Review Article

通过设计方法开发高质量的用于皮肤癌治疗的局部纳米载体

卷 26, 期 35, 2019

页: [6440 - 6458] 页: 19

弟呕挨: 10.2174/0929867325666181116143713

价格: $65

摘要

背景:本世纪最引人注目的医学挑战之一是癌症的治疗,其中,皮肤癌是最常见的类型。因此,当前的治疗方法需要不断更新以应对这一挑战。 目的:本综述提出了在开发用于皮肤癌局部治疗的纳米级制剂时可以考虑的考虑因素。我们旨在收集和整理有关皮肤癌治疗选择的文献数据,以确定有效的皮肤抗癌制剂所需的质量属性。 方法:考虑到与开发新药物配方相关的按质量设计(QbD)方法,可以实现节省成本的过程,确保在考虑患者期望,工业和监管方面的前提下提供高质量的产品。此外,监管机构强烈建议使用此概念。 结果:我们的工作讨论了与皮肤癌治疗相关的当前疗法,活性剂,药物载体系统和评估方法,并概述了开发纳米级皮肤抗癌制剂时需要考虑的关键质量属性。 结论:本综述的第一部分总结了皮肤癌最重要的局部治疗方法,并重点介绍了纳米技术和皮肤给药的益处,突出了未来的治疗前景。第二部分从QbD方法的角度概述了纳米级皮肤抗癌制剂开发的关键点。我们的研究强调QbD方法在合理且更有效的抗癌制剂开发过程中的应用。

关键词: 抗癌,皮肤癌,纳米药物,纳米颗粒,皮肤,设计质量(QbD)。

[1]
Taveira, S.F.; Lopez, R.F.V. Topical Administration of Anticancer Drugs for Skin Cancer Treatment. Skin Cancers - Risk Factors, Prevention and Therapy; Porta, C.A.L., Ed.; In Tech, 2011, pp. 248-272.
[2]
Haque, T.; Rahman, K.M.; Thurston, D.E.; Hadgraft, J.; Lane, M.E. Topical therapies for skin cancer and actinic keratosis. Eur. J. Pharm. Sci., 2015, 77, 279-289.
[http://dx.doi.org/10.1016/j.ejps.2015.06.013] [PMID: 26091570]
[3]
Martinez, J.C.; Otley, C.C. The management of melanoma and nonmelanoma skin cancer: a review for the primary care physician. Mayo Clin. Proc., 2001, 76(12), 1253-1265.
[http://dx.doi.org/10.4065/76.12.1253] [PMID: 11761506]
[4]
Chummun, S.; McLean, N.R. Management of malignant skin cancers. Surgery, 2017, 35(9), 519-524.
[http://dx.doi.org/10.1016/j.mpsur.2017.06.013]
[5]
Simões, M.C.F.; Sousa, J.J.S.; Pais, A.A.C.C. Skin cancer and new treatment perspectives: a review. Cancer Lett., 2015, 357(1), 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[6]
Maverakis, E.; Cornelius, L.A.; Bowen, G.M.; Phan, T.; Patel, F.B.; Fitzmaurice, S.; He, Y.; Burrall, B.; Duong, C.; Kloxin, A.M.; Sultani, H.; Wilken, R.; Martinez, S.R.; Patel, F. Metastatic melanoma - a review of current and future treatment options. Acta Derm. Venereol., 2015, 95(5), 516-524.
[http://dx.doi.org/10.2340/00015555-2035] [PMID: 25520039]
[7]
Orthaber, K.; Pristovnik, M.; Skok, K.; Peric, B.; Maver, U. Skin cancer and its treatment: novel treatment approaches with emphasis on nanotechnology. J. Nanomater., 2017.20172606271
[http://dx.doi.org/10.1155/2017/2606271]
[8]
Berciano-Guerrero, M.A.; Montesa-Pino, A.; Castaneda-Penalvo, G.; Munoz-Fernandez, L.; Rodriguez-Flores, J. Nanoparticles in melanoma. Curr. Med. Chem., 2014, 21(32), 3701-3716.
