[1]
American Cancer Society Available from: , https://www.cancer.org/ cancer/cervical-cancer/about/what-iscervical-cancer.html
[2]
A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, and D. Forman, "Global cancer statistics", CA Cancer J. Clin., vol. 61, no. 2, pp. 69-90, April 2011.
[3]
India accounts for 1/4th of global burden of cervical cancer, Available from:, https://timesofindia.indiatimes.com/business/india-business/indiaaccounts-for-1/4th-of-global-burden-of-cervical-cancer-study/articleshow/62555105.cms
[4]
Cancer Genome Atlas Research Network, "Integrated genomic and molecular characterization of cervical cancer", Nature, vol. 543, no. 7645, pp. 378-384, March 2017.
[5]
A. Sreedevi, R. Javed, and A. Dinesh, "Epidemiology of cervical cancer with special focus on India", Int. J. Womens Health, vol. 7, pp. 405-414, April 2015. [http://dx.doi.org/10.2147/IJWH.S50001].
[6]
S. Ye, J. Yang, D. Cao, J. Lang, and K. Shen, "A systematic review of quality of life and sexual function of patients with cervical cancer after treatment", Int. J. Gynecol. Cancer, vol. 24, no. 7, pp. 1146-1157, September 2014.
[7]
C. Gunavathi, and K. Premalatha, "Cuckoo search optimization for feature selection in cancer classification: A new approach", Int. J. Data Min. Bioinform., vol. 13, no. 3, pp. 248-265, 2015. [http://dx.doi.org/10.1504/IJDMB.2015.072092].
[8]
M. Moghadasian, and S.P. Hosseini, "Binary cuckoo optimization algorithm for feature selection in high-dimensional datasets", In: International Conference on Innovative Engineering Technologies (ICIET’2014), Bangkok, Thailand 2014, pp. 18-21.
[9]
R. Soto, B. Crawford, R. Olivares, J. Barraza, F. Johnson, and F. Paredes, A binary cuckoo search algorithm for solving the set covering problem.International Work-Conference on the Interplay Between Natural and Artificial Computation., Springer: Cham, 2015, pp. 88-97. [http://dx.doi.org/10.1007/978-3-319-18833-1_10]
[10]
T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, and C.D. Bloomfield, "Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring", Science, vol. 286, no. 5439, pp. 531-537, October 1999.
[11]
P. Mitra, S. Mitra, and S.K. Pal, "Staging of cervical cancer with soft computing", IEEE Trans. Biomed. Eng., vol. 47, no. 7, pp. 934-940, July 2000.
[12]
E.F. Petricoin, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn, and L.A. Liotta, "Use of proteomic patterns in serum to identify ovarian cancer", Lancet, vol. 359, no. 9306, pp. 572-577, February 2002.
[13]
A.C. Tan, and D. Gilbert, "Ensemble machine learning on gene expression data for cancer classification", Appl. Bioinformatics, vol. 2, pp. S75-S83, 2003.
[14]
K.B. Duan, J.C. Rajapakse, H. Wang, and F. Azuaje, "Multiple SVM-RFE for gene selection in cancer classification with expression data", IEEE Trans. Nanobiosci, vol. 4, no. 3, pp. 228-234, September 2005.
[15]
E. Valian, S. Mohanna, and S. Tavakoli, "Improved cuckoo search algorithm for feedforward neural network training", Int. J. Artifi. Intell. Appl., vol. 2, no. 3, pp. 36-43, 2011. [http://dx.doi.org/10.5121/ijaia.2011.2304].
[16]
S.R. Singh, and R.S. Virk, "Genetic algorithm for staging cervical cancer", Int. J. Comput. Appl. Informat. Technol., vol. 3, no. 2, pp. 39-43, 2013.
[17]
J.M. Diaz, R.C. Pinon, and G. Solano, "Lung cancer classification using a genetic algorithm to optimize prediction models", In: The 5th International Conference Information, Intelligence, Systems, and Applications, IISA 2014, Chania, Greece 2014, pp. 1-6. [http://dx.doi.org/10.1109/IISA.2014.6878770]
[18]
J.B. Jona, and N. Nagaveni, "Ant-cuckoo colony optimization for feature selection in digital mammogram", Pak. J. Biol. Sci., vol. 17, no. 2, pp. 266-271, January 2014.
[19]
H. Liu, L. Liu, and H. Zhang, "Ensemble gene selection for cancer classification", Pattern Recognit., vol. 43, no. 8, pp. 2763-2772, 2010.
[20]
H. Liu, L. Liu, and H. Zhang, "Ensemble gene selection for cancer classification", Pattern Recognit., vol. 43, no. 8, pp. 2763-2772, 2010. [http://dx.doi.org/10.1016/j.patcog.2010.02.008].
[21]
X. Wang, and R. Simon, "Microarray-based cancer prediction using single genes", BMC Bioinformatics, vol. 12, p. 391, October 2011.
[22]
O. Dagliyan, F. Uney-Yuksektepe, I.H. Kavakli, and M. Turkay, "Optimization based tumor classification from microarray gene expression data", PLoS One, vol. 6, no. 2, p. e14579, February 2011.
[23]
C.J. Alonso-Gonzalez, Q.I. Moro-Sancho, A. Simon-Hurtado, and R. Varela-Arrabal, "Microarray gene expression classification with few genes: Criteria to combine attribute selection and classification methods", Expert Syst. Appl., vol. 39, no. 8, pp. 7270-7280, 2012.
[24]
E.B. George, G.J. Rosline, and D.G. Rajesh, "Brain tumor segmentation using cuckoo search optimization for magnetic resonance images", In: IEEE 8th GCC Conference & Exhibition, Muscat, Oman, 2015, pp. 1-6.
[25]
M.N. Sudha, and S. Selvarajan, "Feature selection based on enhanced cuckoo search for breast cancer classification in mammogram image", Circuits and Systems., vol. 7, no. 4, pp. 327-338, 2016. [http://dx.doi.org/10.4236/cs.2016.74028].
[26]
S. Roostaee, and H. R. Ghaffary, "Diagnosis of heart disease based on meta heuristic algorithms and clustering methods", J. Electr. Comput. Eng, Innovat., vol. 4, no. 2, . 2016
[27]
V. Elyasigomari, M.S. Mirjafari, H.R. Screen, and M.H. Shaheed, "Cancer classification using a novel gene selection approach by means of shuffling based on data clustering with optimization", Appl. Soft Comput., vol. 35, pp. 43-51, 2015. [http://dx.doi.org/10.1016/j.asoc.2015.06.015].
[28]
P. Mohapatra, S. Chakravarty, and P.K. Dash, "An improved cuckoo search based extreme learning machine for medical data classification", Swarm Evol. Comput., vol. 24, pp. 25-49, 2015. [http://dx.doi.org/10.1016/j.swevo.2015.05.003].
[29]
D. K. Nagthane, and A. M. Rajurkar, "Cuckoo search: An optimized way for mammo-gram feature selection", Intl. J. Curr. Eng. Scientific Res., vol. 4, no. 8, . 2017
[30]
B. Benazir, and A. Nagarajan, "An expert system for predicting the cervical cancer using data mining techniques", Int. J. Pure Appl. Math., vol. 118, no. 20, pp. 1971-1987, 2013.
[31]
K. Yamunadevi, and R. Nagaraj, "“An optimized classification of human cancer disease for gene expression data”, Int. J. Adv. Res", Ideas Innovat. Technol., vol. 4, no. 2, pp. 8-15, 2018.
[32]
A.K. Das, S.K. Pati, H.H. Huang, and C.K. Chen, "Cancer classification by gene subset selection from microarray dataset", J. Univers. Comput. Sci., vol. 24, no. 6, pp. 682-710, 2018.
[33]
Arnu. Pretorius, Surette. Bierman, and J. Steel, A metaanalysis of research in random forests for classification2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), Stellenbosch, South Africa, 2017., . [http://dx.doi.org/10.1109/RoboMech.2016.7813171]
[34]
D. Wu, C. Jennings, J. Terpenny, R.X. Gao, and S. Kumara, "A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests", J. Manuf. Sci. Eng., vol. 139, no. 7, 2017.071018 [http://dx.doi.org/10.1115/1.4036350].
[35]
M. Du, S. Ding, and H. Jia, "Study on density peaks clustering based on k-nearest neigh-bors and principal component analysis", Knowledge. Base. Syst., vol. 99, pp. 135-145, 2016. [https://doi.org/10.1016/j.knosys.2016.02.001].
[36]
T. Kumaresan, S. Saravanakumar, and R. Balamurugan, "Visual and textual features based email spam classification using S-Cuckoo search and hybrid kernel support vector machine", Cluster Comput., pp. 1-14, 2017. [http://dx.doi.org/10.1007/s10586-017-1615-8].
[37]
B. Gupta, A. Rawat, A. Jain, A. Arora, and N. Dhami, "Analysis of various decision tree algorithms for classification in data mining", Int. J. Comput. Appl., vol. 163, no. 8, 2017.
[38]
T. Kumaresan, S. Saravanakumar, and R. Balamurugan, "Feature selection based on hybrid Binary Cuckoo Search and rough set theory in classification for nominal datasets", Algorithms, vol. 14, no. 21, p. 65, 2017. [http://dx.doi.org/10.1007/s10586-017-1615-8].
[39]
S. Vijayarani, and S. Dhayanand, "Liver disease prediction using SVM and Naïve Bayes Algortihms", Int. J. Sci. Eng. Technol. Res., vol. 4, no. 4, . 2015
[40]
C. Qi, Z. Zhou, Y. Sun, H. Song, L. Hu, and Q. Wang, "Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification", Neurocomputing, vol. 220, pp. 181-190, 2017. [http://dx.doi.org/10.1016/j.neucom.2016.05.103].
[41]
M. Shehab, A.T. Khader, and M.A. Al-Betar, "A survey on applications and variants of the cuckoo search algorithm", Appl. Soft Comput., vol. 61, pp. 1041-1059, 2017. [http://dx.doi.org/10.1016/j.asoc.2017.02.034].
[42]
A. Sharma, R. Singh, P.K. Liaw, and G. Balasubramanian, "Cuckoo searching property specific optimal compositions of multicomponent alloys by molecular simulations", Scr. Mater., vol. 130, pp. 292-296, 2017. [http://dx.doi.org/10.1016/j.scriptamat.2016.12.022].
[43]
S. Chatterjee, N. Dey, S. Sen, A.S. Ashour, S. Fong, and S. Fuqian, "Modified cuckoo search based neural networks for forest types classification", Inform. Technol. Intelligent Transportation Syst, vol. 296, pp. 490-498, 2017. [http://dx.doi.org/10.3233/978-1-61499-785-6-490].
[44]
N.S. Jaddi, S. Abdullah, and M.A. Malek, "Master-leader-slave cuckoo search with parameter control for ANN optimization and its real-world application to water quality prediction", PLoS One, vol. 12, no. 1, 2017.e0170372 [http://dx.doi.org/10.1371/ journal.pone.0170372]. [PMID: 28125609].
[45]
S. Sujana, N.M.S. Rao, and R.S. Reddy, An efficient feature selection using parallel cuckoo search and naïve Bayes classifier2017 International Conference on Networks & Advances in Computational Technologies (NetACT)Thiruvanthapuram, India, . 2017. [http://dx.doi.org/10.1109/NETACT.2017.8076761]
[46]
X. Li, and M. Yin, "Modified cuckoo search algorithm with self-adaptive parameter method", Inf. Sci., vol. 298, pp. 80-97, 2015. [http://dx.doi.org/10.1016/j.ins.2014.11.042].
[47]
X.S. Yang, and S. Deb, Cuckoo search: State-of-the-art and opportunities2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI)Port Louis, Mauritius, . 2018. [http://dx.doi.org/10.1109/ISCMI.2017.8279597]
[48]
D. Rodrigues, L.A. Pereira, T.N. Almeida, J.P. Papa, A.N. Souza, C.C. Ramos, and X. Yang, "BCS: A Binary Cuckoo Search algorithm for feature selection", In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing, China 2013, pp. 465-468. [http://dx.doi.org/10.1109/ISCAS.2013.6571881]
[49]
E. Valian and, S. Tavakoli, S. Mohanna, and A. Haghi, "Improved cuckoo search for reliability optimization problems", Comput. Ind. Eng., vol. 64, no. 1, pp. 49-468, 2013. [http://dx.doi.org/10.1016/j.cie.2012.07.011].
[50]
K. Kalaivani, and N.U. Maheshwari, "Cuckoo optimization and fuzzy logic classifier with an enhanced stacking algorithm", Int. J. Pure Appl. Math., vol. 117, no. 8, pp. 155-160, 2017. [http://dx.doi.org/10.12732/ijpam.v117i8.31].
[51]
N.S. Jaddi, S. Abdullah, and M.A. Malek, "Master-leader-slave cuckoo search with parameter control for ANN optimization and its real-world application to water quality prediction", PLoS One, vol. 12, no. 1, 2017.e0170372 [http://dx.doi.org/10.1371/journal.pone.0170372].
[52]
Y. Kaya, "Feature selection using binary cuckoo search algorithm", In: In 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey 2018, pp. 1-4. [http://dx.doi.org/10.1109/SIU.2018.8404843]
[53]
S.Y. Xin, "A brief literature review: Cuckoo search and firefly algorithm", Studies Computational Intell., vol. 516, pp. 49-62, 2014.
[54]
T.T. Nguyen, and A.V. Truong, "A novel method based on adaptive cuckoo search for optimal network reconfiguration and distribution generation allocation in distribution network", In: Elsevier- Electrical Power and Energy Syestems, vol. 78. pp. 801-815. 2016. [https://doi.org/10.1016/j.ijepes.2015.12.030]
[55]
J. Huang, L. Gao, and X. Li, "An effective teaching learning based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes", Appl. Soft Comput., vol. 36, pp. 349-356, 2015.
[56]
T.T. Nguyen, and D.N. Vo, "The application of one rank cuckoo search algorithm for solving economic load dispatch", Appl. Soft Comput., vol. 37, pp. 763-773, 2015. [https://doi.org/10.1016/j.asoc.2015.09.010].
[57]
J.S. Cardoso, J. Fernandes, and K. Fernandes, "Transfer learning with partial observability applied to cervical cancer screening", In: Iberian Conference on Pattern Recognition and Image Analysis, Springer International Publishing, Cham, 2017, pp. 243-250.
[58]
M. Dolatshah, A. Hadian, and B. Minaei-Bidgoli, "Ball*-tree: Efficient spatial indexing for constrained nearest-neighbor search in metric spaces", arXiv:1511.00628v1, 2015.
[59]
S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi, "Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels", IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 12, pp. 2464-2477, 2015. [http://dx.doi.org/10.1109/TPAMI.2015.2414422].
[60]
S. Khan, I. Naseem, R. Togneri, and M. Bennamoun, "A novel adaptive kernel for the rbf neural networks", Circuits Syst. Signal Process., vol. 36, no. 4, pp. 1639-1653, 2017. [http://dx.doi.org/10.1007/s00034-016-0375-7].