi.org/10.1016/j.prrv.2010.09.013] [PMID: 21172675]
[99]
Vilaplana, C.; Montané, E.; Pinto, S.; Barriocanal, A.M.; Domenech, G.; Torres, F.; Cardona, P.J.; Costa, J. Double-blind, randomized, placebo-controlled phase 1 clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010, 28(4), 1106-1116.
[http://dx.doi.org/10.1016/j.vaccine.2009.09.134] [PMID: 19853680]
[100]
Sharma, A.K.; Khuller, G.K. DNA vaccines: future strategies and relevance to intracellular pathogens. Immunol. Cell Biol., 2001, 79(6), 537-546.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01044.x] [PMID: 11903613]
[101]
Triccas, J.A.; Sun, L.; Palendira, U.; Britton, W.J. Comparative effects of plasmid-encoded interleukin 12 and interleukin 18 on the protective efficacy of DNA vaccination against Mycobacterium tuberculosis. Immunol. Cell Biol., 2002, 80(4), 346-350.
[http://dx.doi.org/10.1046/j.1440-1711.2002.01087.x] [PMID: 12121223]
[102]
Montgomery, D.L.; Huygen, K.; Yawman, A.M.; Deck, R.R.; Dewitt, C.M.; Content, J.; Liu, M.A.; Ulmer, J.B. Induction of humoral and cellular immune responses by vaccination with M. tuberculosis antigen 85 DNA. Cell. Mol. Biol., 1997, 43(3), 285-292.
[PMID: 9193782]
[103]
Kamath, A.T.; Hanke, T.; Briscoe, H.; Britton, W.J. Co-immunization with DNA vaccines expressing granulocyte-macrophage colony-stimulating factor and mycobacterial secreted proteins enhances T-cell immunity, but not protective efficacy against Mycobacterium tuberculosis. Immunology, 1999, 96(4), 511-516.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00703.x] [PMID: 10233735]
[104]
Yu, D.H.; Hu, X.D.; Cai, H. Efficient tuberculosis treatment in mice using chemotherapy and immunotherapy with the combined DNA vaccine encoding Ag85B, MPT-64 and MPT-83. Gene Ther., 2008, 15(9), 652-659.
[http://dx.doi.org/10.1038/gt.2008.13] [PMID: 18288210]
[105]
Chauhan, P.; Jain, R.; Dey, B.; Tyagi, A.K. Adjunctive immunotherapy with α-crystallin based DNA vaccination reduces tuberculosis chemotherapy period in chronically infected mice. Sci. Rep., 2013, 3, 1821.
[http://dx.doi.org/10.1038/srep01821] [PMID: 23660989]
[106]
Teimourpour, R.; Sadeghian, A.; Meshkat, Z.; Esmaelizad, M.; Sankian, M.; Jabbari, A-R. Construction of a DNA vaccine encoding Mtb32C and HBHA genes of Mycobacterium tuberculosis. Jundishapur J. Microbiol., 2015, 8(8)e21556
[http://dx.doi.org/10.5812/jjm.21556] [PMID: 26464766]
[107]
Teimourpour, R.; Peeridogaheh, H.; Teimourpour, A.; Arzanlou, M.; Meshkat, Z. A study on the immune response induced by a DNA vaccine encoding Mtb32C-HBHA antigen of Mycobacterium tuberculosis. Iran. J. Basic Med. Sci., 2017, 20(10), 1119-1124.
[PMID: 29147487]
[108]
Ahn, S.S.; Jeon, B.Y.; Kim, K.S.; Kwack, J.Y.; Lee, E.G.; Park, K.S.; Sung, Y.C.; Cho, S.N. Mtb32 is a promising tuberculosis antigen for DNA vaccination in pre- and post-exposure mouse models. Gene Ther., 2012, 19(5), 570-575.
[http://dx.doi.org/10.1038/gt.2011.140] [PMID: 21956689]
[109]
Liu, M.A.; Ulmer, J.B. Human clinical trials of plasmid DNA vaccines. Adv. Genet., 2005, 55, 25-40.
[http://dx.doi.org/10.1016/S0065-2660(05)55002-8] [PMID: 16291211]
[110]
Cardona, P-J. RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb.), 2006, 86(3-4), 273-289.
[http://dx.doi.org/10.1016/j.tube.2006.01.024] [PMID: 16545981]
[111]
Nell, A.S.; D’lom, E.; Bouic, P.; Sabaté, M.; Bosser, R.; Picas, J.; Amat, M.; Churchyard, G.; Cardona, P.J. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One, 2014, 9(2)e89612
[http://dx.doi.org/10.1371/journal.pone.0089612] [PMID: 24586912]
[112]
Skinner, M.A.; Prestidge, R.; Yuan, S.; Strabala, T.J.; Tan, P.L. The ability of heat-killed Mycobacterium vaccae to stimulate a cytotoxic T-cell response to an unrelated protein is associated with a 65 kilodalton heat-shock protein. Immunology, 2001, 102(2), 225-233.
[http://dx.doi.org/10.1046/j.1365-2567.2001.01174.x] [PMID: 11260328]
[113]
Hernandez-Pando, R.; Pavön, L.; Arriaga, K.; Orozco, H.; Madrid-Marina, V.; Rook, G. Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infect. Immun., 1997, 65(8), 3317-3327.
[http://dx.doi.org/10.1128/IAI.65.8.3317-3327.1997] [PMID: 9234793]
[114]
Waddell, R.D.; Chintu, C.; Lein, A.D.; Zumla, A.; Karagas, M.R.; Baboo, K.S.; Habbema, J.D.F.; Tosteson, A.N.; Morin, P.; Tvaroha, S.; Arbeit, R.D.; Mwinga, A.; von Reyn, C.F. Safety and immunogenicity of a five-dose series of inactivated Mycobacterium vaccae vaccination for the prevention of HIV-associated tuberculosis. Clin. Infect. Dis., 2000, 30(Suppl. 3), S309-S315.
[http://dx.doi.org/10.1086/313880] [PMID: 10875806]
[115]
von Reyn, C.F.; Mtei, L.; Arbeit, R.D.; Waddell, R.; Cole, B.; Mackenzie, T.; Matee, M.; Bakari, M.; Tvaroha, S.; Adams, L.V.; Horsburgh, C.R.; Pallangyo, K. DarDar Study Group. Prevention of tuberculosis in bacille calmette-guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010, 24(5), 675-685.
[http://dx.doi.org/10.1097/QAD.0b013e3283350f1b] [PMID: 20118767]
[116]
Dennis, J.W.; Granovsky, M.; Warren, C.E. Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta, 1999, 1473(1), 21-34.
[http://dx.doi.org/10.1016/S0304-4165(99)00167-1] [PMID: 10580127]
[117]
Kato, K.; Ishiwa, A. The role of carbohydrates in infection strategies of enteric pathogens. Trop. Med. Health, 2015, 43(1), 41-52.
[http://dx.doi.org/10.2149/tmh.2014-25] [PMID: 25859152]
[118]
Weintraub, A. Immunology of bacterial polysaccharide antigens. Carbohydr. Res., 2003, 338(23), 2539-2547.
[http://dx.doi.org/10.1016/j.carres.2003.07.008] [PMID: 14670715]
[119]
Lockhart, S.P.; Hackell, J.G.; Fritzell, B. Pneumococcal conjugate vaccines: emerging clinical information and its implications. Expert Rev. Vaccines, 2006, 5(4), 553-564.
[http://dx.doi.org/10.1586/14760584.5.4.553] [PMID: 16989635]
[120]
Kelly, D.F.; Moxon, E.R.; Pollard, A.J. Haemophilus influenzae type B conjugate vaccines. Immunology, 2004, 113(2), 163-174.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01971.x] [PMID: 15379976]
[121]
Finn, A. Bacterial polysaccharide-protein conjugate vaccines. Br. Med. Bull., 2004, 70(1), 1-14.
[http://dx.doi.org/10.1093/bmb/ldh021] [PMID: 15339854]
[122]
Dagan, R.; Poolman, J.; Siegrist, C.A. Glycoconjugate vaccines and immune interference: a review. Vaccine, 2010, 28(34), 5513-5523.
[http://dx.doi.org/10.1016/j.vaccine.2010.06.026] [PMID: 20600514]
[123]
Malito, E.; Bursulaya, B.; Chen, C.; Lo Surdo, P.; Picchianti, M.; Balducci, E.; Biancucci, M.; Brock, A.; Berti, F.; Bottomley, M.J.; Nissum, M.; Costantino, P.; Rappuoli, R.; Spraggon, G. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5229-5234.
[http://dx.doi.org/10.1073/pnas.1201964109] [PMID: 22431623]
[124]
Angala, S.K.; Palčeková, Z.; Belardinelli, J.M.; Jackson, M. Covalent modifications of polysaccharides in mycobacteria. Nat. Chem. Biol., 2018, 14(3), 193-198.
[http://dx.doi.org/10.1038/nchembio.2571] [PMID: 29443974]
[125]
Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2003, 83(1-3), 91-97.
[http://dx.doi.org/10.1016/S1472-9792(02)00089-6] [PMID: 12758196]
[126]
Karakousis, P.C.; Bishai, W.R.; Dorman, S.E. Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell. Microbiol., 2004, 6(2), 105-116.
[http://dx.doi.org/10.1046/j.1462-5822.2003.00351.x] [PMID: 14706097]
[127]
Briken, V.; Porcelli, S.A.; Besra, G.S.; Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol., 2004, 53(2), 391-403.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04183.x] [PMID: 15228522]
[128]
Hunter, S.W.; Gaylord, H.; Brennan, P.J. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J. Biol. Chem., 1986, 261(26), 12345-12351.
[PMID: 3091602]
[129]
Mishra, A.K.; Driessen, N.N.; Appelmelk, B.J.; Besra, G.S. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev., 2011, 35(6), 1126-1157.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00276.x] [PMID: 21521247]
[130]
Moreno, C.; Taverne, J.; Mehlert, A.; Bate, C.A.; Brealey, R.J.; Meager, A.; Rook, G.A.; Playfair, J.H. Lipoarabinomannan from Mycobacterium tuberculosis induces the production of tumour necrosis factor from human and murine macrophages. Clin. Exp. Immunol., 1989, 76(2), 240-245.
[PMID: 2503277]
[131]
Hölemann, A.; Stocker, B.L.; Seeberger, P.H. Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis. J. Org. Chem., 2006, 71(21), 8071-8088.
[http://dx.doi.org/10.1021/jo061233x] [PMID: 17025296]
[132]
Fietta, A.; Francioli, C.; Gialdroni Grassi, G. Mycobacterial lipoarabinomannan affects human polymorphonuclear and mononuclear phagocyte functions differently. Haematologica, 2000, 85(1), 11-18.
[PMID: 10629585]
[133]
Kaplan, G.; Gandhi, R.R.; Weinstein, D.E.; Levis, W.R.; Patarroyo, M.E.; Brennan, P.J.; Cohn, Z.A. Mycobacterium leprae antigen-induced suppression of T cell proliferation in vitro. J. Immunol., 1987, 138(9), 3028-3034.
[PMID: 3106496]
[134]
Moreno, C.; Mehlert, A.; Lamb, J. The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation. Clin. Exp. Immunol., 1988, 74(2), 206-210.
[PMID: 3147152]
[135]
Chan, J.; Fan, X.D.; Hunter, S.W.; Brennan, P.J.; Bloom, B.R. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun., 1991, 59(5), 1755-1761.
[http://dx.doi.org/10.1128/IAI.59.5.1755-1761.1991] [PMID: 1850379]
[136]
Barnes, P.F.; Chatterjee, D.; Brennan, P.J.; Rea, T.H.; Modlin, R.L. Tumor necrosis factor production in patients with leprosy. Infect. Immun., 1992, 60(4), 1441-1446.
[http://dx.doi.org/10.1128/IAI.60.4.1441-1446.1992] [PMID: 1548069]
[137]
Minion, J.; Leung, E.; Talbot, E.; Dheda, K.; Pai, M.; Menzies, D. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur. Respir. J., 2011, 38(6), 1398-1405.
[http://dx.doi.org/10.1183/09031936.00025711] [PMID: 21700601]
[138]
Hamasur, B.; Källenius, G.; Svenson, S.B. Synthesis and immunologic characterisation of Mycobacterium tuberculosis lipoarabinomannan specific oligosaccharide-protein conjugates. Vaccine, 1999, 17(22), 2853-2861.
[http://dx.doi.org/10.1016/S0264-410X(99)00124-3] [PMID: 10438056]
[139]
Hamasur, B.; Haile, M.; Pawlowski, A.; Schröder, U.; Williams, A.; Hatch, G.; Hall, G.; Marsh, P.; Källenius, G.; Svenson, S.B. Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine, 2003, 21(25-26), 4081-4093.
[http://dx.doi.org/10.1016/S0264-410X(03)00274-3] [PMID: 12922145]
[140]
Haile, M.; Hamasur, B.; Jaxmar, T.; Gavier-Widen, D.; Chambers, M.A.; Sanchez, B.; Schröder, U.; Källenius, G.; Svenson, S.B.; Pawlowski, A. Nasal boost with adjuvanted heat-killed BCG or arabinomannan-protein conjugate improves primary BCG-induced protection in C57BL/6 mice. Tuberculosis (Edinb.), 2005, 85(1-2), 107-114.
[http://dx.doi.org/10.1016/j.tube.2004.09.013] [PMID: 15687034]
[141]
Kallert, S.; Zenk, S.F.; Walther, P.; Grieshober, M.; Weil, T.; Stenger, S. Liposomal delivery of lipoarabinomannan triggers Mycobacterium tuberculosis specific T-cells. Tuberculosis (Edinb.), 2015, 95(4), 452-462.
[http://dx.doi.org/10.1016/j.tube.2015.04.001] [PMID: 26043674]
[142]
Glatman-Freedman, A.; Casadevall, A.; Dai, Z.; Jacobs, W.R., Jr; Li, A.; Morris, S.L.; Navoa, J.A.D.; Piperdi, S.; Robbins, J.B.; Schneerson, R.; Schwebach, J.R.; Shapiro, M. Antigenic evidence of prevalence and diversity of Mycobacterium tuberculosis arabinomannan. J. Clin. Microbiol., 2004, 42(7), 3225-3231.
[http://dx.doi.org/10.1128/JCM.42.7.3225-3231.2004] [PMID: 15243086]
[143]
Prados-Rosales, R.; Carreño, L.; Cheng, T.; Blanc, C.; Weinrick, B.; Malek, A.; Lowary, T.L.; Baena, A.; Joe, M.; Bai, Y.; Kalscheuer, R.; Batista-Gonzalez, A.; Saavedra, N.A.; Sampedro, L.; Tomás, J.; Anguita, J.; Hung, S.C.; Tripathi, A.; Xu, J.; Glatman-Freedman, A.; Jacobs, W.R., Jr; Chan, J.; Porcelli, S.A.; Achkar, J.M.; Casadevall, A. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog., 2017, 13(3)e1006250
[http://dx.doi.org/10.1371/journal.ppat.1006250] [PMID: 28278283]
[144]
McIntosh, J.D.; Brimble, M.A.; Brooks, A.E.S.; Dunbar, P.R.; Kowalczyk, R.; Tomabechi, Y.; Fairbanks, A.J. Convergent chemo-enzymatic synthesis of mannosylated glycopeptides; targeting of putative vaccine candidates to antigen presenting cells. Chem. Sci. (Camb.), 2015, 6(8), 4636-4642.
[http://dx.doi.org/10.1039/C5SC00952A] [PMID: 28717478]
[145]
Bavaro, T.; Tengattini, S.; Piubelli, L.; Mangione, F.; Bernardini, R.; Monzillo, V.; Calarota, S.; Marone, P.; Amicosante, M.; Pollegioni, L.; Temporini, C.; Terreni, M. Glycosylation of recombinant antigenic proteins from Mycobacterium tuberculosis: in silico prediction of protein epitopes and ex vivo biological evaluation of new semi-synthetic glycoconjugates. Molecules, 2017, 22(7), 1081.
[http://dx.doi.org/10.3390/molecules22071081] [PMID: 28661444]
[146]
Rinaldi, F.; Tengattini, S.; Piubelli, L.; Bernardini, R.; Mangione, F.; Bavaro, T.; Paone, G.; Mattei, M.; Pollegioni, L.; Filice, G. Rational design, preparation and characterization of recombinant Ag85B variants and their glycoconjugates with T-cell antigenic activity against Mycobacterium tuberculosis. RSC. Adv., 2018, 8(41), 23171-23180.
[http://dx.doi.org/10.1039/C8RA03535K]
[147]
Vliegenthart, J.F. Carbohydrate based vaccines. FEBS Lett., 2006, 580(12), 2945-2950.
[http://dx.doi.org/10.1016/j.febslet.2006.03.053] [PMID: 16630616]
[148]
Boltje, T.J.; Buskas, T.; Boons, G.J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem., 2009, 1(8), 611-622.
[http://dx.doi.org/10.1038/nchem.399] [PMID: 20161474]
[149]
Gao, J.; Liao, G.; Wang, L.; Guo, Z. Synthesis of a miniature lipoarabinomannan. Org. Lett., 2014, 16(3), 988-991.
[http://dx.doi.org/10.1021/ol4036903] [PMID: 24444032]
[150]
Ishiwata, A.; Ito, Y. Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall. J. Am. Chem. Soc., 2011, 133(7), 2275-2291.
[http://dx.doi.org/10.1021/ja109932t] [PMID: 21287985]
[151]
Kandasamy, J.; Hurevich, M.; Seeberger, P.H. Automated solid phase synthesis of oligoarabinofuranosides. Chem. Commun. (Camb.), 2013, 49(40), 4453-4455.
[http://dx.doi.org/10.1039/c3cc00042g] [PMID: 23370381]
[152]
Ishiwata, A.; Akao, H.; Ito, Y. Stereoselective synthesis of a fragment of mycobacterial arabinan. Org. Lett., 2006, 8(24), 5525-5528.
[http://dx.doi.org/10.1021/ol062198j] [PMID: 17107063]
[153]
Bundle, D.R.; Tam, P-H.; Tran, H-A.; Paszkiewicz, E.; Cartmell, J.; Sadowska, J.M.; Sarkar, S.; Joe, M.; Kitov, P.I. Oligosaccharides and peptide displayed on an amphiphilic polymer enable solid phase assay of hapten specific antibodies. Bioconjug. Chem., 2014, 25(4), 685-697.
[http://dx.doi.org/10.1021/bc400486w] [PMID: 24601638]
[154]
Wang, L.; Feng, S.; Wang, S.; Li, H.; Guo, Z.; Gu, G. Synthesis and immunological comparison of differently linked lipoarabinomannan oligosaccharide-monophosphoryl lipid A conjugates as antituberculosis vaccines. J. Org. Chem., 2017, 82(23), 12085-12096.
[http://dx.doi.org/10.1021/acs.joc.7b01817] [PMID: 29112822]
[155]
Zhou, Z.; Mondal, M.; Liao, G.; Guo, Z. Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers. Org. Biomol. Chem., 2014, 12(20), 3238-3245.
[http://dx.doi.org/10.1039/C4OB00390J] [PMID: 24728423]
[156]
Wattanasiri, C.; Paha, J.; Ponpuak, M.; Ruchirawat, S.; Boonyarattanakalin, S. Synthesis of synthetic mannan backbone polysaccharides found on the surface of Mycobacterium tuberculosis as a vaccine adjuvant and their immunological properties. Carbohydr. Polym., 2017, 175, 746-755.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.045] [PMID: 28917925]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy