[1]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53, 615-627.
[2]
Khandany, B.K.; Hassanshahi, G.; Khorramdelazad, H.; Balali, Z.; Shamsizadeh, A.; Arababadi, M.K.; Ostadebrahimi, H.; Fatehi, A.; Rezazadeh, M.; Ahmadi, Z. Evaluation of circulating concentrations of CXCL1 (Gro-α), CXCL10 (IP-10) and CXCL12 (SDF-1) in ALL patients prior and post bone marrow transplantation. Pathol. Res. Pract., 2012, 208, 615-619.
[3]
Sheikhrezaei, Z.; Heydari, P.; Farsinezhad, A.; Fatemi, A.; Falahati-Pour, S.K.; Darakhshan, S.; Karimabad, M.N.; Darekordi, A.; Khorramdelazad, H.; Hassanshahi, G. A new indole derivative decreased SALL4 gene expression in acute Promyelocytic leukemia cell line (NB4). Iran. Biomed. J., 2018, 22, 99.
[4]
Moosavi, S.R.; Khorramdelazad, H.; Amin, M.; Fatahpoor, S.; Moogooei, M.; Karimabad, M.N.; Paghale, M.J.; Vakilian, A.; Hassanshahi, G. The SDF-1 3'A genetic variation is correlated with elevated intra-tumor tissue and circulating concentration of CXCL12 in glial tumors. J. Mol. Neurosci., 2013, 50, 298-304.
[5]
Goldie, J.H. Drug resistance in cancer: A perspective. Cancer Metastasis Rev., 2001, 20, 63-68.
[6]
Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New Strategies in cancer therapies. BioMed Res. Int., 2014, 804510, 17.
[7]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Falahati-pour, S.K.; Hassanshahi, G. The novel Indole-3-formaldehyde (2-AITFEI-3-F) is involved in processes of apoptosis induction? Life Sci., 2017, 181, 31-44.
[8]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Sayadi, A.R.; Rahmani, F.; Hassanshahi, G. Evaluating of OCT-4 and NANOG was differentially regulated by a new derivative indole in leukemia cell line. Immunol. Lett., 2017, 190, 7-14.
[9]
Steinmetz, K.A.; Potter, J.D. Vegetables, fruit, and cancer prevention: a review. J. Am. Diet. Assoc., 1996, 96, 1027-1039.
[10]
Cohen, J.H.; Kristal, A.R.; Stanford, J.L. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst., 2000, 92, 61-68.
[11]
Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res., 2007, 55, 224-236.
[12]
Minich, D.M.; Bland, J.S. A review of the clinical efficacy and safety of cruciferous vegetable phytochemicals. Nutr. Rev., 2007, 65, 259-267.
[13]
Verhoeven, D.T.; Goldbohm, R.A.; van Poppel, G.; Verhagen, H.; van den Brandt, P.A. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomarkers Prev., 1996, 5, 733-748.
[14]
Weng, J.R.; Tsai, C.H.; Kulp, S.K.; Chen, C.S. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett., 2008, 262, 153-163.
[15]
Hong, C.; Firestone, G.L.; Bjeldanes, L.F. Bcl-2 family-mediated apoptotic effects of 3,3′-diindolylmethane (DIM) in human breast cancer cells. Biochem. Pharmacol., 2002, 63, 1085-1097.
[16]
Howells, L.M.; Gallacher-Horley, B.; Houghton, C.E.; Manson, M.M.; Hudson, E.A. Indole-3-carbinol inhibits protein kinase B/Akt and induces apoptosis in the human breast tumor cell line MDA MB468 but not in the nontumorigenic HBL100 line. Mol. Cancer Ther., 2002, 1, 1161-1172.
[17]
Katdare, M.; Osborne, M.P.; Telang, N.T. Inhibition of aberrant proliferation and induction of apoptosis in pre-neoplastic human mammary epithelial cells by natural phytochemicals. Oncol. Rep., 1998, 5, 311-315.
[18]
Rahman, K.M.; Aranha, O.; Sarkar, F.H. Indole-3-carbinol (I3C) induces apoptosis in tumorigenic but not in nontumorigenic breast epithelial cells. Nutr. Cancer, 2003, 45, 101-112.
[19]
Frydoonfar, H.R.; McGrath, D.R.; Spigelman, A.D. Inhibition of proliferation of a colon cancer cell line by indole-3-carbinol. Colorectal Dis., 2002, 4, 205-207.
[20]
Hudson, E.A.; Howells, L.M.; Gallacher-Horley, B.; Fox, L.H.; Gescher, A.; Manson, M.M. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line. BMC Cancer, 2003, 3, 2.
[21]
Frydoonfar, H.R.; McGrath, D.R.; Spigelman, A.D. The effect of indole-3-carbinol and sulforaphane on a prostate cancer cell line. ANZ J. Surg., 2003, 73, 154-156.
[22]
Nachshon-Kedmi, M.; Yannai, S.; Haj, A.; Fares, F.A. Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem. Toxicol., 2003, 41, 745-752.
[23]
Leong, H.; Firestone, G.L.; Bjeldanes, L.F. Cytostatic effects of 3,3′-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expression. Carcinogenesis, 2001, 22, 1809-1817.
[24]
Aggarwal, B.B.; Ichikawa, H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle, 2005, 4, 1201-1215.
[25]
Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol., 2006, 71, 1397-1421.
[26]
Kim, Y.S.; Milner, J.A. Targets for indole-3-carbinol in cancer prevention. J. Nutr. Biochem., 2005, 16, 65-73.
[27]
Rogan, E.G. The natural chemopreventive compound indole-3-carbinol: State of the science. In Vivo, 2006, 20, 221-228.
[28]
Sarkar, F.H.; Li, Y. Indole-3-carbinol and prostate cancer. J. Nutr., 2004, 134, 3493s-3498s.
[29]
Bradlow, H.L.; Michnovicz, J.; Telang, N.T.; Osborne, M.P. Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis, 1991, 12, 1571-1574.
[30]
Jin, L.; Qi, M.; Chen, D.Z.; Anderson, A.; Yang, G.Y.; Arbeit, J.M.; Auborn, K.J. Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res., 1999, 59, 3991-3997.
[31]
Yu, Z.; Mahadevan, B.; Lohr, C.V.; Fischer, K.A.; Louderback, M.A.; Krueger, S.K.; Pereira, C.B.; Albershardt, D.J.; Baird, W.M.; Bailey, G.S.; Williams, D.E. Indole-3-carbinol in the maternal diet provides chemoprotection for the fetus against transplacental carcinogenesis by the polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene. Carcinogenesis, 2006, 27, 2116-2123.
[32]
Lee, M.M.; Gomez, S.L.; Chang, J.S.; Wey, M.; Wang, R.T.; Hsing, A.W. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol. Biomarkers Prev., 2003, 12, 665-668.
[33]
Naik, R.; Nixon, S.; Lopes, A.; Godfrey, K.; Hatem, M.H.; Monaghan, J.M. A randomized phase II trial of indole-3-carbinol in the treatment of vulvar intraepithelial neoplasia. Int. J. Gynecol. Cancer, 2006, 16, 786-790.
[34]
Bell, M.C.; Crowley-Nowick, P.; Bradlow, H.L.; Sepkovic, D.W.; Schmidt-Grimminger, D.; Howell, P.; Mayeaux, E.J.; Tucker, A.; Turbat-Herrera, E.A.; Mathis, J.M. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol. Oncol., 2000, 78, 123-129.
[35]
Rosen, C.A.; Bryson, P.C. Indole-3-carbinol for recurrent respiratory papillomatosis: Long-term results. J. Voice, 2004, 18, 248-253.
[36]
Reed, G.A.; Peterson, K.S.; Smith, H.J.; Gray, J.C.; Sullivan, D.K.; Mayo, M.S.; Crowell, J.A.; Hurwitz, A. A phase I study of indole-3-carbinol in women: Tolerability and effects. Cancer Epidemiol. Biomarkers Prev., 2005, 14, 1953-1960.
[37]
Michaud, D.S.; Spiegelman, D.; Clinton, S.K.; Rimm, E.B.; Willett, W.C.; Giovannucci, E.L. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J. Natl. Cancer Inst., 1999, 91, 605-613.
[38]
Johnson, I.S.; Armstrong, J.G.; Gorman, M.; Burnett, J.P., Jr The vinca alkaloids: A new class of oncolytic agents. Cancer Res., 1963, 23, 1390-1427.
[39]
Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchya, H.; Takahashi, Y.; Masuma, R. A new alkaloid AM-2282 OF Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1977, 30, 275-282.
[40]
Barrios, C.H.; Liu, M.C.; Lee, S.C.; Vanlemmens, L.; Ferrero, J.M.; Tabei, T.; Pivot, X.; Iwata, H.; Aogi, K.; Lugo-Quintana, R. Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res. Treat., 2010, 121, 121-131.
[41]
Mina, L.; Krop, I.; Zon, R.T.; Isakoff, S.J.; Schneider, C.J.; Yu, M.; Johnson, C.; Vaughn, L.G.; Wang, Y.; Hristova-Kazmierski, M. A phase II study of oral enzastaurin in patients with metastatic breast cancer previously treated with an anthracycline and a taxane containing regimen. Invest. New Drugs, 2009, 27, 565-570.
[42]
Ahmad, A.; Biersack, B.; Li, Y.; Kong, D.; Bao, B.; Schobert, R.; Padhye, S.B.; Sarkar, F.H. Targeted regulation of PI3K/Akt/m TOR/NF-kappaB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anticancer. Agents Med. Chem., 2013, 13, 1002-1013.
[43]
Reed, G.A.; Arneson, D.W.; Putnam, W.C.; Smith, H.J.; Gray, J.C.; Sullivan, D.K.; Mayo, M.S.; Crowell, J.A.; Hurwitz, A. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3′-diindolylmethane. Cancer Epidemiol. Biomarkers Prev., 2006, 15, 2477-2481.
[44]
Grose, K.R.; Bjeldanes, L.F. Oligomerization of indole-3-carbinol in aqueous acid. Chem. Res. Toxicol., 1992, 5, 188-193.
[45]
Anderton, M.J.; Jukes, R.; Lamb, J.H.; Manson, M.M.; Gescher, A.; Steward, W.P.; Williams, M.L. Liquid chromatographic assay for the simultaneous determination of indole-3-carbinol and its acid condensation products in plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 787, 281-291.
[46]
Anderton, M.J.; Manson, M.M.; Verschoyle, R.D.; Gescher, A.; Lamb, J.H.; Farmer, P.B.; Steward, W.P.; Williams, M.L. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin. Cancer Res., 2004, 10, 5233-5241.
[47]
De Kruif, C.A.; Marsman, J.W.; Venekamp, J.C.; Falke, H.E.; Noordhoek, J.; Blaauboer, B.J.; Wortelboer, H.M. Structure elucidation of acid reaction products of indole-3-carbinol: Detection in vivo and enzyme induction in vitro. Chem. Biol. Interact., 1991, 80, 303-315.
[48]
Stresser, D.M.; Williams, D.E.; Griffin, D.A.; Bailey, G.S. Mechanisms of tumor modulation by indole-3-carbinol. Disposition and excretion in male Fischer 344 rats. Drug Metab. Dispos., 1995, 23, 965-975.
[49]
Abdelrahim, M.; Newman, K.; Vanderlaag, K.; Samudio, I.; Safe, S. 3,3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis, 2006, 27, 717-728.
[50]
Rahman, K.W.; Li, Y.; Wang, Z.; Sarkar, S.H.; Sarkar, F.H. Gene expression profiling revealed survivin as a target of 3,3′-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res., 2006, 66, 4952-4960.
[51]
Herrmann, S.; Seidelin, M.; Bisgaard, H.C.; Vang, O. Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter. Carcinogenesis, 2002, 23, 1861-1868.
[52]
Liu, H.; Wormke, M.; Safe, S.H.; Bjeldanes, L.F. Indolo[3,2-b]carbazole: a dietary-derived factor that exhibits both antiestrogenic and estrogenic activity. J. Natl. Cancer Inst., 1994, 86, 1758-1765.
[53]
Weng, J.R.; Omar, H.A.; Kulp, S.K.; Chen, C.S. Pharmacological exploitation of indole-3-carbinol to develop potent antitumor agents. Mini Rev. Med. Chem., 2010, 10, 398-404.
[54]
Brandi, G.; Paiardini, M.; Cervasi, B.; Fiorucci, C.; Filippone, P.; De Marco, C.; Zaffaroni, N.; Magnani, M. A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res., 2003, 63, 4028-4036.
[55]
Moore, R.W.; Fritz, W.A.; Schneider, A.J.; Lin, T.M.; Branam, A.M.; Safe, S.; Peterson, R.E. 2,3,7,8-Tetrachlorodibenzo-p-dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice. Toxicol. Appl. Pharmacol., 2016, 305, 242-249.
[56]
Poindexter, K.M.; Matthew, S.; Aronchik, I.; Firestone, G.L. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells. Cell Biol. Toxicol., 2016, 32, 103-119.
[57]
Lawrie, T.A.; Nordin, A.; Chakrabarti, M.; Bryant, A.; Kaushik, S.; Pepas, L. Medical and surgical interventions for the treatment of usual-type vulval intraepithelial neoplasia. Cochrane Database Syst. Rev., 2016, 1, Cd011837.
[58]
Adwas, A.A.; Elkhoely, A.A.; Kabel, A.M.; Abdel-Rahman, M.N.; Eissa, A.A. Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J. Infect. Chemother., 2016, 22, 36-43.
[59]
Chinni, S.R.; Sarkar, F.H. Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin. Cancer Res., 2002, 8, 1228-1236.
[60]
Rahman, K.W.; Sarkar, F.H. Inhibition of nuclear translocation of nuclear factor-kappaB contributes to 3,3′-diindolylmethane-induced apoptosis in breast cancer cells. Cancer Res., 2005, 65, 364-371.
[61]
Bellacosa, A.; Kumar, C.C.; Di Cristofano, A.; Testa, J.R. Activation of AKT kinases in cancer: Implications for therapeutic targeting. Adv. Cancer Res., 2005, 94, 29-86.
[62]
Yoeli-Lerner, M.; Toker, A. Akt/PKB signaling in cancer: A function in cell motility and invasion. Cell Cycle, 2006, 5, 603-605.
[63]
Aggarwal, B.B. Nuclear factor-kappaB: The enemy within. Cancer Cell, 2004, 6, 203-208.
[64]
Weng, J.R.; Tsai, C.H.; Kulp, S.K.; Wang, D.; Lin, C.H.; Yang, H.C.; Ma, Y.; Sargeant, A.; Chiu, C.F.; Tsai, M.H.; Chen, C.S. A potent indole-3-carbinol derived antitumor agent with pleiotropic effects on multiple signaling pathways in prostate cancer cells. Cancer Res., 2007, 67, 7815-7824.
[65]
Lian, J.P.; Word, B.; Taylor, S.; Hammons, G.J.; Lyn-Cook, B.D. Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: Effects of indole-3-carbinol (I3C) and genistein. Anticancer Res., 2004, 24, 133-137.
[66]
Hwang, J.W.; Jung, J.W.; Lee, Y.S.; Kang, K.S. Indole-3-carbinol prevents H(2)O(2)-induced inhibition of gap junctional intercellular communication by inactivation of PKB/Akt. J. Vet. Med. Sci., 2008, 70, 1057-1063.
[67]
Li, Y.; Chinni, S.R.; Sarkar, F.H. Selective growth regulatory and pro-apoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front. Biosci., 2005, 10, 236-243.
[68]
Staudt, L.M. Oncogenic activation of NF-kappaB. Cold Spring Harb. Perspect, 2010, 2, a000109.
[69]
Garikapaty, V.P.; Ashok, B.T.; Tadi, K.; Mittelman, A.; Tiwari, R.K. Synthetic dimer of indole-3-carbinol: Second generation diet derived anti-cancer agent in hormone sensitive prostate cancer. Prostate, 2006, 66, 453-462.
[70]
Garikapaty, V.P.; Ashok, B.T.; Tadi, K.; Mittelman, A.; Tiwari, R.K. 3,3′-Diindolylmethane downregulates pro-survival pathway in hormone independent prostate cancer. Biochem. Biophys. Res. Commun., 2006, 340, 718-725.
[71]
Falasca, M.; Selvaggi, F.; Buus, R.; Sulpizio, S.; Edling, C.E. Targeting phosphoinositide 3-kinase pathways in pancreatic cancer--from molecular signalling to clinical trials. Anticancer. Agents Med. Chem., 2011, 11, 455-463.
[72]
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441, 431-436.
[73]
Luqman, S.; Pezzuto, J.M. NFkappaB: A promising target for natural products in cancer chemoprevention. Phytother. Res., 2010, 24, 949-963.
[74]
Karin, M.; Cao, Y.; Greten, F.R.; Li, Z.W. NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer, 2002, 2, 301-310.
[75]
Li, Y.; Li, X.; Sarkar, F.H. Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J. Nutr., 2003, 133, 1011-1019.
[76]
Carter, T.H.; Liu, K.; Ralph, W., Jr; Chen, D.; Qi, M.; Fan, S.; Yuan, F.; Rosen, E.M.; Auborn, K.J. Diindolylmethane alters gene expression in human keratinocytes in vitro. J. Nutr., 2002, 132, 3314-3324.
[77]
Sun, S.; Han, J.; Ralph, W.M., Jr; Chandrasekaran, A.; Liu, K.; Auborn, K.J.; Carter, T.H. Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones, 2004, 9, 76-87.
[78]
Meng, Q.; Qi, M.; Chen, D.Z.; Yuan, R.; Goldberg, I.D.; Rosen, E.M.; Auborn, K.; Fan, S. Suppression of breast cancer invasion and migration by indole-3-carbinol: Associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. J. Mol. Med. (Berl.), 2000, 78, 155-165.
[79]
Chen, Y.H.; Yang, D. Differential effects of vegetable-derived indoles on the induction of quinone reductase in hepatoma cells. J. Nutr. Sci. Vitaminol. (Tokyo), 2002, 48, 477-482.
[80]
Lee, I.J.; Han, F.; Baek, J.; Hisatsune, A.; Kim, K.C. Inhibition of MUC1 expression by indole-3-carbinol. Int. J. Cancer, 2004, 109, 810-816.
[81]
Lee, S.H.; Kim, J.S.; Yamaguchi, K.; Eling, T.E.; Baek, S.J. Indole-3-carbinol and 3,3′-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun., 2005, 328, 63-69.
[82]
Chatterji, U.; Riby, J.E.; Taniguchi, T.; Bjeldanes, E.L.; Bjeldanes, L.F.; Firestone, G.L. Indole-3-carbinol stimulates transcription of the interferon gamma receptor 1 gene and augments interferon responsiveness in human breast cancer cells. Carcinogenesis, 2004, 25, 1119-1128.
[83]
Tutt, A.; Ashworth, A. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol. Med., 2002, 8, 571-576.
[84]
Arora, A.; Seth, K.; Kalra, N.; Shukla, Y. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol. Toxicol. Appl. Pharmacol., 2005, 202, 237-243.
[85]
Arora, A.; Shukla, Y. Modulation of vinca-alkaloid induced P-glycoprotein expression by indole-3-carbinol. Cancer Lett., 2003, 189, 167-173.
[86]
Christensen, J.G.; LeBlanc, G.A. Reversal of multidrug resistance in vivo by dietary administration of the phytochemical indole-3-carbinol. Cancer Res., 1996, 56, 574-581.
[87]
Chinni, S.R.; Li, Y.; Upadhyay, S.; Koppolu, P.K.; Sarkar, F.H. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene, 2001, 20, 2927-2936.
[88]
Matsuzaki, Y.; Koyama, M.; Hitomi, T.; Kawanaka, M.; Sakai, T. Indole-3-carbinol activates the cyclin-dependent kinase inhibitor p15(INK4b) gene. FEBS Lett., 2004, 576, 137-140.
[89]
Takada, Y.; Andreeff, M.; Aggarwal, B.B. Indole-3-carbinol suppresses NF-kappaB and IkappaBalpha kinase activation, causing inhibition of expression of NF-kappaB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood, 2005, 106, 641-649.
[90]
Ge, X.; Fares, F.A.; Yannai, S. Induction of apoptosis in MCF-7 cells by indole-3-carbinol is independent of p53 and bax. Anticancer Res., 1999, 19, 3199-3203.
[91]
Ashok, B.T.; Chen, Y.G.; Liu, X.; Garikapaty, V.P.; Seplowitz, R.; Tschorn, J.; Roy, K.; Mittelman, A.; Tiwari, R.K. Multiple molecular targets of indole-3-carbinol, a chemopreventive anti-estrogen in breast cancer. Eur. J. Cancer Prev., 2002, 11(Suppl. 2), S86-S93.
[92]
Meng, Q.; Yuan, F.; Goldberg, I.D.; Rosen, E.M.; Auborn, K.; Fan, S. Indole-3-carbinol is a negative regulator of estrogen receptor-alpha signaling in human tumor cells. J. Nutr., 2000, 30, 2927-2931.
[93]
Fan, S.; Meng, Q.; Auborn, K.; Carter, T.; Rosen, E.M. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br. J. Cancer, 2006, 94, 407-426.
[94]
Grubbs, C.J.; Steele, V.E.; Casebolt, T.; Juliana, M.M.; Eto, I.; Whitaker, L.M.; Dragnev, K.H.; Kelloff, G.J.; Lubet, R.L. Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res., 1995, 15, 709-716.
[95]
Michnovicz, J.J.; Bradlow, H.L. Induction of estradiol metabolism by dietary indole-3-carbinol in humans. J. Natl. Cancer Inst., 1990, 82, 947-949.
[96]
Jellinck, P.H.; Michnovicz, J.J.; Bradlow, H.L. Influence of indole-3-carbinol on the hepatic microsomal formation of catechol estrogens. Steroids, 1991, 56, 446-450.
[97]
Hsu, J.C.; Zhang, J.; Dev, A.; Wing, A.; Bjeldanes, L.F.; Firestone, G.L. Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis, 2005, 26, 1896-1904.
[98]
Traber, P.G.; Chianale, J.; Florence, R.; Kim, K.; Wojcik, E.; Gumucio, J.J. Expression of cytochrome P450b and P450e genes in small intestinal mucosa of rats following treatment with phenobarbital, polyhalogenated biphenyls, and organochlorine pesticides. J. Biol. Chem., 1988, 263, 9449-9455.
[99]
Chen, I.; Safe, S.; Bjeldanes, L. Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem. Pharmacol., 1996, 51, 1069-1076.
[100]
Li, Y.; Kong, D.; Ahmad, A.; Bao, B.; Sarkar, F.H. Antioxidant function of isoflavone and 3,3′-diindolylmethane: Are they important for cancer prevention and therapy? Antioxid. Redox Signal., 2013, 19, 139-150.
[101]
Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and synthetic analogs. Cancer Lett., 2008, 269, 326-338.
[102]
Mei, S.; Ho, A.D.; Mahlknecht, U. Role of histone deacetylase inhibitors in the treatment of cancer (Review). Int. J. Oncol., 2004, 25, 1509-1519.
[103]
McNaughton, S.A.; Marks, G.C. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br. J. Nutr., 2003, 90, 687-697.
[104]
Myzak, M.C.; Karplus, P.A.; Chung, F.L.; Dashwood, R.H. A novel mechanism of chemoprotection by sulforaphane: Inhibition of histone deacetylase. Cancer Res., 2004, 64, 5767-5774.
[105]
Lea, M.A.; Rasheed, M.; Randolph, V.M.; Khan, F.; Shareef, A.; desBordes, C. Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr. Cancer, 2002, 43, 90-102.
[106]
Myzak, M.C.; Hardin, K.; Wang, R.; Dashwood, R.H.; Ho, E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis, 2006, 27, 811-819.
[107]
Ghoshal, K.; Li, X.; Datta, J.; Bai, S.; Pogribny, I.; Pogribny, M.; Huang, Y.; Young, D.; Jacob, S.T. A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J. Nutr., 2006, 136, 1522-1527.
[108]
Dolinoy, D.C.; Weidman, J.R.; Waterland, R.A.; Jirtle, R.L. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect., 2006, 114, 567-572.
[109]
Kim, Y.H.; Kwon, H.S.; Kim, D.H.; Shin, E.K.; Kang, Y.H.; Park, J.H.; Shin, H.K.; Kim, J.K. 3,3′-diindolylmethane attenuates colonic inflammation and tumorigenesis in mice. Inflamm. Bowel Dis., 2009, 15, 1164-1173.
[110]
Moiseeva, E.P.; Almeida, G.M.; Jones, G.D.; Manson, M.M. Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol. Cancer Ther., 2007, 6, 3071-3079.
[111]
Sarkar, F.H.; Rahman, K.M.; Li, Y. Bax translocation to mitochondria is an important event in inducing apoptotic cell death by indole-3-carbinol (I3C) treatment of breast cancer cells. J. Nutr., 2003, 133, 2434s-2439s.
[112]
Zhang, J.; Hsu, B.A.J.; Kinseth, B.A.M.; Bjeldanes, L.F.; Firestone, G.L. Indole-3-carbinol induces a G1 cell cycle arrest and inhibits prostate-specific antigen production in human LNCaP prostate carcinoma cells. Cancer, 2003, 98, 2511-2520.
[113]
Ali, S.; Banerjee, S.; Ahmad, A.; El-Rayes, B.F.; Philip, P.A.; Sarkar, F.H. Apoptosis-inducing effect of erlotinib is potentiated by 3,3′-diindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. Mol. Cancer Ther., 2008, 7, 1708-1719.
[114]
Ali, S.; Varghese, L.; Pereira, L.; Tulunay-Ugur, O.E.; Kucuk, O.; Carey, T.E.; Wolf, G.T.; Sarkar, F.H. Sensitization of squamous cell carcinoma to cisplatin induced killing by natural agents. Cancer Lett., 2009, 278, 201-209.
[115]
Donald, S.; Verschoyle, R.D.; Greaves, P.; Colombo, T.; Zucchetti, M.; Falcioni, C.; Zaffaroni, M.; D’Incalci, M.; Manson, M.M.; Jimeno, J. Dietary agent indole-3-carbinol protects female rats against the hepatotoxicity of the antitumor drug ET-743 (trabectidin) without compromising efficacy in a rat mammary carcinoma. Int. J. Cancer, 2004, 111, 961-967.
[116]
Singh-Gupta, V.; Banerjee, S.; Yunker, C.K.; Rakowski, J.T.; Joiner, M.C.; Konski, A.A.; Sarkar, F.H.; Hillman, G.G. B-DIM impairs radiation-induced survival pathways independently of androgen receptor expression and augments radiation efficacy in prostate cancer. Cancer Lett., 2012, 318, 86-92.
[117]
Verhoeven, D.T.; Verhagen, H.; Goldbohm, R.A.; van den Brandt, P.A.; van Poppel, G. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem. Biol. Interact., 1997, 103, 79-129.
[118]
Kojima, T.; Tanaka, T.; Mori, H. Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res., 1994, 54, 1446-1449.
[119]
Manson, M.M.; Hudson, E.A.; Ball, H.W.; Barrett, M.C.; Clark, H.L.; Judah, D.J.; Verschoyle, R.D.; Neal, G.E. Chemoprevention of aflatoxin B1-induced carcinogenesis by indole-3-carbinol in rat liver--predicting the outcome using early biomarkers. Carcinogenesis, 1998, 19, 1829-1836.
[120]
Stresser, D.M.; Bailey, G.S.; Williams, D.E. Indole-3-carbinol and beta-naphthoflavone induction of aflatoxin B1 metabolism and cytochromes P-450 associated with bioactivation and detoxication of aflatoxin B1 in the rat. Drug Metab. Dispos., 1994, 22, 383-391.
[121]
Bradfield, C.A.; Bjeldanes, L.F. Effect of dietary indole-3-carbinol on intestinal and hepatic monooxygenase, glutathione S-transferase and epoxide hydrolase activities in the rat. Food Chem. Toxicol., 1984, 22, 977-982.
[122]
Kassie, F.; Anderson, L.B.; Scherber, R.; Yu, N.; Lahti, D.; Upadhyaya, P.; Hecht, S.S. Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res., 2007, 67, 6502-6511.
[123]
Oganesian, A.; Hendricks, J.D.; Pereira, C.B.; Orner, G.A.; Bailey, G.S.; Williams, D.E. Potency of dietary indole-3-carbinol as a promoter of aflatoxin B1-initiated hepatocarcinogenesis: results from a 9000 animal tumor study. Carcinogenesis, 1999, 20, 453-458.
[124]
Doppalapudi, R.S.; Riccio, E.S.; Rausch, L.L.; Shimon, J.A.; Lee, P.S.; Mortelmans, K.E.; Kapetanovic, I.M.; Crowell, J.A.; Mirsalis, J.C. Evaluation of chemopreventive agents for genotoxic activity. Mutat. Res., 2007, 629, 148-160.
[125]
Chang, X.; Tou, J.C.; Hong, C.; Kim, H.A.; Riby, J.E.; Firestone, G.L.; Bjeldanes, L.F. 3,3′-Diindolylmethane inhibits angiogenesis and the growth of transplantable human breast carcinoma in athymic mice. Carcinogenesis, 2005, 26, 771-778.
[126]
Kong, D.; Banerjee, S.; Huang, W.; Li, Y.; Wang, Z.; Kim, H.R.; Sarkar, F.H. Mammalian target of rapamycin repression by 3,3′-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res., 2008, 68, 1927-1934.
[127]
Kong, D.; Li, Y.; Wang, Z.; Banerjee, S.; Sarkar, F.H. Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res., 2007, 67, 3310-3319.
[128]
Nachshon-Kedmi, M.; Fares, F.A.; Yannai, S. Therapeutic activity of 3,3′-diindolylmethane on prostate cancer in an in vivo model. Prostate, 2004, 61, 153-160.
[129]
Sarkar, F.H.; Li, Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat. Rev., 2009, 35, 597-607.
[130]
Reed, G.A.; Sunega, J.M.; Sullivan, D.K.; Gray, J.C.; Mayo, M.S.; Crowell, J.A.; Hurwitz, A. Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3′-diindolylmethane in healthy subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17, 2619-2624.
[131]
Bhuiyan, M.M.; Li, Y.; Banerjee, S.; Ahmed, F.; Wang, Z.; Ali, S.; Sarkar, F.H. Down-regulation of androgen receptor by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Cancer Res., 2006, 66, 10064-10072.
[132]
Li, Y.; Wang, Z.; Kong, D.; Murthy, S.; Dou, Q.P.; Sheng, S.; Reddy, G.P.; Sarkar, F.H. Regulation of FOXO3a/beta-catenin/ GSK-3beta signaling by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J. Biol. Chem., 2007, 282, 21542-21550.
[133]
Heath, E.I.; Heilbrun, L.K.; Li, J.; Vaishampayan, U.; Harper, F.; Pemberton, P.; Sarkar, F.H. A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am. J. Transl. Res., 2010, 2, 402-411.
[134]
Song, J.M.; Qian, X.; Molla, K.; Teferi, F.; Upadhyaya, P. G, O.S.; Luo, X.; Kassie, F. Combinations of indole-3-carbinol and silibinin suppress inflammation-driven mouse lung tumorigenesis by modulating critical cell cycle regulators. Carcinogenesis, 2015, 36, 666-675.
[135]
Li, W.X.; Chen, L.P.; Sun, M.Y.; Li, J.T.; Liu, H.Z.; Zhu, W. 3′3-Diindolylmethane inhibits migration, invasion and metastasis of hepatocellular carcinoma by suppressing FAK signaling. Oncotarget, 2015, 6, 23776-23792.
[136]
Song, J.M.; Kirtane, A.R.; Upadhyaya, P.; Qian, X.; Balbo, S.; Teferi, F.; Panyam, J.; Kassie, F. Intranasal delivery of liposomal indole-3-carbinol improves its pulmonary bioavailability. Int. J. Pharm., 2014, 477, 96-101.
[137]
Lee, S.H.; Min, K.W.; Zhang, X.; Baek, S.J. 3,3′-diindolylmethane induces activating transcription factor 3 (ATF3) via ATF4 in human colorectal cancer cells. J. Nutr. Biochem., 2013, 24, 664-671.
[138]
Suzui, M.; Inamine, M.; Kaneshiro, T.; Morioka, T.; Yoshimi, N.; Suzuki, R.; Kohno, H.; Tanaka, T. Indole-3-carbinol inhibits the growth of human colon carcinoma cells but enhances the tumor multiplicity and volume of azoxymethane-induced rat colon carcinogenesis. Int. J. Oncol., 2005, 27, 1391-1399.
[139]
Pappa, G.; Strathmann, J.; Lowinger, M.; Bartsch, H.; Gerhauser, C. Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis, 2007, 28, 1471-1477.
[140]
Wang, S.Q.; Cheng, L.S.; Liu, Y.; Wang, J.Y.; Jiang, W. Indole-3-Carbinol (I3C) and its Major derivatives: Their pharmacokinetics and important roles in hepatic protection. Curr. Drug Metab., 2016, 17, 401-409.
[141]
Wang, X.; He, H.; Lu, Y.; Ren, W.; Teng, K.Y.; Chiang, C.L.; Yang, Z.; Yu, B.; Hsu, S.; Jacob, S.T. Indole-3-carbinol inhibits tumorigenicity of hepatocellular carcinoma cells via suppression of microRNA-21 and upregulation of phosphatase and tensin homolog. Biochim. Biophys, 2015, 1853, 244-253.
[142]
De Santi, M.; Galluzzi, L.; Lucarini, S.; Paoletti, M.F.; Fraternale, A.; Duranti, A.; De Marco, C.; Fanelli, M.; Zaffaroni, N.; Brandi, G. The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines. Breast Cancer Res., 2011, 13, R33.
[143]
Caruso, J.A.; Campana, R.; Wei, C.; Su, C.H.; Hanks, A.M.; Bornmann, W.G.; Keyomarsi, K. Indole-3-carbinol and its N-alkoxy derivatives preferentially target ERalpha-positive breast cancer cells. Cell Cycle, 2014, 13, 2587-2599.
[144]
Tin, A.S.; Park, A.H.; Sundar, S.N.; Firestone, G.L. Essential role of the cancer stem/progenitor cell marker nucleostemin for indole-3-carbinol anti-proliferative responsiveness in human breast cancer cells. BMC Biol., 2014, 12, 72.
[145]
Cevatemre, B.; Ari, F.; Sarimahmut, M.; Oral, A.Y.; Dere, E.; Kacar, O.; Adiguzel, Z.; Acilan, C.; Ulukaya, E. Combination of fenretinide and indole-3-carbinol results in synergistic cytotoxic activity inducing apoptosis against human breast cancer cells in vitro. Anticancer Drugs, 2013, 24, 577-586.
[146]
Bai, L.Y.; Weng, J.R.; Chiu, C.F.; Wu, C.Y.; Yeh, S.P.; Sargeant, A.M.; Lin, P.H.; Liao, Y.M. OSU-A9, an indole-3-carbinol derivative, induces cytotoxicity in acute myeloid leukemia through reactive oxygen species-mediated apoptosis. Biochem. Pharmacol., 2013, 86, 1430-1440.
[147]
Perez-Chacon, G.; Martinez-Laperche, C.; Rebolleda, N.; Somovilla-Crespo, B.; Munoz-Calleja, C.; Buno, I.; Zapata, J.M. Indole-3-carbinol synergizes with and restores fludarabine sensitivity in chronic lymphocytic leukemia cells irrespective of p53 activity and treatment resistances. Clin. Cancer Res., 2016, 22, 134-145.
[148]
Watson, W.G. 1.; Beaver, M.L.; Williams, E.D.; Dashwood, H.R.; Ho, E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J., 2013, 15, 951-961.
[149]
Kim, E-K.; Kim, Y.S.; Milner, J.A.; Wang, T.T. Indole-3-carbinol and 3′, 3′-diindolylmethane modulate androgen’s effect on CC chemokine ligand 2 and monocyte attraction to prostate cancer cells. Cancer Preven. Res, 2013, 419, 2012.
[150]
Chen, D.; Banerjee, S.; Cui, Q.C.; Kong, D.; Sarkar, F.H.; Dou, Q.P. Activation of AMP-activated protein kinase by 3, 3′-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One, 2012, 7, e47186.
[151]
Beaver, L.M.; Yu, T-W.; Sokolowski, E.I.; Williams, D.E.; Dashwood, R.H.; Ho, E. 3, 3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol. Appl. Pharmacol., 2012, 263, 345-351.