[1]
Fiorina, V.J.; Dubois, R.J.; Brynes, S. Ferrocenyl polyamines as agents for the chemoimmunotherapy of cancer. J. Med. Chem., 1978, 21(4), 393-395.
[2]
Köpf-Maier, P.; Köpf, H.; Neuse, E.W. Ferricenium complexes: A new type of water-soluble anti-tumor agent. J. Cancer Res. Clin. Oncol., 1984, 108, 336-340.
[3]
van Staveren, D.R.; Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev., 2004, 104(12), 5931-5985.
[4]
Accardo, A.; Tesauro, D.; Morelli, G. Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polym. J. (Tokyo, Jpn.), 2013, 45, 481-493.
[5]
Snegur, L.V.; Babin, V.N.; Simenel, A.A.; Nekrasov, Yu.S.; Ostrovskaya, L.A.; Sergeeva, N.S.D. Antitumor activities of ferrocene compounds. Russ. Chem. Bull., 2010, 59(12), 2167-2178.
[6]
Kowalski, K.; Szczupak, Ł.; Saloman, S.; Steverding, D.; Jabłoński, A.; Vrček, V.; Hildebrandt, A.; Lang, H.; Rybarczyk-Pirek, A. Cymantrene, cyrhetrene and ferrocene nucleobase conjugates: synthesis, structure, computational study, electrochemistry and antitrypanosomal activity. ChemPlusChem, 2017, 82(2), 303-314.
[7]
Tabbì, G.; Cassino, C.; Cavigiolio, G.; Colangelo, D.; Ghiglia, A.; Viano, I.; Osella, D. Water stability and cytotoxic activity relationship of a series of ferrocenium derivatives. ESR insights on the radical production during the degradation process. J. Med. Chem., 2002, 45(26), 5786-5796.
[8]
Graf, N.; Lippard, S.J. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv. Drug Deliv. Rev., 2012, 64(11), 993-1004.
[9]
Pérez, W.I.; Soto, Y.; Ortíz, C.; Matta, J.; Meléndez, E. Ferrocenes as potential chemotherapeutic drugs: Synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorg. Med. Chem., 2015, 23(3), 471-479.
[10]
Acevedo-Morantes, C.Y.; Meléndez, E.; Singh, S.P.; Ramírez-Vick, J.E. Cytotoxicity and reactive oxygen species generated by ferrocenium and ferrocene on MCF7 and MCF10A cell lines. J. Cancer Sci. Ther., 2012, 4(9), 271-275.
[11]
Osella, D.; Ferrali, M.; Zanello, P.; Laschi, F.; Fontani, M.; Nervi, C.; Cavigiolio, G. On the mechanism of the antitumor activity of ferrocenium derivatives. Inorg. Chim. Acta, 2000, 306(1), 42-48.
[12]
Liou, G-Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[13]
Zhou, D.; Shao, L.; Spitz, D.R. Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res., 2014, 122, 1-67.
[14]
Saito, S.; Lin, Y.C.; Tsai, M.H.; Lin, C.S.; Murayama, Y.; Sato, R.; Yokoyama, K.K. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells. Kaohsiung J. Med. Sci., 2015, 31(6), 279-286.
[15]
Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M.R.; Mokhir, A. Aminoferrocene-based prodrugs activated by reactive oxygen species. J. Med. Chem., 2012, 55(2), 924-934.
[16]
Acevedo-Morantes, C.Y.; Meléndez, E.; Singh, S.P.; Ramírez-Vick, J.E. Cytotoxicity and reactive oxygen species generated by ferrocenium and ferrocene on MCF7 and MCF10A cell lines. J. Cancer Sci. Ther., 2012, 4(9), 271-275.
[17]
Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem., 2011, 35(10), 1973-1985.
[18]
Corry, A.J.; Goel, A.; Alley, S.R.; Kelly, P.N.; O’Sullivan, D.; Savage, D.; Kenny, P.T.M. N-ortho-Ferrocenyl benzoyl dipeptide esters: Synthesis, structural characterization and in vitro anti-cancer activity of N-ortho-(ferrocenyl)benzoyl-glycine-l-alanine ethyl ester and N-ortho-(ferrocenyl)benzoyl-l-alanine-glycine ethyl ester. J. Organomet. Chem., 2007, 692(6), 1405-1410.
[19]
Goel, A.; Savage, D.; Alley, S.R.; Kelly, P.N.; O’Sullivan, D.; Mueller-Bunz, H.; Kenny, P.T.M. The synthesis and structural characterization of novel N-meta-ferrocenyl benzoyl dipeptide esters: The X-ray crystal structure and in vitro anti-cancer activity of N-meta-ferrocenyl)benzoyl-l-alanine-glycine ethyl ester. J. Organomet. Chem., 2007, 692(6), 1292-1299.
[20]
Mooney, A.; Corry, A.J.; O’Sullivan, D.; Rai, D.K.; Kenny, P.T.M. The synthesis, structural characterization and in vitro anti-cancer activity of novel N-(3-ferrocenyl-2-naphthoyl) dipeptide ethyl esters and novel N-(6-ferrocenyl-2-naphthoyl) dipeptide ethyl esters. J. Organomet. Chem., 2009, 694(6), 886-894.
[21]
Mooney, A.; Corry, A.J.; Ruairc, C.N.; Mahgoub, T.; O’Sullivan, D.; O’Donovan, N.; Crown, J.; Varughese, S.; Draper, S.M.; Rai, D.K.; Kenny, P.T.M. Synthesis, characterisation and biological evaluation of N-(ferrocenyl)naphthoyl amino acid esters as anticancer agents. Dalton Trans., 2010, 39, 8228-8239.
[22]
Meunier, P.; Ouattara, I.; Gautheron, B.; Tirouflet, J.; Camboli, D.; Besançon, J. Synthèe, caractérisation et propriétés cytotoxiques des premiers ‘métallocénonucléosides’. Eur. J. Med. Chem., 1991, 26(3), 351-362.
[23]
Simenel, A.A.; Morozova, E.A.; Snegur, L.V.; Zykova, S.I.; Kachala, V.V.; Ostrovskaya, L.A.; Bluchterova, N.V.; Fomina, M.M. Simple route to ferrocenylalkyl nucleobases. Antitumor activity in vivo. Appl. Organomet. Chem., 2009, 23(6), 219-224.
[24]
Simenel, A.A.; Dokuchaeva, G.A.; Snegur, L.V.; Rodionov, A.N.; Ilyin, M.M.; Zykova, S.I.; Ostrovskaya, L.A.; Bluchterova, N.V.; Fomina, M.M.; Rikova, V.A. Ferrocene‐modified thiopyrimidines: synthesis, enantiomeric resolution, antitumor activity. Appl. Organomet. Chem., 2011, 25(70), 70-75.
[25]
Top, S.; Thibaudeau, C.; Vessières, A.; Brulé, E.; Le Bideau, F.; Joerger, J-M.; Plamont, M-A.; Samreth, S.; Edgar, A.; Marrot, J.R.M.; Herson, P.; Jaouen, G. Synthesis and structure activity relationship of organometallic steroidal androgen derivatives. Organometallics, 2009, 28(5), 1414-1424.
[26]
Manosroi, J.; Rueanto, K.; Boonpisuttinant, K.; Manosroi, W.; Biot, C.; Akazawa, H.; Akihisa, T.; Issarangporn, W.; Manosroi, A. Novel frrocenic steroidal drug derivatives and their bioactivities. J. Med. Chem., 2010, 53(10), 3937-3943.
[27]
Knauer, S.; Biersack, B.; Zoldakova, M.; Effenberger, K.; Milius, W.; Schobert, R. Melanoma-specific ferrocene esters of the fungal cytotoxin illudin M. Anti-Cancer Drugs, 2009, 20(8), 676-681.
[28]
Long, B.; Liang, S.; Xin, D.; Yang, Y.; Xiang, J. Synthesis, characterization and in vitro antiproliferative activities of new 13-cis-retinoyl ferrocene derivatives. Eur. J. Med. Chem., 2009, 44(6), 2572-2576.
[29]
Ong, C-W.; Jeng, J-Y.; Juang, S-S.; Chen, C-F. A ferrocene-intercalator conjugate with a potent cytotoxicity. Bioorg. Med. Chem. Lett., 1992, 2(9), 929-932.
[30]
(a)Kowalski, K.; Koceva-Chyła, A.; Pieniążek, A.; Bernasińska, J.; Skiba, J.; Rybarczyk-Pirek, A.J.; Jóźwiak, Z. The synthesis, structure, electrochemistry and in vitro anticancer activity studies of ferrocenyl-thymine conjugates. J. Organomet. Chem., 2012, 700, 58-68.
(b)Skiba, J.; Karpowicz, R.; Szabó, I.; Therrien, B.; Kowalski, K. Synthesis and anticancer activity studies of ferrocenyl-thymine-3,6-dihydro-2H-thiopyranes – A new class of metallocene-nucleobase derivatives. J. Organomet. Chem., 2015, 794, 216-222.
[31]
Tan, Q.; Zhang, Z.; Hui, J.; Zhao, Y.; Zhu, L. Synthesis and anticancer activities of thieno[3,2-d]pyrimidines as novel HDAC inhibitors. Bioorg. Med. Chem., 2014, 22(1), 358-365.
[32]
Amr, A.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, A.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488.
[33]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Arafa, R.K.; El-Hossary, E.M. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur. J. Med. Chem., 2010, 45(9), 3677-3684.
[34]
Skiba, J.; Kowalski, K.; Prochnicka, A.; Ott, I.; Solecka, J.; Rajnisz, A.; Therrien, B. Metallocene-uracil conjugates: Synthesis and biological evaluation of novel mono-, di- and tri-nuclear systems. J. Organomet. Chem., 2015, 782, 52-61.
[35]
Kowalski, K.; Koceva-Chyła, A.; Pieniążek, K.; Bernasińska, J.; Skiba, J.; Rybarczyk-Pirek, A.J.; Jóźwiak, Z. The synthesis, structure, electrochemistry and in vitro anticancer activity studies of ferrocenyl-thymine conjugates. J. Organomet. Chem., 2009, 694, 1041-1048.
[36]
Simenel, A.A.; Morozova, E.A.; Snegur, L.V.; Zykova, S.I.; Kachala, V.V.; Ostrovskaya, L.A.; Bluchterova, N.V.; Fomina, M.M. Simple route to ferrocenyl alkyl nucleobases. Antitumor activity in vivo. Appl. Organomet. Chem., 2009, 23, 219-224.
[37]
Efremova, A.S.; Shram, S.I.; Drenichev, M.S.; Posypanova, G.A.; Myasoedov, N.F.; Mihaylov, S.N. The selective toxic effect of dialdehyde derivatives of the pyrimidine nucleosides on human tumor cells. Biochem. Moscow Suppl. Ser. B, 2014, 8, 318-322.
[38]
Guo, Y.; Wang, S-Q.; Ding, Z-Q.; Zhou, J.; Ruan, B-F. Synthesis, characterization and antitumor activity of novel ferrocene bisamide derivatives containing pyrimidine-moiety. J. Organomet. Chem., 2017, 851, 150-159.
[39]
Sonn, A.; Litten, W. Über den γ-Phenylacetessigester. Chem. Ber., 1933, 66(10), 1512-1520.
[40]
Anderson, G.W.; Halverstadt, I.F.; Miller, W.H.; Roblin, Jr , R.O. Studies in hemotherapy. X. Antithyroid compounds. Synthesis of 5- and 6-substituted 2-thiouracils from β-Oxoesters and Thiourea. J. Am. Chem. Soc., 1945, 67(12), 2197-2200.
[41]
Clark, J.; Munawar, Z. Heterocyclic Studies. Part XIX. Some 6-(Substituted pheny1)-uracil and -thiouracil Derivatives. J. Chem. Soc. C, 1971, 1945-1948.
[42]
Ping, L.; Yu, Y-H.; Chen, Z-J.; Hou, G-F.; Chen, Y-M.; Maa, D-S.; Gao, J-S.; Gong, X-F. Syntheses, structures, catalytic and antitumor activities of a series of pyrimidine derivatives coordination complexes. Synth. Met., 2015, 203, 164-173.
[43]
Galow, T.H.; Ilhan, F.; Cooke, G.; Rotello, V.M. Recognition and Encapsulation of an Electroactive Guest within a Dynamically Folded Polymer. J. Am. Chem. Soc., 2000, 122(15), 3595-3598.
[44]
Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account., 2008, 120(1-3), 215-241.
[45]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Son-nenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Nor-mand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Re-ga, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2009.
[46]
Feller, D. The role of databases in support of computational chemistry calculations. J. Comp. Chem., 1996, 17(13), 1571-1586.
[47]
Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model., 2007, 47(3), 1045-1052.
[48]
Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys., 2010, 133(13), 134105-134111.
[49]
McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys., 1980, 72, 5639.
[50]
Bär, R.; Heinis, T.; Nager, C.; Jungen, M. Photoionization of ferrocene. Chem. Phys. Lett., 1982, 91(6), 440-442.
[51]
Mather, J.P.; Roberts, P.E. Introduction to cell and tissue culture. Theory and technique; Plenum Press: New York, 1998.