Review Article

用于乳腺癌干细胞群体表征的三维制造支持物

卷 20, 期 8, 2019

页: [839 - 851] 页: 13

弟呕挨: 10.2174/1389450120666181122113300

价格: $65

摘要

乳腺癌(BC)是女性中最常见的癌症,也是女性癌症死亡的第二大原因。 当肿瘤未正确根除时,存在高复发风险和转移发生率。 乳腺癌干细胞(BCSCs)负责启动肿瘤,并且对目前抗癌疗法具有抗性,这些疗法是肿瘤复发和转移的部分原因。 BCSC的研究受限于它们在肿瘤和已建立的细胞模型中的低百分比。 因此,三维(3D)支持被提出作为一种有趣的工具,以保持3D细胞培养中的茎样特征。 在这篇综述中,讨论了几种3D培养系统。 此外,支架被提供作为富集BCSC的工具,以便找到针对该恶性亚群的新的特异性治疗策略。 针对BCSC的抗癌治疗可能对BC患者有用,特别感兴趣的是那些进展为现有疗法的患者。

关键词: 乳腺癌,癌症干细胞,乳腺癌干细胞生物标志物,三维细胞培养,支架,静电纺丝,熔丝制造,增材制造。

图形摘要

[1]
Siegel R, Miller KD, Ahmedin J. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[2]
Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med 2009; 360(8): 790-800.
[3]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[4]
Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98(19): 10869-74.
[5]
Pathmanathan N, Provan PJ, Mahajan H, et al. Characteristics of HER2-positive breast cancer diagnosed following the introduction of universal HER2 testing. Breast 2012; 21(6): 724-9.
[6]
Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011; 62(1): 233-47.
[7]
Tang Y, Wang Y, Kiani MF, Wang B. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer 2016; 16(5): 335-43.
[8]
Davies C, Godwin J, Gray R, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet (London, England) 2011; 378(9793): 771-84.
[9]
Bose R, Kavuri SM, Searleman AC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 2013; 3(2): 224-37.
[10]
Arteaga CL, Sliwkowski MX, Osborne CK, et al. Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat Rev Clin Oncol 2011; 9(1): 16-32.
[11]
Cortés J, Curigliano G, Diéras V. Expert perspectives on biosimilar monoclonal antibodies in breast cancer. Breast Cancer Res Treat 2014; 144(2): 233-9.
[12]
Capelan M, Pugliano L, De Azambuja E, et al. Pertuzumab: New hope for patients with HER2-positive breast cancer. Ann Oncol 2013; 24(2): 273-82.
[13]
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007; 13(15): 4429-34.
[14]
Hudis CA, Gianni L. Triple-negative breast cancer: An Unmet Medical Need. Oncologist 2011; 16(Suppl. 1): 1-11.
[15]
Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncol 2008; 22(11): 1-9.
[16]
Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist 2011; 16(Suppl. 1): 61-70.
[17]
Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage ii to iii triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 2015; 33(1): 13-21.
[18]
von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. Lancet Oncol 2014; 15(7): 747-56.
[19]
Tutt A, Tovey H, Cheang MCU, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 2018; 24(5): 628-37.
[20]
Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13(8): 2329-34.
[21]
Broxterman H, Gotink K, Verheul H. Understanding the causes of multidrug resistance in cancer: A comparison of doxorubicin and sunitinib. Drug Resist Updat 2009; 12: 114-26.
[22]
Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66(19): 9339-44.
[23]
Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: An overview and new approaches for their isolation and characterization. FASEB J 2013; 27(1): 13-24.
[24]
Kyjacova L, Hubackova S, Krejcikova K, et al. Radiotherapy-induced plasticity of prostate cancer mobilizes stem-like non-adherent, Erk signaling-dependent cells. Cell Death Differ 2015; 22(6): 898-911.
[25]
Nakamura K, Iinuma H, Aoyagi Y, Shibuya H, Watanabe T. Predictive value of cancer stem-like cells and cancer-associated genetic markers for peritoneal recurrence of colorectal cancer in patients after curative surgery. Oncol 2010; 78(5–6): 309-15.
[26]
Ho MM, Ng AV, Lam S, Hung JY. Side Population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67(10): 4827-33.
[27]
Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458(7239): 780-3.
[28]
Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68(1): 190-7.
[29]
Shaw FL, Harrison H, Spence K, et al. A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J Mammary Gland Biol Neoplasia 2012; 17(2): 111-7.
[30]
Giró-Perafita A, Rabionet M, Puig T, Ciurana J. Optimization of Poli(Ɛ-caprolactone) scaffolds suitable for 3D cancer cell culture. Procedia CIRP. 2016;49 (The Second CIRP Conference on Biomanufacturing): 61-6.
[31]
Bomken S, Fišer K, Heidenreich O, Vormoor J. Understanding the cancer stem cell. Br J Cancer 2010; 103(4): 439-45.
[32]
Ito T, Zimdahl B, Reya T. aSIRTing control over cancer stem cells. Cancer Cell 2012; 21(2): 140-2.
[33]
Wang T, Shigdar S, Gantier MP, et al. Cancer stem cell targeted therapy: Progress amid controversies a brief view of anticancer therapy. Oncotarget 2015; 6(42): 44191-206.
[34]
Furth J, Kahn MC, Breedis C. The Transmission of Leukemia of Mice with a Single Cell. Am J Cancer 1937; 31(2): 276-82.
[35]
Ishibashi K. Studies on the number of cells necessary for the transplantation of Yoshida sarcoma; transmission of the tumor with a single cell. Gan 1950; 41(1): 1-14.
[36]
Hewitt HB. Studies of the quantitative transplantation of mouse sarcoma. Br J Cancer 1953; 7(3): 367-83.
[37]
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7.
[38]
Al-hajj M, Wicha MS, Benito-hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[39]
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4(1): 33-45.
[40]
Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin Cancer Biol 2008; 18(4): 260-7.
[41]
Leung EL-H, Fiscus RR, Tung JW, et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. Jin D-Y, editor. PLoS One 2010;5(11): e14062.
[42]
Weber GF, Bronson RT, Ilagan J, et al. Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 2002; 62(8): 2281-6.
[43]
Gao AC, Lou W, Dong JT, Isaacs JT. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res 1997; 57(5): 846-9.
[44]
Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in Cancer. Crit Rev Clin Lab Sci 2002; 39(6): 527-79.
[45]
Lopez JI, Camenisch TD, Stevens MV, et al. CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 2005; 65(15): 6755-63.
[46]
Lee HJ, Choe G, Jheon S, et al. CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: A retrospective study of prognostic factor analysis from the viewpoint of forthcoming (seventh) new TNM classification. J Thorac Oncol 2010; 5(5): 649-57.
[47]
Zheng J, Li Y, Yang J, et al. NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression. BMC Cancer 2011; 11(1): 251.
[48]
Kristiansen G, Winzer K-J, Mayordomo E, et al. CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 2003; 9(13): 4906-13.
[49]
Jaggupilli A, Elkord E. Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clin Dev Immunol 2012; 2012: 1-11.
[50]
Park E, Park SY, Sun P-L, et al. Prognostic significance of stem cell-related marker expression and its correlation with histologic subtypes in lung adenocarcinoma. Oncotarget 2016; 7(27): 42502-12.
[51]
Park SY, Lee HE, Li H, et al. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 2010; 16(3): 876-87.
[52]
Schabath H, Runz S, Joumaa S, Altevogt P. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 2006; 119(Pt 2): 314-25.
[53]
Honeth G, Bendahl P-O, Ringnér M, et al. The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008; 10(3): R53.
[54]
Mylona E, Giannopoulou I, Fasomytakis E, et al. The clinicopathologic and prognostic significance of CD44+/CD24(-/low) and CD44-/CD24+ tumor cells in invasive breast carcinomas. Hum Pathol 2008; 39(7): 1096-102.
[55]
Stuelten CH, Mertins SD, Busch JI, et al. Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells 2010; 28(4): 649-60.
[56]
Sheridan C, Kishimoto H, Fuchs RK, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Res 2006; 8(5): R59.
[57]
Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10(2): 1-13.
[58]
Ricardo S, Vieira AF, Gerhard R, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. J Clin Pathol 2011; 64(11): 937-46.
[59]
Chute JP, Muramoto GG, Whitesides J, et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA 2006; 103(31): 11707-12.
[60]
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1(5): 555-67.
[61]
Liu S, Cong Y, Wang D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2014; 2(1): 78-91.
[62]
Lehmann BDB, Bauer J a J, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121(7): 2750-67.
[63]
Fukudome K, Esmon CT. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem 1994; 269(42): 26486-91.
[64]
Schaffner F, Yokota N, Carneiro-Lobo T, et al. Endothelial protein c receptor function in murine and human breast cancer development. Derksen P, editor. PLoS One 2013; 8(4): e61071.
[65]
Wang D, Cai C, Dong X, et al. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 2014; 517(7532): 81-4.
[66]
Wang D, Liu C, Wang J, et al. Protein C receptor stimulates multiple signaling pathways in breast cancer cells. J Biol Chem 2017; jbc.M117.814046.
[67]
D’Angelo RC, Ouzounova M, Davis A, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther 2015; 14(3): 779-87.
[68]
Pauklin S, Vallier L. Activin/Nodal signalling in stem cells. Development 2015; 142(4): 607-19.
[69]
Bodenstine TM, Chandler GS, Reed DW, et al. Nodal expression in triple-negative breast cancer: Cellular effects of its inhibition following doxorubicin treatment. Cell Cycle 2016; 15(9): 1295-302.
[70]
Kotiyal S, Bhattacharya S. Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun 2014; 453(1): 112-6.
[71]
Nieto MA. Epithelial plasticity: A common theme in embryonic and cancer cells. Science 2013; 342(6159): 1234850.
[72]
Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008; 27(55): 6958-69.
[73]
Mani SA, Guo W, Liao M-J, et al. The Epithelial-Mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-15.
[74]
Luo M, Brooks M, Wicha MS. Epithelial-mesenchymal plasticity of breast cancer stem cells: Implications for metastasis and therapeutic resistance. Curr Pharm Des 2015; 21(10): 1301-10.
[75]
Li W, Ma H, Zhang J, et al. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 2017; 7(1): 13856.
[76]
Tanei T, Choi DS, Rodriguez AA, et al. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res 2016; 18(1): 6.
[77]
Corominas-Faja B, Cuyàs E, Gumuzio J, et al. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 2014; 5(18): 8306-16.
[78]
Diessner J, Bruttel V, Stein RG, et al. Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Dis 2014; 5(3): e1149.
[79]
Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 2012; 2012: 44-6.
[80]
Yue W, Hamaï A, Tonelli G, et al. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 2013; 9(5): 714-29.
[81]
Lamb R, Ozsvari B, Lisanti CL, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget 2015; 6(7): 4569-84.
[82]
Kwok JM-M, Myatt SS, Marson CM, et al. Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol Cancer Ther 2008; 7(7): 2022-32.
[83]
Yang N, Zhou T-C, Lei X, et al. Inhibition of sonic hedgehog signaling pathway by thiazole antibiotic thiostrepton attenuates the cd44+/cd24-stem-like population and sphere-forming capacity in triple-negative breast cancer. Cell Physiol Biochem 2016; 38(3): 1157-70.
[84]
Li J, Xu W, Yuan X, et al. Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. Int J Nanomedicine 2017; 12: 6909-21.
[85]
Liu P, Kumar IS, Brown S, et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer 2013; 109(7): 1876-85.
[86]
Liu P, Brown S, Goktug T, et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br J Cancer 2012; 107(9): 1488-97.
[87]
Yip NC, Fombon IS, Liu P, et al. Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 2011; 104(10): 1564-74.
[88]
Liu P, Wang Z, Brown S, et al. Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget 2014; 5(17): 7471-85.
[89]
Eliaz RE, Szoka FC. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res 2001; 61(6): 2592-601.
[90]
Auzenne E, Ghosh SC, Khodadadian M, et al. Hyaluronic acid-paclitaxel: Antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia 2007; 9(6): 479-86.
[91]
Coradini D, Pellizzaro C, Miglierini G, Daidone MG, Perbellini A. Hyaluronic acid as drug delivery for sodium butyrate: Improvement of the anti-proliferative activity on a breast-cancer cell line. Int J Cancer 1999; 81(3): 411-6.
[92]
Han N-K, Shin DH, Kim JS, et al. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells. Int J Nanomedicine 2016; 11: 1413-25.
[93]
López-Lázaro M. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52(Suppl. 1): S103-27.
[94]
Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 2009; 9(6): 429-39.
[95]
Giró-Perafita A, Palomeras S, Lum DH, et al. Preclinical evaluation of fatty acid synthase and egfr inhibition in triple negative breast cancer. Clin Cancer Res 2016; 22(13): 4687-97.
[96]
Charpentier MS, Whipple RA, Vitolo MI, et al. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment. Cancer Res 2014; 74(4): 1250-60.
[97]
Chung SS, Vadgama JV. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res 2015; 35(1): 39-46.
[98]
Fani S, Kamalidehghan B, Lo KM, et al. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells. Drug Des Devel Ther 2015; 9: 6191-201.
[99]
Fani S, Dehghan F, Karimian H, et al. monobenzyltin complex c1 induces apoptosis in mcf-7 breast cancer cells through the intrinsic signaling pathway and through the targeting of mcf-7-derived breast cancer stem cells via the wnt/β-catenin signaling pathway. PLoS One 2016; 11(8): e0160836.
[100]
Ringer S. Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. J Physiol 1882; 3: 380-93.
[101]
Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol 1883; 4: 29-42.
[102]
Roux W. Beiträge zur Entwicklungsmechanik des Embryo 1885
[103]
Loeb L. Über die enstehung von bindegewebe, leucocyten und roten blutkörperchen aus epithel und über eine methode. Chicago: Stern 1897; pp. 1-56.
[104]
Jolly J. Sur la durée de la vie et de la multiplication des cellules animales en dehors de l’organisme Comptes rendus des Séances la Société Biol 1903; 55: 1266-8.
[105]
Harrison R, Greenman M, Mall F, Jackson C. Observations of the living developing nerve fiber. Anat Rec 1907; 1(5): 116-28.
[106]
Earle WR, Stark TH, Straus NP, Brown MF, Shelton E. Production of Malignancy in Vitro; IV: The mouse fibroblast cultures and changes seen in the living cells. J Natl Cancer Inst 1943; 4(2): 165-212.
[107]
Gey G, Coffman W, Kubicek M. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 1952; 12: 264-5.
[108]
Ehrmann RL, Gey GO. The growth of cells on a transparent gel of reconstituted rat-tail collagen. JNCI J Natl Cancer Inst 1956; 16(6): 1375-403.
[109]
Amstein CF, Hartman PA. Adaptation of plastic surfaces for tissue culture by glow discharge. J Clin Microbiol 1975; 2(1): 46-54.
[110]
Ryhan JA. Evolution of cell culture surfaces. Biofiles 2008; 3(8): 21-4.
[111]
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010; 123(Pt 24): 4195-200.
[112]
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27.
[113]
Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA 2002; 99(4): 1972-7.
[114]
Vergani L, Grattarola M, Nicolini C. Modifications of chromatin structure and gene expression following induced alterations of cellular shape. Int J Biochem Cell Biol 2004; 36(8): 1447-61.
[115]
Xu F, Burg ÆKJL. Three-dimensional polymeric systems for cancer cell studies 2007; 135-43.
[116]
Hale JS, Li M, Lathia JD. The malignant social network: Cell-cell adhesion and communication in cancer stem cells. Cell Adhes Migr 2012; 6(4): 346-55.
[117]
Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996; 175(1): 1-13.
[118]
Weiss S, Reynolds BA, Vescovi AL, et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 1996; 19(9): 387-93.
[119]
Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem / progenitor cells. Genes Dev 2003; 17(10): 1253-70.
[120]
Wichterle O, Lím D. Hydrophilic gels for biological use. Nature 1960; 185(4706): 117-8.
[121]
Ciurana J, Rodríguez CA. Trends in nanomaterials and processing for drug delivery of polyphenols in the treatment of cancer and other therapies. Curr Drug Targets 2017; 18(2): 135-46.
[122]
Saha K, Pollock JF, Schaffer DV, Healy KE. Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 2007; 11(4): 381-7.
[123]
Kleinman HK, Martin GR. Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol 2005; 15(5): 378-86.
[124]
Palomeras S, Rabionet M, Ferrer I, et al. Breast cancer stem cell culture and enrichment using poly(ϵ-Caprolactone) scaffolds. Molecules 2016; 21(4): 1-14.
[125]
Rabionet M, Yeste M, Puig T, Ciurana J. Electrospinning PCL scaffolds manufacture for three-dimensional breast cancer cell culture. Polymers (Basel) 2017; 9(8): 1-15.
[126]
Poincloux R, Lizárraga F, Chavrier P. Matrix invasion by tumour cells: A focus on MT1-MMP trafficking to invadopodia. J Cell Sci 2009; 122(Pt 17): 3015-24.
[127]
Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 2014; 1-11.
[128]
Domingos M, Dinucci D, Cometa S, et al. polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int J Biomater 2009; 2009: 1-9.
[129]
De Ciurana J, Serenó L, Vallès È. Selecting process parameters in RepRap additive manufacturing system for PLA scaffolds manufacture. In: Procedia CIRP 2013; pp. 152-7.
[130]
Bartolo P, Domingos M. Gloria a., Ciurana J. BioCell Printing: Integrated automated assembly system for tissue engineering constructs. CIRP Ann - Manuf Technol 2011; 60(1): 271-4.
[131]
Tan YJ, Tan X, Yeong WY, Tor SB. Additive manufacturing of patient-customizable scaffolds for tubular tissues using the melt-drawing method. Mater (Basel, Switzerland) 2016; 9(11): E893.
[132]
Rathore A, Cleary M, Naito Y, Rocco K, Breuer C. Development of tissue engineered vascular grafts and application of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(3): 257-72.
[133]
Barton SP, Marks R. Measurement of collagen-fibre diameter in human skin. J Cutan Pathol 1984; 11(1): 18-26.
[134]
Hartman O, Zhang C, Adams EL, et al. Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications. Biomacromolecules 2009; 10(8): 2019-32.
[135]
Azari P, Luan NS, Gan SN, et al. Electrospun biopolyesters as drug screening platforms for corneal keratocytes. Int J Polym Mater Polym Biomater 2015; 64(15): 785-91.
[136]
Garg T, Singh O, Arora S, Murthy RSR. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 2012; 29(1): 1-63.
[137]
Faccendini A, Vigani B, Rossi S, et al. Nanofiber scaffolds as drug delivery systems to bridge spinal cord injury. Pharmaceuticals 2017; 10(4): 63.
[138]
Dai J, Jin J, Yang S, Li G. Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment. Mater Res Express 2017; 4(7): 075403.
[139]
Charafe-jauffret E, Ginestier C, Iovino F, et al. Breast cancer cell lines contain funtional cancer stem cells with metastatic capacity and distinct molecular signature. Cancer Res 2009; 69(4): 1302-13.
[140]
Tsuyada A, Chow A, Wu J, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res 2012; 72(11): 2768-79.
[141]
Feng S, Duan X, Lo P-K, et al. Expansion of breast cancer stem cells with fibrous scaffolds. Integr Biol (Camb) 2013; 5(5): 768-77.
[142]
Sims-Mourtada J. Niamat R a., Samuel S, Eskridge C, Kmiec EB. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. Int J Nanomedicine 2014; 9(1): 995-1003.
[143]
Saha S, Duan X, Wu L, et al. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition. Langmuir 2012; 28(4): 2028-34.
[144]
Rabionet M, Puig T, Ciurana J. Electrospinning parameters selection to manufacture polycaprolactone scaffolds for three-dimensional breast cancer cell culture and enrichment. Procedia CIRP [Internet]. 2017; 65: 267-72. Available from: http:// linkinghub.elsevier.com/retrieve/pii/S2212827117306479
[145]
Hinderer S, Schesny M, Bayrak A, et al. Engineering of fibrillar decorin matrices for a tissue-engineered trachea. Biomaterials 2012; 33(21): 5259-66.
[146]
Qian Y, Li L, Jiang C, et al. The effect of hyaluronan on the motility of skin dermal fibroblasts in nanofibrous scaffolds. Int J Biol Macromol 2015; 79: 133-43.
[147]
Wise SG, Byrom MJ, Waterhouse A, et al. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 2011; 7(1): 295-303.
[148]
Lim SH, Mao H-Q. Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 2009; 61(12): 1084-96.
[149]
Srouji S, Kizhner T, Suss-Tobi E, Livne E, Zussman E. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci Mater Med 2008; 19(3): 1249-55.
[150]
Yang X, Yang F, Walboomers XF, et al. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J Biomed Mater Res 2009; 93(1)
[151]
Senthil R, Berly R, Ram TB, Gobi N. Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing. Int J Artif Organs 2018; 41(8): 467-73.
[152]
Pektok E, Nottelet B, Tille J-C, et al. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 2008; 118(24): 2563-70.
[153]
Cao H, Mchugh K, Chew SY, Anderson JM. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res 2009; 93(3)
[154]
Joy J, Pereira J, Aid-Launais R, et al. Gelatin — Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol 2018; 107: 1922-35.
[155]
Chen ZCC, Ekaputra AK, Gauthaman K, et al. In vitro and in vivo analysis of co-electrospun scaffolds made of medical grade poly(3-caprolactone) and porcine collagen. J Biomater Sci Polym Ed 2008; 19(5): 693-707.
[156]
Tillman BW, Yazdani SK, Lee SJ, et al. The in vivo stability of electrospun polycaprolactone–collagen scaffolds in vascular reconstruction. Biomaterials 2009; 30(4): 583-8.
[157]
Huang Y, Shi R, Gong M, et al. Icariin-loaded electrospun PCL/gelatin sub-microfiber mat for preventing epidural adhesions after laminectomy. Int J Nanomedicine 2018; 13: 4831-44.
[158]
Li W-J, Chiang H, Kuo T-F, et al. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 2009; 3(1): 1-10.
[159]
Buscemi S, Palumbo VD, Maffongelli A, et al. Electrospun PHEA-PLA/PCL scaffold for vascular regeneration: A Preliminary in Vivo Evaluation. Transplant Proc 2017; 49(4): 716-21.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy