Review Article

开发抗利什曼病和抗锥虫病药物的先进计算机方法

卷 27, 期 5, 2020

页: [697 - 718] 页: 22

弟呕挨: 10.2174/0929867325666181031093702

价格: $65

摘要

利什曼病和锥虫病主要发生在不发达国家,造成了数百万例死亡和残疾调整生命年。有限的治疗选择,化学治疗药物的高毒性以及与这些疾病相关的耐药性的出现要求紧急开发用于治疗这些可怕疾病的新型治疗剂。在过去的几十年中,已经成功地实施了各种计算机方法,以支持漫长而昂贵的药物发现过程。在当前的审查中,我们讨论了有关计算机分析的最新进展,这些分析涉及抗疟疾和抗锥虫病的铅识别,铅修饰和目标识别。我们描述了一些重要的计算机方法的最新应用,例如2D-QSAR,3D-QSAR,药效团作图,分子对接等,目的是了解这些技术在设计新型治疗性抗寄生虫药中的用途。代理商。这篇综述着重于:(a)先进的计算药物设计方案; (b)多种方法-例如:使用机器学习工具,软件解决方案和网络平台; (c)最近五年的最新申请和进展; (d)计算机模拟预测的实验验证; (e)虚拟筛选工具; (f)选择这些计算机方法的理由或理由。

关键词: 利什曼病,锥虫病,药物设计,2D // 3D定量构效关系QSAR,机器学习工具,Web平台,虚拟筛选。

[1]
World Health Organization (WHO). Investing to Overcome the Global Impact of Neglected Tropical Diseases: Third WHO Report on Neglected Diseases, 2015.
[2]
Mackey, T.K.; Liang, B.A.; Cuomo, R.; Hafen, R.; Brouwer, K.C.; Lee, D.E. Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin. Microbiol. Rev., 2014, 27(4), 949-979.
[http://dx.doi.org/10.1128/CMR.00045-14] [PMID: 25278579]
[3]
Feasey, N.; Wansbrough-Jones, M.; Mabey, D.C.; Solomon, A.W. Neglected tropical diseases. Br. Med. Bull., 2010, 93, 179-200.
[http://dx.doi.org/10.1093/bmb/ldp046] [PMID: 20007668]
[4]
World Health Organization. Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. World Health Organ. Tech. Rep. Ser., 2012, v-xii(975), 1-100.
[5]
Bern, C. Chagas disease. N. Engl. J. Med., 2015, 373(5), 456-466.
[http://dx.doi.org/10.1056/NEJMra1410150] [PMID: 26222561]
[6]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[7]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; Team, W.H.O.L.C. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5) e35671
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[8]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[9]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; Gilbert, I.H. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol., 2017, 15(4), 217-231.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[10]
Castillo-Garit, J.A.; Abad, C.; Rodriguez-Borges, J.E. Mar-rero-Ponce, Y.; Torrens, F. A review of QSAR studies to discover new drug-like compounds actives against leishman-iasis and trypanosomiasis. Curr. Top. Med. Chem., 2012, 12(8), 852-865.
[http://dx.doi.org/10.2174/156802612800166756] [PMID: 22352913]
[11]
Lavine, B.K. Chemometrics and Chemoinformatics; American Chemical Society, 2005.
[http://dx.doi.org/10.1021/bk-2005-0894]
[12]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14, 177-184.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[13]
Kubinyi, H. Combinatorial and computational approaches in structure-based drug design. Curr. Opin. Drug Discov. Devel., 1998, 1(1), 16-27.
[PMID: 19649785]
[14]
Ortiz, A.R.; Gomez-Puertas, P.; Leo-Macias, A.; Lopez-Romero, P.; Lopez-Viñas, E.; Morreale, A.; Murcia, M.; Wang, K. Computational approaches to model ligand selectivity in drug design. Curr. Top. Med. Chem., 2006, 6(1), 41-55.
[http://dx.doi.org/10.2174/156802606775193338] [PMID: 16454757]
[15]
Ringe, D. Structure-aided drug design: crystallography and computational approaches. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 1995, 36(6 Suppl), 28S-30S.
[PMID: 7769464]
[16]
Wilson, G.L.; Lill, M.A. Integrating structure-based and ligand-based approaches for computational drug design. Future Med. Chem., 2011, 3(6), 735-750.
[http://dx.doi.org/10.4155/fmc.11.18] [PMID: 21554079]
[17]
OECD Environment, Health and Safety Publications Series on Testing and Assessment.. No. 69. Guidance document on the validation of (quantitative) structure-activity relationship (Q) SAR models 2017.
[18]
Lewis, R.A.; Wood, D. Modern 2D QSAR for drug discovery. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2014, 4(6), 505-522.
[http://dx.doi.org/10.1002/wcms.1187]
[19]
Roy, K. Kar, S.; Das; R.N. In Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, 2015.
[http://dx.doi.org/10.1016/B978-0-12-801505-6.00006-5]
[20]
Roy, K.; Kar, S.; Das, R.N. In Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment; , 2015.
[http://dx.doi.org/10.1016/B978-0-12-801505-6.00009-0]
[21]
Speck-Planche, A.; Cordeiro, M.N. Multitasking models for quantitative structure-biological effect relationships: current status and future perspectives to speed up drug discovery. Expert Opin. Drug Discov., 2015, 10(3), 245-256.
[http://dx.doi.org/10.1517/17460441.2015.1006195] [PMID: 25613725]
[22]
Davidson, R.N. In. Infect. Dis., 2017.
[23]
Iman, M.; Davood, A. QSAR and QSTR study of pyrimidine derivatives to improve their therapeutic index as antileishmanial agents. Med. Chem. Res., 2013, 22(10), 5029-5035.
[http://dx.doi.org/10.1007/s00044-013-0477-8]
[24]
Pinto, E.G.; Santos, I.O.; Schmidt, T.J.; Borborema, S.E.; Ferreira, V.F.; Rocha, D.R.; Tempone, A.G. Potential of 2-hydroxy-3-phenylsulfanylmethyl- 1,4 -naphthoquinones against Leishmania (L.) infantum: biological activity and structure-activity relationships. PLoS One, 2014, 9(8) e105127
[http://dx.doi.org/10.1371/journal.pone.0105127] [PMID: 25171058]
[25]
Alencar Filho, E.B.; Weber, K.C.; Vasconcellos, M.L.A.A. Selection of 2D/3D molecular descriptors and QSAR modeling of aromatic Morita–Baylis–Hillman adducts with leishmanicidal activities. Med. Chem. Res., 2014, 23(12), 5328-5335.
[http://dx.doi.org/10.1007/s00044-014-1077-y]
[26]
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105(8), 2999-3093.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[27]
Baldim, J.L.; de Alcantara, B.G.V.; Domingos, O.S.; Soares, M.G.; Caldas, I.S.; Novaes, R.D.; Oliveira, T.B.; Lago, J.H.G.; Chagas-Paula, D.A. The correlation between chemicals structures and antioxidant, prooxidant, and antitrypanosomatid properties of flavonoids.Oxidative medicine and cellular longevity. Oxid. Med. Cell. Longev., 2017, 2017(4), 1-12.
[http://dx.doi.org/10.1155/2017/3789856] [PMID: 28751930]
[28]
Yap, C.W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[29]
Lozano, N.B.; Oliveira, R.F.; Weber, K.C.; Honorio, K.M.; Guido, R.V.; Andricopulo, A.D.; Da Silva, A.B. Identification of electronic and structural descriptors of adenosine analogues related to inhibition of leishmanial glyceraldehyde-3-phosphate dehydrogenase. Molecules, 2013, 18(5), 5032-5050.
[http://dx.doi.org/10.3390/molecules18055032] [PMID: 23629757]
[30]
Heritage, T.W. Lowis, D.R; Rational Drug Design, 1999.
[http://dx.doi.org/10.1021/bk-1999-0719.ch014]
[31]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[http://dx.doi.org/10.1038/nm.2471] [PMID: 21989013]
[32]
Herrera Acevedo, C.; Scotti, L.; Feitosa Alves, M.; Formiga Melo Diniz, M.F.; Scotti, M.T. Computer-aided drug design using sesquiterpene lactones as sources of new structures with potential activity against infectious neglected diseases. Molecules, 2017, 22(1) E79
[http://dx.doi.org/10.3390/molecules22010079] [PMID: 28054952]
[33]
Adhikari, N.; Halder, A.K.; Mondal, C.; Jha, T. Ligand based validated comparative chemometric modeling and pharmacophore mapping of aurone derivatives as antimalarial agents. Curr. Comput. Aided Drug Des., 2013, 9(3), 417-432.
[http://dx.doi.org/10.2174/15734099113099990014] [PMID: 24010937]
[34]
Hawkins, D.M.; Basak, S.C.; Mills, D. Assessing model fit by cross-validation. J. Chem. Inf. Comput. Sci., 2003, 43(2), 579-586.
[http://dx.doi.org/10.1021/ci025626i] [PMID: 12653524]
[35]
Rodrigues-Santos, C.E.; Leon, L.L.; Bortoluzzi, A.J.; Canto-Cavalheiro, M.M.; Machado, G.C.; Echevarria, A. Synthesis, antileishmanial activity and structure-activity relationship of 1-N-X-phenyl-3-N′-Y-phenyl-benzamidines. Eur. J. Med. Chem., 2013, 67, 166-174.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.040] [PMID: 23851118]
[36]
Sosa, A.M.; Amaya, S.; Salamanca Capusiri, E.; Gilabert, M.; Bardón, A.; Giménez, A.; Vera, N.R.; Borkosky, S.A. Active sesquiterpene lactones against Leishmania amazonensis and Leishmania braziliensis. Nat. Prod. Res., 2016, 30(22), 2611-2615.
[http://dx.doi.org/10.1080/14786419.2015.1126260] [PMID: 26755152]
[37]
de Melos, J.L.; Torres-Santos, E.C. Faiões, Vdos.S.; Del Cistia, Cde.N.; Sant’Anna, C.M.; Rodrigues-Santos, C.E.; Echevarria, A. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: synthesis and antileishmanial effects against Leishmania amazonensis. Eur. J. Med. Chem., 2015, 103, 409-417.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.009] [PMID: 26375353]
[38]
Iman, M.; Davood, A. QSAR and QSTR study of selenocyanate derivatives to improve their therapeutic index as anti-leishmanial agents. Med. Chem. Res., 2014, 23(2), 818-826.
[http://dx.doi.org/10.1007/s00044-013-0610-8]
[39]
Goyal, S.; Dhanjal, J.K.; Tyagi, C.; Goyal, M.; Grover, A. Novel fragment-based QSAR modeling and combinatorial design of pyrazole-derived CRK3 inhibitors as potent antileishmanials. Chem. Biol. Drug Des., 2014, 84(1), 54-62.
[http://dx.doi.org/10.1111/cbdd.12290] [PMID: 24447365]
[40]
Schmidt, T.J.; Da Costa, F.B.; Lopes, N.P.; Kaiser, M.; Brun, R. In silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob. Agents Chemother., 2014, 58(1), 325-332.
[http://dx.doi.org/10.1128/AAC.01263-13] [PMID: 24165182]
[41]
Rastija, V.; Masand, V.H. QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks. Comb. Chem. High Throughput Screen., 2014, 17(8), 709-717.
[http://dx.doi.org/10.2174/1386207317666140804161605] [PMID: 25092383]
[42]
Masand, V.H.; El-Sayed, N.N.; Mahajan, D.T.; Rastija, V. QSAR analysis for 6-arylpyrazine-2-carboxamides as Trypanosoma brucei inhibitors. SAR QSAR Environ. Res., 2017, 28(2), 165-177.
[http://dx.doi.org/10.1080/1062936X.2017.1292407] [PMID: 28235390]
[43]
Masand, V.H.; Rastija, V. PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemom. Intell. Lab. Syst., 2017, 169, 12-18.
[http://dx.doi.org/10.1016/j.chemolab.2017.08.003]
[44]
Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem., 2014, 35(13), 1036-1044.
[http://dx.doi.org/10.1002/jcc.235706] [PMID: 24599647]
[45]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem., 2013, 34(24), 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[46]
Scotti, M.T.; Scotti, L.; Ishiki, H.M.; Peron, L.M.; de Rezende, L.; do Amaral, A.T. Variable-selection approaches to generate QSAR models for a set of antichagasic semi-carbazones and analogues. Chemom. Intell. Lab. Syst., 2016, 154(Suppl. C), 137-149.
[http://dx.doi.org/10.1016/j.chemolab.2016.03.023]
[47]
Rich, E.; Knight, K. Artificial Intelligence; McGraw-Hill Higher Education, 1990.
[48]
Castillo-Garit, J.A.; del Toro-Cortés, O.; Vega, M.C.; Rolón, M.; Rojas de Arias, A.; Casañola-Martin, G.M.; Escario, J.A.; Gómez-Barrio, A.; Marrero-Ponce, Y.; Torrens, F.; Abad, C. Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening. Eur. J. Med. Chem., 2015, 96, 238-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.063] [PMID: 25884114]
[49]
Guerra, A.; Gonzalez-Naranjo, P.; Campillo, N.E.; Cerecetto, H.; González, M.; Páez, J.A. Artificial neural networks based on CODES descriptors in pharmacology: identification of novel trypanocidal drugs against Chagas disease. Curr. Comput. Aided Drug Des., 2013, 9(1), 130-140.
[http://dx.doi.org/10.2174/1573409911309010012] [PMID: 23286783]
[50]
Scotti, T.M.; Speck-Planche, A.; Fechine Tavares, J.; da Silva, M.S.; Cordeiro, M.N.D.S.; Scotti, L. Virtual screening of alkaloids from Apocynaceae with potential Antitryp-anosomal activity. Curr. Bioinform., 2015, 10(5), 509-519.
[http://dx.doi.org/10.2174/1574893610666151008011042]
[51]
Pauli, I.; Ferreira, L.G.; de Souza, M.L.; Oliva, G.; Ferreira, R.S.; Dessoy, M.A.; Slafer, B.W.; Dias, L.C.; Andricopulo, A.D. Molecular modeling and structure-activity relationships for a series of benzimidazole derivatives as cruzain inhibitors. Future Med. Chem., 2017, 9(7), 641-657.
[http://dx.doi.org/10.4155/fmc-2016-0236] [PMID: 28509592]
[52]
Fernández, M.; Varela, J.; Correia, I.; Birriel, E.; Castiglioni, J.; Moreno, V.; Costa Pessoa, J.; Cerecetto, H.; González, M.; Gambino, D. A new series of heteroleptic oxidovanadium(IV) compounds with phenanthroline-derived co-ligands: selective Trypanosoma cruzi growth inhibitors. Dalton Trans., 2013, 42(33), 11900-11911.
[http://dx.doi.org/10.1039/c3dt50512j] [PMID: 23787783]
[53]
Noguera, G.J.; Fabian, L.E.; Lombardo, E.; Finkielsztein, L. QSAR study and conformational analysis of 4-arylthiazolylhydrazones derived from 1-indanones with anti-Trypanosoma cruzi activity. Eur. J. Pharm. Sci., 2015, 78, 190-197.
[http://dx.doi.org/10.1016/j.ejps.2015.07.014]
[54]
Sun, Y.N.; No, J.H.; Lee, G.Y.; Li, W.; Yang, S.Y.; Yang, G.; Schmidt, T.J.; Kang, J.S.; Kim, Y.H. Phenolic constituents of medicinal plants with activity against Trypanosoma brucei. Molecules, 2016, 21(4), 480.
[http://dx.doi.org/10.3390/molecules21040480] [PMID: 27077842]
[55]
Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[56]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[57]
Klebe, G.; Abraham, U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Aided Mol. Des., 1999, 13(1), 1-10.
[http://dx.doi.org/10.1023/A:1008047919606] [PMID: 10087495]
[58]
Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J. Med. Chem., 2000, 43(17), 3233-3243.
[http://dx.doi.org/10.1021/jm000941m] [PMID: 10966742]
[59]
Semighini, E.P.; Resende, J.A.; de Andrade, P.; Morais, P.A.; Carvalho, I.; Taft, C.A.; Silva, C.H. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes. J. Biomol. Struct. Dyn., 2011, 28(5), 787-796.
[http://dx.doi.org/10.1080/07391102.2011.10508606] [PMID: 21294589]
[60]
de Paula da Silva, C.H.T.; Bernardes, L.S.C.; da Silva, V.B.; Zani, C.L.; Carvalho, I. Novel aryl β-aminocarbonyl derivatives as inhibitors of Trypanosoma cruzi trypanothione reductase: binding mode revised by docking and GRIND2-based 3D-QSAR procedures. J. Biomol. Struct. Dyn., 2012, 29(6), 702-716.
[http://dx.doi.org/10.1080/07391102.2011.672633] [PMID: 22546000]
[61]
Hechinger, M.; Leonhard, K.; Marquardt, W. What is wrong with quantitative structure-property relations models based on three-dimensional descriptors? J. Chem. Inf. Model., 2012, 52(8), 1984-1993.
[http://dx.doi.org/10.1021/ci300246m] [PMID: 22775241]
[62]
Wang, T.; Wu, M.B.; Lin, J.P.; Yang, L.R. Quantitative structure-activity relationship: promising advances in drug discovery platforms. Expert Opin. Drug Discov., 2015, 10(12), 1283-1300.
[http://dx.doi.org/10.1517/17460441.2015.1083006] [PMID: 26358617]
[63]
Ansari, M.Y.; Equbal, A.; Dikhit, M.R.; Mansuri, R.; Rana, S.; Ali, V.; Sahoo, G.C.; Das, P. Establishment of correlation between in-silico and in-vitro test analysis against Leishmania HGPRT to inhibitors. Int. J. Biol. Macromol., 2016, 83, 78-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.051] [PMID: 26616453]
[64]
Glisic, S.; Sencanski, M.; Perovic, V.; Stevanovic, S.; García-Sosa, A.T. Arginase flavonoid anti-leishmanial in silico inhibitors flagged against anti-targets. Molecules, 2016, 21(5) E589
[http://dx.doi.org/10.3390/molecules21050589] [PMID: 27164067]
[65]
Diniz, E.M.L.P. Tomich de Paula da Silva, C.H.; Gómez-Perez, V.; Federico, L.B.; Campos Rosa, J.M. GRIND2-based 3D-QSAR and prediction of activity spectra for symmetrical bis-pyridinium salts with promastigote antileishmanial activity. J. Biomol. Struct. Dyn., 2017, 35(11), 2430-2440.
[http://dx.doi.org/10.1080/07391102.2016.1221364] [PMID: 27495391]
[66]
Ferreira, L.G.; Andricopulo, A.D. Inhibitors of Trypanosoma brucei trypanothione reductase: comparative molecular field analysis modeling and structural basis for selective inhibition. Future Med. Chem., 2013, 5(15), 1753-1762.
[http://dx.doi.org/10.4155/fmc.13.140] [PMID: 24144411]
[67]
Clark, R.D. A ligand’s-eye view of protein binding. J. Comput. Aided Mol. Des., 2008, 22(6-7), 507-521.
[http://dx.doi.org/10.1007/s10822-008-9177-8] [PMID: 18217215]
[68]
Singh, N.; Shah, P.; Dwivedi, H.; Mishra, S.; Tripathi, R.; Sahasrabuddhe, A.A.; Siddiqi, M.I. Integrated machine learning, molecular docking and 3D-QSAR based approach for identification of potential inhibitors of trypanosomal N-myristoyltransferase. Mol. Biosyst., 2016, 12(12), 3711-3723.
[http://dx.doi.org/10.1039/C6MB00574H] [PMID: 27766319]
[69]
Tosco, P.; Balle, T. Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J. Mol. Model., 2011, 17(1), 201-208.
[http://dx.doi.org/10.1007/s00894-010-0684-x] [PMID: 20383726]
[70]
Halder, A.K.; Amin, S.A.; Jha, T.; Gayen, S. Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D QSAR approaches. SAR QSAR Environ. Res., 2017, 28(3), 253-273.
[http://dx.doi.org/10.1080/1062936X.2017.1302991] [PMID: 28322591]
[71]
Vazquez, K.; Espinosa-Bustos, C.; Soto-Delgado, J.; Tapia, R.A.; Varela, J.; Birriel, E.; Segura, R.; Pizarro, J.; Cerecetto, H.; Gonzalez, M.; Paulino, M.; Salas, C.O. New aryloxyquinone derivatives as potential anti-chagasic agents: synthesis, trypanosomicidal activity, electrochemical properties, pharmacophore elucidation and 3D-QSAR analysis. RSC Advances, 2015, 5(80), 65153-65166.
[http://dx.doi.org/10.1039/C5RA10122K]
[72]
Richmond, N.J.; Abrams, C.A.; Wolohan, P.R.; Abrahamian, E.; Willett, P.; Clark, R.D. GALAHAD: 1. pharmacophore identification by hypermolecular alignment of ligands in 3D. J. Comput. Aided Mol. Des., 2006, 20(9), 567-587.
[http://dx.doi.org/10.1007/s10822-006-9082-y] [PMID: 17051338]
[73]
Costa, L.B.; Cardoso, M.V.; de Oliveira Filho, G.B.; de Moraes Gomes, P.A.; Espíndola, J.W.; de Jesus Silva, T.G.; Torres, P.H.; Silva, Junior, F.P.; Martin, J.; de Figueiredo, R.C.; Leite, A.C. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(8), 1608-1618.
[http://dx.doi.org/10.1016/j.bmc.2016.02.027] [PMID: 26964673]
[74]
Jorge, S.D.; Palace-Berl, F.; Mesquita Pasqualoto, K.F.; Ishii, M.; Ferreira, A.K.; Berra, C.M.; Bosch, R.V.; Maria, D.A.; Tavares, L.C. Ligand-based design, synthesis, and experimental evaluation of novel benzofuroxan derivatives as anti-Trypanosoma cruzi agents. Eur. J. Med. Chem., 2013, 64, 200-214.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.053] [PMID: 23644203]
[75]
Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S29-S39.
[http://dx.doi.org/10.1016/S0928-0987(00)00162-7] [PMID: 11033425]
[76]
Yang, S.Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013] [PMID: 20362693]
[77]
Halder, A.K.; Saha, A.; Jha, T. The role of 3D pharmacophore mapping based virtual screening for identification of novel anticancer agents: an overview. Curr. Top. Med. Chem., 2013, 13(9), 1098-1126.
[http://dx.doi.org/10.2174/1568026611313090009] [PMID: 23651485]
[78]
Leite, F.H.A.; Froes, T.Q.; da Silva, S.G.; de Souza, E.I.M.; Vital-Fujii, D.G.; Trossini, G.H.G.; Pita, S.S.D.R.; Castilho, M.S. An integrated approach towards the discovery of novel non-nucleoside Leishmania major pteridine reductase 1 inhibitors. Eur. J. Med. Chem., 2017, 132, 322-332.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.043] [PMID: 28407565]
[79]
Bharate, S.B.; Bharate, J.B.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Mudududdla, R.; Yadav, R.R.; Singh, B.; Sharma, P.R.; Maity, S.; Singh, B.; Khan, I.A.; Vishwakarma, R.A. Discovery of 3,3′-diindolylmethanes as potent antileishmanial agents. Eur. J. Med. Chem., 2013, 63, 435-443.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.024] [PMID: 23517732]
[80]
Tapia, R.A.; Salas, C.O.; Vázquez, K.; Espinosa-Bustos, C.; Soto-Delgado, J.; Varela, J.; Birriel, E.; Cerecetto, H.; González, M.; Paulino, M. Synthesis and biological characterization of new aryloxyindole-4,9-diones as potent trypanosomicidal agents. Bioorg. Med. Chem. Lett., 2014, 24(16), 3919-3922.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.044] [PMID: 25008454]
[81]
Dube, D.; Sharma, S.; Singh, T.P.; Kaur, P. Pharmacophore mapping, in silico screening and molecular docking to identify selective Trypanosoma brucei pteridine reductase inhibitors. Mol. Inform., 2014, 33(2), 124-134.
[http://dx.doi.org/10.1002/minf.201300023] [PMID: 27485569]
[82]
Moreno, M.A.; Alonso, A.; Alcolea, P.J.; Abramov, A.; de Lacoba, M.G.; Abendroth, J.; Zhang, S.; Edwards, T.; Lorimer, D.; Myler, P.J.; Larraga, V. Tyrosine aminotransferase from Leishmania infantum: a new drug target candidate. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(3), 347-354.
[http://dx.doi.org/10.1016/j.ijpddr.2014.06.001] [PMID: 25516846]
[83]
Miller, B.R., III; Roitberg, A.E. Design of e-pharmacophore models using compound fragments for the trans-sialidase of Trypanosoma cruzi: screening for novel inhibitor scaffolds. J. Mol. Graph. Model., 2013, 45, 84-97.
[http://dx.doi.org/10.1016/j.jmgm.2013.08.009] [PMID: 24012872]
[84]
de V C Sinatti, V.; R Baptista, L.P.; Alves-Ferreira, M.; Dardenne, L.; Hermínio Martins da Silva, J.; Guimarães, A.C. In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches. J. Mol. Graph. Model., 2017, 77, 168-180.
[http://dx.doi.org/10.1016/j.jmgm.2017.08.007] [PMID: 28865321]
[85]
Papageorgiou, L.; Megalooikonomou, V.; Vlachakis, D. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents. PeerJ, 2017, 5(3) e3061
[http://dx.doi.org/10.7717/peerj.3061] [PMID: 28265521]
[86]
Agnihotri, P.; Mishra, A.K.; Mishra, S.; Sirohi, V.K.; Sahasrabuddhe, A.A.; Pratap, J.V. Identification of novel inhibitors of Leishmania donovani gamma-glutamylcysteine synthetase using structure-based virtual screening, docking, molecular dynamics simulation, and in vitro studies. J. Chem. Inf. Model., 2017, 57(4), 815-825.
[http://dx.doi.org/10.1021/acs.jcim.6b00642] [PMID: 28322559]
[87]
Mishra, A.K.; Singh, N.; Agnihotri, P.; Mishra, S.; Singh, S.P.; Kolli, B.K.; Chang, K.P.; Sahasrabuddhe, A.A.; Siddiqi, M.I.; Pratap, J.V. Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization. J. Comput. Aided Mol. Des., 2017, 31(6), 547-562.
[http://dx.doi.org/10.1007/s10822-017-0022-9] [PMID: 28551817]
[88]
Spitzer, R.; Jain, A.N. Surflex-dock: docking benchmarks and real-world application. J. Comput. Aided Mol. Des., 2012, 26(6), 687-699.
[http://dx.doi.org/10.1007/s10822-011-9533-y] [PMID: 22569590]
[89]
Parameswaran, S.; Saudagar, P.; Dubey, V.K.; Patra, S. Discovery of novel anti-leishmanial agents targeting LdLip3 lipase. J. Mol. Graph. Model., 2014, 49, 68-79.
[http://dx.doi.org/10.1016/j.jmgm.2014.01.007] [PMID: 24530543]
[90]
Singh, J.; Srivastava, A.; Jha, P.; Sinha, K.K.; Kundu, B. L-Asparaginase as a new molecular target against leishmaniasis: insights into the mechanism of action and structure-based inhibitor design. Mol. Biosyst., 2015, 11(7), 1887-1896.
[http://dx.doi.org/10.1039/C5MB00251F] [PMID: 25893895]
[91]
Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20.
[http://dx.doi.org/10.1186/s13321-015-0069-3] [PMID: 26052348]
[92]
Mansuri, R.; Kumar, A.; Rana, S.; Panthi, B.; Ansari, M.Y.; Das, S.; Dikhit, M.R.; Sahoo, G.C.; Das, P. In vitro evaluation of antileishmanial activity of computationally screened compounds against Ascorbate Peroxidase to combat Amphotericin B drug resistance. Antimicrob. Agents Chemother., 2017, 61(7), e02429-e16.
[http://dx.doi.org/10.1128/AAC.02429-16] [PMID: 28461317]
[93]
Gupta, C.L.; Khan, M.K.; Khan, M.F.; Tiwari, A.K. Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdiscip. Sci., 2013, 5(2), 136-144.
[http://dx.doi.org/10.1007/s12539-013-0164-y] [PMID: 23740395]
[94]
Sodero, A.C.; Dos Santos, A.C.; Mello, J.F.JB. D.E.J.; AM, D.E.S.; Rodrigues, M.I.; SG, D.E.S.; Rodrigues, C.R.; HL, D.E.M.G. Oligopeptidase B and B2: comparative modelling and virtual screening as searching tools for new antileishmanial compounds. Parasitology, 2017, 144(4), 536-545.
[http://dx.doi.org/10.1017/S0031182016002237] [PMID: 28031079]
[95]
Pandey, R.K.; Prajapati, P.; Goyal, S.; Grover, A.; Prajapati, V.K. Molecular modeling and virtual screening approach to discover potential antileishmanial inhibitors against ornithine decarboxylase. Comb. Chem. High Throughput Screen., 2016, 19(10), 813-823.
[http://dx.doi.org/10.2174/1386207319666160907100134] [PMID: 27604958]
[96]
Singh, S.; Vijaya Prabhu, S.; Suryanarayanan, V.; Bhardwaj, R.; Singh, S.K.; Dubey, V.K. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. J. Biomol. Struct. Dyn., 2016, 34(11), 2367-2386.
[http://dx.doi.org/10.1080/07391102.2015.1116411] [PMID: 26551589]
[97]
Da, C.; Kireev, D. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J. Chem. Inf. Model., 2014, 54(9), 2555-2561.
[http://dx.doi.org/10.1021/ci500319f] [PMID: 25116840]
[98]
Jansen, C.; Wang, H.; Kooistra, A.J.; de Graaf, C.; Orrling, K.M.; Tenor, H.; Seebeck, T.; Bailey, D.; de Esch, I.J.; Ke, H.; Leurs, R. Discovery of novel Trypanosoma brucei phosphodiesterase B1 inhibitors by virtual screening against the unliganded TbrPDEB1 crystal structure. J. Med. Chem., 2013, 56(5), 2087-2096.
[http://dx.doi.org/10.1021/jm3017877] [PMID: 23409953]
[99]
Demir, O.; Labaied, M.; Merritt, C.; Stuart, K.; Amaro, R.E. Computer-aided discovery of Trypanosoma brucei RNA-editing terminal uridylyl transferase 2 inhibitors. Chem. Biol. Drug Des., 2014, 84(2), 131-139.
[http://dx.doi.org/10.1111/cbdd.12302] [PMID: 24903413]
[100]
Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data, 2017, 4 170029
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[101]
Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Eur. J. Med. Chem., 2017, 132, 249-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.063] [PMID: 28364659]
[102]
Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6) E1015
[http://dx.doi.org/10.3390/molecules22061015] [PMID: 28629155]
[103]
Nair, P.C.; Miners, J.O. Molecular dynamics simulations: from structure function relationships to drug discovery. In Silico Pharmacol., 2014, 2, 4.
[http://dx.doi.org/10.1186/s40203-014-0004-8] [PMID: 25516823]
[104]
Pandey, R.K.; Kumbhar, B.V.; Sundar, S.; Kunwar, A.; Prajapati, V.K. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. J. Recept. Signal Transduct. Res., 2017, 37(1), 60-70.
[http://dx.doi.org/10.3109/10799893.2016.1171344] [PMID: 27147242]
[105]
Pandey, R.K.; Verma, P.; Sharma, D.; Bhatt, T.K.; Sundar, S.; Prajapati, V.K. High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomed. Pharmacother., 2016, 83, 141-152.
[http://dx.doi.org/10.1016/j.biopha.2016.06.010] [PMID: 27470561]
[106]
Ochoa, R.; Watowich, S.J.; Flórez, A.; Mesa, C.V.; Robledo, S.M.; Muskus, C. Drug search for leishmaniasis: a virtual screening approach by grid computing. J. Comput. Aided Mol. Des., 2016, 30(7), 541-552.
[http://dx.doi.org/10.1007/s10822-016-9921-4] [PMID: 27438595]
[107]
de Almeida, H.; Leroux, V.; Motta, F.N.; Grellier, P.; Maigret, B.; Santana, J.M.; Bastos, I.M. Identification of novel Trypanosoma cruzi prolyl oligopeptidase inhibitors by structure-based virtual screening. J. Comput. Aided Mol. Des., 2016, 30(12), 1165-1174.
[http://dx.doi.org/10.1007/s10822-016-9985-1] [PMID: 27770305]
[108]
Amaro, R.E.; Schnaufer, A.; Interthal, H.; Hol, W.; Stuart, K.D.; McCammon, J.A. Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17278-17283.
[http://dx.doi.org/10.1073/pnas.0805820105] [PMID: 18981420]
[109]
Prokopczyk, I.M.; Ribeiro, J.F.; Sartori, G.R.; Sesti-Costa, R.; Silva, J.S.; Freitas, R.F.; Leitão, A.; Montanari, C.A. Integration of methods in cheminformatics and biocalorimetry for the design of trypanosomatid enzyme inhibitors. Future Med. Chem., 2014, 6(1), 17-33.
[http://dx.doi.org/10.4155/fmc.13.185] [PMID: 24358945]
[110]
Amaro, R.E.; Li, W.W. Emerging methods for ensemble-based virtual screening. Curr. Top. Med. Chem., 2010, 10(1), 3-13.
[http://dx.doi.org/10.2174/156802610790232279] [PMID: 19929833]
[111]
Wathieu, H.; Issa, N.T.; Byers, S.W.; Dakshanamurthy, S. Harnessing polypharmacology with computer-aided drug design and systems biology. Curr. Pharm. Des., 2016, 22(21), 3097-3108.
[http://dx.doi.org/10.2174/1381612822666160224141930] [PMID: 26907947]
[112]
Lin, J.H.; Perryman, A.L.; Schames, J.R.; McCammon, J.A. The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers, 2003, 68(1), 47-62.
[http://dx.doi.org/10.1002/bip.10218] [PMID: 12579579]
[113]
Gomes, M.N.; Alcântara, L.M.; Neves, B.J.; Melo-Filho, C.C.; Freitas-Junior, L.H.; Moraes, C.B.; Ma, R.; Franzblau, S.G.; Muratov, E.; Andrade, C.H. Computer-aided discovery of two novel chalcone-like compounds active and selective against Leishmania infantum. Bioorg. Med. Chem. Lett., 2017, 27(11), 2459-2464.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.010] [PMID: 28434763]
[114]
Scala, A.; Micale, N.; Piperno, A.; Rescifina, A.; Schirmeis-ter, T.; Kesselring, J.; Grassi, G. Targeting of the Leishmania mexicana cysteine protease CPB2.8ΔCTE by decorated fused benzo b thiophene scaffold. RSC Advances, 2016, 6(36), 30628-30635.
[http://dx.doi.org/10.1039/C6RA05557E]
[115]
Prado-Prado, F.J.; González-Díaz, H.; de la Vega, O.M.; Ubeira, F.M.; Chou, K.C. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg. Med. Chem., 2008, 16(11), 5871-5880.
[http://dx.doi.org/10.1016/j.bmc.2008.04.068] [PMID: 18485714]
[116]
Prado-Prado, F.J.; García-Mera, X.; González-Díaz, H. Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorg. Med. Chem., 2010, 18(6), 2225-2231.
[http://dx.doi.org/10.1016/j.bmc.2010.01.068] [PMID: 20185316]
[117]
Ruda, G.F.; Campbell, G.; Alibu, V.P.; Barrett, M.P.; Brenk, R.; Gilbert, I.H. Virtual fragment screening for novel inhibitors of 6-phosphogluconate dehydrogenase. Bioorg. Med. Chem., 2010, 18(14), 5056-5062.
[http://dx.doi.org/10.1016/j.bmc.2010.05.077] [PMID: 20598892]
[118]
Mpamhanga, C.P.; Spinks, D.; Tulloch, L.B.; Shanks, E.J.; Robinson, D.A.; Collie, I.T.; Fairlamb, A.H.; Wyatt, P.G.; Frearson, J.A.; Hunter, W.N.; Gilbert, I.H.; Brenk, R. One scaffold, three binding modes: novel and selective pteridine reductase 1 inhibitors derived from fragment hits discovered by virtual screening. J. Med. Chem., 2009, 52(14), 4454-4465.
[http://dx.doi.org/10.1021/jm900414x] [PMID: 19527033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy