[1]
Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012; 150(6): 1209-22.
[2]
Ong TH, Kissick DJ, Jansson ET, et al. Classification of Large Cellular Populations and Discovery of Rare Cells Using Single Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2015; 87(14): 7036-42.
[3]
Grün D, Lyubimova A, Kester L, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015; 525(7568): 251-5.
[4]
Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 2016; 15(3): 204-16.
[5]
Van Loo P, Voet T. Single cell analysis of cancer genomes. Curr Opin Genet Dev 2014; 24: 82-91.
[6]
Shalek AK, Satija R, Adiconis X, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 2013; 498(7453): 236-40.
[7]
Iourov IY, Vorsanova SG, Yurov YB. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 2012; 13(6): 477-88.
[8]
Deng X, Naccache SN, Ng T, et al. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res 2015; 43(7): e46-6.
[9]
Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016; 17(3): 175-88.
[10]
Taghavi Z, Movahedi NS, Drǎghici S, Chitsaz H. Distilled single-cell genome sequencing and de novo assembly for sparse microbial communities. Bioinformatics 2013; 29(19): 2395-401.
[11]
Diaz A, Liu SJ, Sandoval C, et al. SCell: integrated analysis of single-cell RNA-seq data. Bioinformatics 2016; 32(14): 2219-20.
[12]
Wen Y, Wei Y, Zhang S, et al. Cell subpopulation deconvolution reveals breast cancer heterogeneity based on DNA methylation signature. Brief Bioinform 2017; 18(3): 426-40.
[13]
Chen H, Guo J, Mishra SK, Robson P, Niranjan M, Zheng J. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development. Bioinformatics 2015; 31(7): 1060-6.
[14]
Vu TN, Wills QF, Kalari KR, et al. Beta-Poisson model for single-cell RNA-seq data analyses. Bioinformatics 2016; 32(14): 2128-35.
[15]
Ji Z, Ji H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res 2016; 44(13): e117-7.
[16]
Woodcock DJ, Vance KW, Komorowski M, Koentges G, Finkenstädt B, Rand DA. A hierarchical model of transcriptional dynamics allows robust estimation of transcription rates in populations of single cells with variable gene copy number. Bioinformatics 2013; 29(12): 1519-25.
[17]
Hou Y, Fan W, Yan L, et al. Genome analyses of single human oocytes. Cell 2013; 155(7): 1492-506.
[18]
Bendall SC, Davis KL, Amir AD, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014; 157(3): 714-25.
[19]
Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20(9): 1131-9.
[20]
Liu F, Ren C, Li H, Zhou P, Bo X, Shu W. De novo identification of replication-timing domains in the human genome by deep learning. Bioinformatics 2016; 32(5): 641-9.
[21]
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31(10): 1674-6.
[22]
Prjibelski AD, Vasilinetc I, Bankevich A, et al. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics 2014; 30(12): i293-301.
[23]
Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell 2015; 58(4): 598-609.
[24]
Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 2015; 31(18): 2989-98.
[25]
Trapnell C. Defining cell types and states with single-cell genomics. Genome Res 2015; 25(10): 1491-8.
[26]
Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015; 523(7561): 486-90.
[27]
Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381-6.
[28]
Lawlor N, George J, Bolisetty M, et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res 2017; 27(2): 208-22.
[29]
Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S. Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res 2016; 76(6): 1305-12.
[30]
Wang Y, Waters J, Leung ML, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 2014; 512(7513): 155-60.
[31]
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396-401.
[32]
Shekhar K, Brodin P, Davis MM, Chakraborty AK. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci USA 2014; 111(1): 202-7.
[33]
Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014; 510(7505): 363-9.
[34]
Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 2015; 17(3): 329-40.
[35]
Shekhar K, Lapan SW, Whitney IE, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 2016; 166(5): 1308-23.
[36]
Shin J, Berg DA, Zhu Y, et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 2015; 17(3): 360-72.
[37]
Darmanis S, Sloan SA, Zhang Y, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA 2015; 112(23): 7285-90.
[38]
Lee HC, Kosoy R, Becker CE, Dudley JT, Kidd BA. Automated cell type discovery and classification through knowledge transfer. Bioinformatics 2017; 33(11): 1689-95.
[39]
Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat Methods 2017; 14(4): 414-6.
[40]
Schiffman C, Lin C, Shi F, Chen L, Sohn L, Huang H. SIDEseq: a cell similarity measure defined by shared identified differentially expressed genes for single-cell RNA sequencing data. Stat Biosci 2017; 9(1): 200-16.
[41]
Jiang L, Chen H, Pinello L, Yuan GC. GiniClust: detecting rare cell types from single-cell gene expression data with Gini index. Genome Biol 2016; 17(1): 144-56.
[42]
Calzolari F, Michel J, Baumgart EV, Theis F, Götz M, Ninkovic J. Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 2015; 18(4): 490-2.
[43]
Wu AR, Neff NF, Kalisky T, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 2014; 11(1): 41-6.
[44]
Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 2008; 105(4): 1118-23.
[45]
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161(5): 1202-14.
[46]
Bonaguidi MA, Wheeler MA, Shapiro JS, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 2011; 145(7): 1142-55.
[47]
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12(1): 323.
[48]
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28(5): 511-5.
[49]
Xu C, Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 2015; 31(12): 1974-80.
[50]
Shao C, Höfer T. Robust classification of single-cell transcriptome data by nonnegative matrix factorization. Bioinformatics 2017; 33(2): 235-42.
[51]
Arvaniti E, Claassen M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat Commun 2017; 8: 14825.
[52]
Peng T, Nie Q. SOMSC: Self-Organization-Map for High-Dimensional Single-Cell Data of Cellular States and Their Transitions. bioRxiv 2017; 2017: 124693.
[53]
Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007; 128(4): 635-8.
[54]
Gerber T, Willscher E, Loeffler-Wirth H, et al. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget 2017; 8(1): 846-62.
[55]
Kiselev VY, Kirschner K, Schaub MT, et al. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 2017; 14(5): 483-6.
[56]
Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLOS Comput Biol 2015; 11(11): e1004575.
[57]
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 2015; 33(5): 495-502.
[58]
Chung NC, Storey JD. Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics 2015; 31(4): 545-54.
[59]
Fan J, Salathia N, Liu R, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods 2016; 13(3): 241-4.
[60]
Li A, Yin X, Pan Y. Three-dimensional gene map of cancer cell types: Structural entropy minimisation principle for defining tumour subtypes. Sci Rep 2016; 6: 20412.
[61]
Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083-6.
[62]
Chen X, Li M, et al. A novel method of gene regulatory network structure inference from gene knock-out expression data. Tsinghua Sci Technol 2018; 24(2): 446-55.
[66]
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8.
[67]
Gao J, Song B, Hu X, Yan F, Wang J. ConnectedAlign: a PPI network alignment method for identifying conserved protein complexes across multiple species. BMC Bioinformatics 2018; 19(Suppl. 9): 286.
[68]
Xu YX, Li HD, et al. BioRank: a similarity assessment method for single cell clustering. IEEE International Conference on Bioinformatics and Biomedicine 2018.