[http://dx.doi.org/10.2174/0929867321666140716092512] [PMID: 25039783]
[9]
Labala, S.; Jose, A.; Chawla, S.R.; Khan, M.S.; Bhatnagar, S.; Kulkarni, O.P.; Venuganti, V.V.K. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int. J. Pharm., 2017, 525(2), 407-417.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.087] [PMID: 28373100]
[10]
Siu, K.S.; Chen, D.; Zheng, X.; Zhang, X.; Johnston, N.; Liu, Y.; Yuan, K.; Koropatnick, J.; Gillies, E.R.; Min, W.P. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 2014, 35(10), 3435-3442.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.079] [PMID: 24424208]
[11]
Singh, S.; Zafar, A.; Khan, S.; Naseem, I. Towards therapeutic advances in melanoma management: an overview. Life Sci., 2017, 174, 50-58.
[http://dx.doi.org/10.1016/j.lfs.2017.02.011] [PMID: 28238718]
[12]
Gracia-Cazaña, T.; Salazar, N.; Zamarrón, A.; Mascaraque, M.; Lucena, S.R.; Juarranz, Á. Resistance of nonmelanoma skin cancer to nonsurgical treatments. Part ii: photodynamic therapy, vismodegib, cetuximab, intralesional methotrexate, and radiotherapy. Actas Dermosifiliogr., 2016, 107(9), 740-750.
[http://dx.doi.org/10.1016/j.adengl.2016.08.017] [PMID: 27436804]
[13]
Xie, J.; Bartels, C.M.; Barton, S.W.; Gu, D. Targeting hedgehog signaling in cancer: research and clinical developments. OncoTargets Ther., 2013, 6, 1425-1435.
[http://dx.doi.org/10.2147/OTT.S34678] [PMID: 24143114]
[14]
Berking, C.; Hauschild, A.; Kölbl, O.; Mast, G.; Gutzmer, R. Basal cell carcinoma-treatments for the commonest skin cancer. Dtsch. Arztebl. Int., 2014, 111(22), 389-395.
[PMID: 24980564]
[15]
Dianzani, C.; Zara, G.P.; Maina, G.; Pettazzoni, P.; Pizzimenti, S.; Rossi, F.; Gigliotti, C.L.; Ciamporcero, E.S.; Daga, M.; Barrera, G. Drug delivery nanoparticles in skin cancers. BioMed Res. Int., 2014, •••2014895986
[http://dx.doi.org/10.1155/2014/895986] [PMID: 25101298]
[16]
Baroli, B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J. Pharm. Sci., 2010, 99(1), 21-50.
[http://dx.doi.org/10.1002/jps.21817] [PMID: 19670463]
[17]
Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 470-491.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[18]
Bhise, K.; Kashaw, S.K.; Sau, S.; Iyer, A.K. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: quality by design (QbD) approach. Int. J. Pharm., 2017, 526(1-2), 506-515.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.078] [PMID: 28502895]
[19]
Brys, A.K.; Gowda, R.; Loriaux, D.B.; Robertson, G.P.; Mosca, P.J. Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnol. Adv., 2016, 34(5), 565-577.
[http://dx.doi.org/10.1016/j.biotechadv.2016.01.004] [PMID: 26826558]
[20]
Bombelli, F.B.; Webster, C.A.; Moncrieff, M.; Sherwood, V. The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncol., 2014, 15(1), e22-e32.
[http://dx.doi.org/10.1016/S1470-2045(13)70333-4] [PMID: 24384491]
[21]
Bharali, D.J.; Khalil, M.; Gurbuz, M.; Simone, T.M.; Mousa, S.A. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomedicine, 2009, 4, 1-7.
[PMID: 19421366]
[22]
Ali, I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[23]
Hosoda, J.; Unezaki, S.; Maruyama, K.; Tsuchiya, S.; Iwatsuru, M. Antitumor activity of doxorubicin encapsulated in poly(ethylene glycol)-coated liposomes. Biol. Pharm. Bull., 1995, 18(9), 1234-1237.
[http://dx.doi.org/10.1248/bpb.18.1234] [PMID: 8845812]
[24]
Lasic, D.D.; Vallner, J.J.; Working, P.K. Sterically stabilized liposomes in cancer therapy and gene delivery. Curr. Opin. Mol. Ther., 1999, 1(2), 177-185.
[PMID: 11715941]
[25]
Krieger, M.L.; Eckstein, N.; Schneider, V.; Koch, M.; Royer, H.D.; Jaehde, U.; Bendas, G. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int. J. Pharm., 2010, 389(1-2), 10-17.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.061] [PMID: 20060458]
[26]
Abu Lila, A.S.; Doi, Y.; Nakamura, K.; Ishida, T.; Kiwada, H. Sequential administration with oxaliplatin-containing PEG-coated cationic liposomes promotes a significant delivery of subsequent dose into murine solid tumor. J. Control. Release, 2010, 142(2), 167-173.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.020] [PMID: 19861140]
[27]
Watanabe, M.; Kawano, K.; Toma, K.; Hattori, Y.; Maitani, Y. In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin. J. Control. Release, 2008, 127(3), 231-238.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.005] [PMID: 18384903]
[28]
Manconi, M.; Sinico, C.; Valenti, D.; Lai, F.; Fadda, A.M. Niosomes as carriers for tretinoin. III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int. J. Pharm., 2006, 311(1-2), 11-19.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.045] [PMID: 16439071]
[29]
Paolino, D.; Cosco, D.; Muzzalupo, R.; Trapasso, E.; Picci, N.; Fresta, M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int. J. Pharm., 2008, 353(1-2), 233-242.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.037] [PMID: 18191509]
[30]
Rastogi, R.; Anand, S.; Koul, V. Flexible polymerosomes--an alternative vehicle for topical delivery. Colloids Surf. B Biointerfaces, 2009, 72(1), 161-166.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.022] [PMID: 19403279]
[31]
Deda, D.K.; Uchoa, A.F.; Caritá, E.; Baptista, M.S.; Toma, H.E.; Araki, K. A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int. J. Pharm., 2009, 376(1-2), 76-83.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.024] [PMID: 19409465]
[32]
Teskac, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm., 2010, 390(1), 61-69.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.011] [PMID: 19833178]
[33]
Marquele-Oliveira, F.; Santana, D.C.; Taveira, S.F.; Vermeulen, D.M.; de Oliveira, A.R.; da Silva, R.S.; Lopez, R.F. Development of nitrosyl ruthenium complex-loaded lipid carriers for topical administration: improvement in skin stability and in nitric oxide release by visible light irradiation. J. Pharm. Biomed. Anal., 2010, 53(4), 843-851.
[http://dx.doi.org/10.1016/j.jpba.2010.06.007] [PMID: 20634015]
[34]
Mussi, S.V.; Silva, R.C.; Oliveira, M.C.; Lucci, C.M.; Azevedo, R.B.; Ferreira, L.A. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur. J. Pharm. Sci., 2013, 48(1-2), 282-290.
[http://dx.doi.org/10.1016/j.ejps.2012.10.025] [PMID: 23178339]
[35]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[36]
Selvamuthukumar, S.; Velmurugan, R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis., 2012, 11, 159.
[http://dx.doi.org/10.1186/1476-511X-11-159] [PMID: 23167765]
[37]
Shi, L.; Wang, X.; Zhao, F.; Luan, H.; Tu, Q.; Huang, Z.; Wang, H.; Wang, H. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int. J. Nanomedicine, 2013, 8, 2669-2676.
[http://dx.doi.org/10.2147/IJN.S45821] [PMID: 23926429]
[38]
Oh, E.K.; Jin, S.E.; Kim, J.K.; Park, J.S.; Park, Y.; Kim, C.K. Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy. Eur. J. Pharm. Sci., 2011, 44(1-2), 149-157.
[http://dx.doi.org/10.1016/j.ejps.2011.07.003] [PMID: 21782942]
[39]
Pierre, M.B.; Tedesco, A.C.; Marchetti, J.M.; Bentley, M.V. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol., 2001, 1, 5.
[http://dx.doi.org/10.1186/1471-5945-1-5] [PMID: 11545679]
[40]
Hadjikirova, M.; Troyanova, P.; Simeonova, M. Nanoparticles as drug carrier system of 5-fluorouracil in local treatment of patients with superficial basal cell carcinoma. J. BUON, 2005, 10(4), 517-521.
[PMID: 17357210]
[41]
Amasya, G.; Badilli, U.; Aksu, B.; Tarimci, N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the w/o/w double emulsion - solvent evaporation method. Eur. J. Pharm. Sci., 2016, 84, 92-102.
[http://dx.doi.org/10.1016/j.ejps.2016.01.003] [PMID: 26780593]
[42]
Jain, S.K.; Chaurasiya, A.; Gupta, Y.; Jain, A.; Dagur, P.; Joshi, B.; Katoch, V.M. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J. Microencapsul., 2008, 25(5), 289-297.
[http://dx.doi.org/10.1080/02652040701799598] [PMID: 18608808]
[43]
Alvi, I.A.; Madan, J.; Kaushik, D.; Sardana, S.; Pandey, R.S.; Ali, A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anticancer Drugs, 2011, 22(8), 774-782.
[http://dx.doi.org/10.1097/CAD.0b013e328346c7d6] [PMID: 21799471]
[44]
Misak, H.; Zacharias, N.; Song, Z.; Hwang, S.; Man, K.P.; Asmatulu, R.; Yang, S.Y. Skin cancer treatment by albumin/5-Fu loaded magnetic nanocomposite spheres in a mouse model. J. Biotechnol., 2013, 164(1), 130-136.
[http://dx.doi.org/10.1016/j.jbiotec.2013.01.003] [PMID: 23395619]
[45]
Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem. Toxicol., 2013, 62, 670-680.
[http://dx.doi.org/10.1016/j.fct.2013.09.037] [PMID: 24120900]
[46]
Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[47]
Taveira, S.F.; Araújo, L.M.; de Santana, D.C.; Nomizo, A.; de Freitas, L.A.; Lopez, R.F. Development of cationic solid lipid nanoparticles with factorial design-based studies for topical administration of doxorubicin. J. Biomed. Nanotechnol., 2012, 8(2), 219-228.
[http://dx.doi.org/10.1166/jbn.2012.1383] [PMID: 22515073]
[48]
Taveira, S.F.; De Santana, D.C.; Araújo, L.M.; Marquele-Oliveira, F.; Nomizo, A.; Lopez, R.F. Effect of iontophoresis on topical delivery of doxorubicin-loaded solid lipid nanoparticles. J. Biomed. Nanotechnol., 2014, 10(7), 1382-1390.
[http://dx.doi.org/10.1166/jbn.2014.1834] [PMID: 24804558]
[49]
Huber, L.A.; Pereira, T.A.; Ramos, D.N.; Rezende, L.C.; Emery, F.S.; Sobral, L.M.; Leopoldino, A.M.; Lopez, R.F. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and lontophoresis. J. Biomed. Nanotechnol., 2015, 11(11), 1975-1988.
[http://dx.doi.org/10.1166/jbn.2015.2139] [PMID: 26554156]
[50]
Labala, S.; Mandapalli, P.K.; Kurumaddali, A.; Venuganti, V.V. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol. Pharm., 2015, 12(3), 878-888.
[http://dx.doi.org/10.1021/mp5007163] [PMID: 25587849]
[51]
Guo, T.; Zhang, Y.; Zhao, J.; Zhu, C.; Feng, N. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J. Nanobiotechnology, 2015, 13, 47.
[http://dx.doi.org/10.1186/s12951-015-0107-3] [PMID: 26156035]
[52]
Yu, X.; Du, L.; Li, Y.; Fu, G.; Jin, Y. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel. Biomed. Pharmacother., 2015, 73, 6-11.
[http://dx.doi.org/10.1016/j.biopha.2015.05.002] [PMID: 26211575]
[53]
Bharadwaj, R.; Das, P.J.; Pal, P.; Mazumder, B. Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev. Ind. Pharm., 2016, 42(9), 1482-1494.
[http://dx.doi.org/10.3109/03639045.2016.1151028] [PMID: 26850463]
[54]
Chen, H.; Chang, X.; Du, D.; Liu, W.; Liu, J.; Weng, T.; Yang, Y.; Xu, H.; Yang, X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J. Control. Release, 2006, 110(2), 296-306.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.052] [PMID: 16325954]
[55]
Zhao, J.; Piao, X.; Shi, X.; Si, A.; Zhang, Y.; Feng, N. Podophyllotoxin-loaded nanostructured lipid carriers for skin targeting: in vitro and in vivo studies. Molecules, 2016, 21(11)E1549
[http://dx.doi.org/10.3390/molecules21111549] [PMID: 27869698]
[56]
Sahu, S.; Saraf, S.; Kaur, C.D.; Saraf, S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak. J. Biol. Sci., 2013, 16(13), 601-609.
[http://dx.doi.org/10.3923/pjbs.2013.601.609] [PMID: 24505982]
[57]
Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm., 2012, 430(1-2), 292-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[58]
Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int. J. Nanomedicine, 2012, 7, 1841-1850.
[http://dx.doi.org/10.2147/IJN.S29710] [PMID: 22605933]
[59]
Singh, P.; Singh, M.; Kanoujia, J.; Arya, M.; Saraf, S.K.; Saraf, S.A. Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line. Drug Deliv. Transl. Res., 2016, 6(5), 597-609.
[http://dx.doi.org/10.1007/s13346-016-0317-8] [PMID: 27431400]
[60]
Tran, M.A.; Gowda, R.; Sharma, A.; Park, E.J.; Adair, J.; Kester, M.; Smith, N.B.; Robertson, G.P. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res., 2008, 68(18), 7638-7649.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6614] [PMID: 18794153]
[61]
Mandawgade, S.D.; Patravale, V.B. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int. J. Pharm., 2008, 363(1-2), 132-138.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.028] [PMID: 18657601]
[62]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[63]
Pallagi, E.; Ambrus, R.; Szabó-Révész, P.; Csóka, I. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. Int. J. Pharm., 2015, 491(1-2), 384-392.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.018] [PMID: 26134895]
[64]
Chang, R.K.; Raw, A.; Lionberger, R.; Yu, L. Generic development of topical dermatologic products, Part II: quality by design for topical semisolid products. AAPS J., 2013, 15(3), 674-683.
[http://dx.doi.org/10.1208/s12248-013-9472-8] [PMID: 23572241]
[65]
ICH Guideline Pharmaceutical Development Q8(R2) Current Step 4 version dated August 2009. Available at: http://www.ich.org/products/guidelines/quality/article/qualityguidelines [Accessed: August 15, 2017];
[66]
ICH Guideline Pharmaceutical Development Q9. Quality Risk Management Guidance for Industry Dated June. Available at: www.fda.gov/downloads/Drugs/ [Accessed: August 15, 2017];
[67]
Antony, J.; Kellershohn, K.; Mohr-Andrä, M.; Kebig, A.; Prilla, S.; Muth, M.; Heller, E.; Disingrini, T.; Dallanoce, C.; Bertoni, S.; Schrobang, J.; Tränkle, C.; Kostenis, E.; Christopoulos, A.; Höltje, H.D.; Barocelli, E.; De Amici, M.; Holzgrabe, U.; Mohr, K. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J., 2009, 23(2), 442-450.
[http://dx.doi.org/10.1096/fj.08-114751] [PMID: 18842964]
[68]
Wisse, E.; Braet, F.; Luo, D.; De Zanger, R.; Jans, D.; Crabbé, E.; Vermoesen, A. Structure and function of sinusoidal lining cells in the liver. Toxicol. Pathol., 1996, 24(1), 100-111.
[http://dx.doi.org/10.1177/019262339602400114] [PMID: 8839287]
[69]
Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine, 2012, 7, 5577-5591.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[70]
Wu, X.; Landfester, K.; Musyanovych, A.; Guy, R.H. Disposition of charged nanoparticles after their topical application to the skin. Skin Pharmacol. Physiol., 2010, 23(3), 117-123.
[http://dx.doi.org/10.1159/000270381] [PMID: 20051712]
[71]
Kovács, A.; Berkó, S.; Csányi, E.; Csóka, I. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the quality by design method. Eur. J. Pharm. Sci., 2017, 99, 246-257.
[http://dx.doi.org/10.1016/j.ejps.2016.12.020] [PMID: 28012940]
[72]
Sütő, B.; Berkó, S.; Kozma, G.; Kukovecz, Á.; Budai-Szűcs, M.; Erős, G.; Kemény, L.; Sztojkov-Ivanov, A.; Gáspár, R.; Csányi, E. Development of ibuprofen-loaded nanostructured lipid carrier-based gels: characterization and investigation of in vitro and in vivo penetration through the skin. Int. J. Nanomedicine, 2016, 11, 1201-1212.
[PMID: 27099487]
[73]
Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J., 2014, 16(4), 771-783.
[http://dx.doi.org/10.1208/s12248-014-9598-3] [PMID: 24854893]
[74]
Patel, G.M.; Shelat, P.K.; Lalwani, A.N. QbD based development of proliposome of lopinavir for improved oral bioavailability. Eur. J. Pharm. Sci., 2016.
[PMID: 27586019]
[75]
Xu, X.; Khan, M.A.; Burgess, D.J. A quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables, and establishment of design space at laboratory scale. Int. J. Pharm., 2012, 423(2), 543-553.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.036] [PMID: 22155413]
[76]
Shaikh, M.V.; Kala, M.; Nivsarkar, M. Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in-vitro activity. Eur. J. Pharm. Sci., 2017, 100, 262-272.
[http://dx.doi.org/10.1016/j.ejps.2017.01.026] [PMID: 28126560]
[77]
Vardhan, H.; Mittal, P.; Adena, S.K.R.; Upadhyay, M.; Mishra, B. Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: optimization, pharmacokinetic, cytotoxicity and in vivo assessments. Int. J. Biol. Macromol., 2017, 103, 791-801.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.125] [PMID: 28536023]
[78]
Raina, H.; Kaur, S.; Jindal, A.B. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. J. Drug Deliv. Sci. Technol., 2017, 39, 180-191.
[http://dx.doi.org/10.1016/j.jddst.2017.02.013]
[79]
Ribeiro, L.N.M.; Breitkreitz, M.C.; Guilherme, V.A.; da Silva, G.H.R.; Couto, V.M.; Castro, S.R.; de Paula, B.O.; Machado, D.; de Paula, E. Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies. Eur. J. Pharm. Sci., 2017, 106, 102-112.
[http://dx.doi.org/10.1016/j.ejps.2017.05.060] [PMID: 28558981]
[80]
Garg, N.K.; Sharma, G.; Singh, B.; Nirbhavane, P.; Tyagi, R.K.; Shukla, R.; Katare, O.P. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int. J. Pharm., 2017, 517(1-2), 413-431.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.010] [PMID: 27956192]
[81]
Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: risk assessment and QbD based optimization. J. Drug Deliv. Sci. Technol., 2016, 33, 37-50.
[http://dx.doi.org/10.1016/j.jddst.2016.03.008]
[82]
Li, J.; Qiao, Y.; Wu, Z. Nanosystem trends in drug delivery using quality-by-design concept. J. Control. Release, 2017, 256, 9-18.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.019] [PMID: 28414149]
[83]
Guideline, I.C.H. ICH Guideline S9. Nonclinical Evaluation for Anticancer Pharmaceuticals 2010. Available at: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S9/Step4/S9_Step4_Guideline.pdf [Accessed: August 15, 2017].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy