[1]
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science (New York, NY) 1996; 271(5256): 1734-6.
[2]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[3]
Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science (New York, NY) 2013; 342(6165): 1432-3.
[4]
Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med 2014; 65: 185-202.
[5]
Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T-cells in cancer therapy. Clin Transl Immunology 2014; 3(5)e16
[6]
Dine J, Gordon R, Shames Y, Kasler MK, Barton-Burke M. Immune Checkpoint Inhibitors: An Innovation in Immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs 2017; 4(2): 127-35.
[7]
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S3-S23.
[8]
Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016; 39(1): 98-106.
[9]
Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008; 224: 166-82.
[10]
Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, et al. Expression of programmed death-1 ligands by murine T-cells and APC. J Immunol (Baltimore, Md: 1950). 2002; 169(10): 5538-45.
[11]
Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 2012; 4(127)127ra37
[12]
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 2002; 8(8): 793-800.
[13]
Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8(5): 765-72.
[14]
Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 2015; 23: 32-8.
[15]
Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 2017; 24(1): 26-32.
[16]
Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235-71.
[17]
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3(11): 991-8.
[18]
Disis ML. Immune regulation of cancer. J Clin Oncol 2010; 28(29): 4531-8.
[19]
Weinmann H. Cancer immunotherapy: Selected targets and small-molecule modulators. ChemMedChem 2016; 11(5): 450-66.
[20]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677-704.
[21]
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192(7): 1027-34.
[22]
Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012; 24(2): 207-12.
[23]
Sui X, Ma J, Han W, Wang X, Fang Y, Li D, et al. The anti-cancer immune response of anti-PD-1/PD-L1 and the genetic determinants of response to anti-PD-1/PD-L1 antibodies in cancer patients. Oncotarget 2015; 6(23): 19393-404.
[24]
Dong Y, Sun Q, Zhang X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget 2017; 8(2): 2171-86.
[25]
Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 2006; 27(4): 195-201.
[26]
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99(19): 12293-7.
[27]
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005; 23: 515-48.
[28]
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer 2018; 6(1): 8-16.
[29]
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front Oncol 2018; 8: 86-93.
[30]
Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 2012; 6(2): 155-76.
[31]
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014; 515: 577-83.
[32]
Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur J Cancer 2016; 54: 139-48.
[33]
Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 2013; 19(19): 5300-9.
[34]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[35]
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 Checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561-8.
[36]
Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 2015; 26(12): 2375-91.
[37]
Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 2010; 9(10): 767-74.
[38]
Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: Residual immunogenicity resides in the CDR regions. MAbs 2010; 2(3): 256-65.
[39]
Sharpe AH, Butte MJ, Oyama S. Modulators of immunoinhibitory
receptor PD-1, and methods of use thereof. WO2011082400
(2011).
[40]
Casini A, Scozzafava A, Mastrolorenzo A, Supuran LT. Sulfonamides and sulfonylated derivatives as anti-cancer agents. Curr Cancer Drug Targets 2002; 2(1): 55-75.
[41]
Sasikumar PGN, Ramachandra M, Vadlamani S K, et al. Immunosuppression modulating compounds. US20110318373
(2011).
[42]
Sasikumar PGN, Ramachandra M, Vadlamani SK, et al. Immunosuppression modulating compounds. WO2011161699
(2011).
[43]
Sasikumar PGN, Ramachandra M, Vadlamani S K, Shrimali KR, Subbarao K. Therapeutic compounds for immunomodulation.
WO2012168944 (2012).
[44]
Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. Peptidomimetic
compounds as immunomodulators. WO2013132317
(2013).
[45]
Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,3,4-Oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators.
WO2015033301 (2015).
[46]
Sasikumar PGN, Ramachandra M. Immunomodulating cyclic
compounds from the bc loop of human PD1. WO2013144704
(2013) & US20180086726 (2018).
[47]
Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators.
WO2016142852 (2016).
[48]
Sasikumar PGN, Ramachandra M, Naremaddepalli SSS. 1,2,4-Oxadiazole derivatives as immunomodulators.
US20180072689 (2018).
[49]
Lu L, Qian D Q, Wu L, Yao W. Heterocyclic compounds as
immunomodulators. WO2017205464 (2017).
[50]
Xiao K, Zhang F, Wu L, Yao W. Heterocyclic compounds as
immunomodulators. WO2017222976 (2017).
[51]
Yu Z, Wu L, Yao W. Heterocyclic compounds as immunomodulators.
WO2018013789 (2018).
[52]
Wu L, Zhang F, Mei S, Yao W. Heterocyclic compounds as
immunomodulators. US20180057486 (2018).
[53]
Lange C, Malathong V, McMurtrie DJ, et al. Immunomodulator compounds.
US20180008554 (2018).
[54]
Gutierrez GM, Vinayaka K, Pannucci J. Ayala, R. PD-1 peptide
inhibitors. WO2018053218 (2018).
[55]
Tzeng HT, Tsai HF, Liao HJ, Lin YJ, Chen L, Chen PJ, et al. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. PLoS One 2012; 7(6)e39179
[56]
Ye B, Liu X, Li X, Kong H, Tian L, Chen Y. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis 2015; 6e1694
[57]
Kaufmann DE, Walker BD. PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J Immunol 2009; 182(10): 5891-7.
[58]
Mukhopadhyay A, Hanold LE, Thayele Purayil H, Gisemba SA, Senadheera SN, Aldrich JV. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth. Cancer Biol Ther 2017; 18(8): 571-83.
[59]
Miller MM, Mapelli C, Allen MP, et al. Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(b7-
1)/PD-L1 protein/protein interactions. WO2014151634 (2014) &
US9850283 (2017).
[60]
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T-cells during chronic viral infection. Nature 2006; 439(7077): 682-7.
[61]
Chupak LS, Zheng X. Compounds useful as immunomodulators.
WO2015034820 (2015).
[62]
Yeung KS, Grant-Young KA, Zhu J, et al. 1,3-dihydroxy-phenyl derivatives
useful as immunomodulators. WO2018009505 (2018).
[63]
Yeung KS, Grant-Young KA, Zhu J, et al. Scola, P.M. Biaryl compounds useful
as immunomodulators. WO2018044963 (2018).
[64]
Dömling A. Inhibitors of the PD-1/PD-L1 protein/protein interaction.
WO2017118762 (2017).
[65]
Chupak LS, Ding M, Martin SW, et al. Compounds useful as immunomodulators.
WO2015160641 (2015).
[66]
Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Dömling A, et al. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016; 7(21): 30323-35.
[67]
Zak KM, Kitel R, Przetocka S, et al. Structure of the complex of human programmed death-1 (PD-1) and its ligand PD-L1. Structure 2015; 23: 1-8.
[68]
Wang M. Symmetric or semi-symmetric compounds useful as
immunomodulators. WO2018026971 (2018).
[69]
Chang HN, Liu BY, Qi YK, Zhou Y, Chen YP, Pan KM, et al. Blocking of the PD-1/PD-L1 Interaction by a D-Peptide Antagonist for Cancer Immunotherapy. Angew Chem Int Ed Engl 2015; 54(40): 11760-4.
[70]
Hanley RP, Horvath S, An J, Hof F, Wulff JE. Salicylates are interference compounds in TR-FRET assays. Bioorg Med Chem Lett 2016; 26(3): 973-7.
[71]
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473-80.
[72]
Karlitepe A, Ozalp O, Avci CB. New approaches for cancer immunotherapy. Tumour Biol 2015; 36(6): 4075-8.
[73]
Patel JD, Krilov L, Adams S, Aghajanian C, Basch E, Brose MS, et al. Clinical cancer advances: Annual report on progress against cancer from the American society of clinical oncology. J Clin Oncol 2014; 32(2): 129-60.
[74]
Zeng C, Wen W, Morgans AK, Pao W, Shu XO, Zheng W. Disparities by race, age, and sex in the improvement of survival for major cancers: Results from the National Cancer Institute surveillance, epidemiology, and end results (SEER) program in the United States, 1990 to 2010. JAMA Oncol 2015; 1(1): 88-96.
[75]
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018; 8(9): 1069-86.
[76]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[77]
Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348: 56-61.
[78]
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27: 450-61.
[79]
Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett 2014; 588(2): 368-76.
[80]
Carvalho S, Levi-Schaffer F, Sela M, Yarden Y. Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18. Br J Pharmacol 2016; 173(9): 1407-24.
[81]
Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14(10): 3044-51.
[82]
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366(26): 2455-65.
[83]
Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369(2): 134-44.
[84]
Guo L, Zhang H, Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J Cancer 2017; 8(3): 410-6.
[85]
Wang X, Huang S, Zhang Y, Zhu L, Wu X. The application and mechanism of PD pathway blockade for cancer therapy. Postgrad Med J 2018; 94(1107): 53-9.
[86]
Li K, Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumor immunotherapy. J Drug Target 2018; 1-13.
[87]
Yang J, Hu L. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: From antibodies to small molecules. Med Res Rev 2018; 1-37.
[88]
Sasikumar PG, Ramachandra M. Small-molecule immune checkpoint inhibitors targeting PD-1/PD-L1 and other emerging checkpoint pathways. BioDrugs 2018; 32(5): 481-97.
[89]
Zhan MM, Hu XQ, Liu XX, Ruan BF, Xu J, Liao C. From monoclonal antibodies to small molecules: The development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today 2016; 21(6): 1027-36.
[90]
Zarganes-Tzitzikas T, Konstantinidou M, Gao Y, Krzemien D, Zak K, Dubin G, et al. Inhibitors of programmed cell death 1 (PD-1): A patent review (2010-2015). Expert Opin Ther Pat 2016; 26(9): 973-7.
[91]
Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, et al. Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem 2013; 288(17): 11771-85.
[92]
Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G, Holak TA. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure 2017; 25(8): 1163-74.
[93]
Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, et al. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer 2018; 6(1): 39-42.
[94]
Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20(19): 5064-74.
[95]
Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC, et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 2007; 13(6): 1757-61.
[96]
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568-71.
[97]
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer Immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348(6230): 124-8.
[98]
Simon S, Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunol 2018; 7(1)e1364828
[99]
Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 2018; 37(34): 4639-61.