[1]
Shore SM, Byers SA, Dent P, Price DH. Characterization of Cdk9 55 and differential regulation of two Cdk9 isoforms. Gene 2005; 350(1): 51-8.
[2]
Romano G, Giordano A. Role of the cyclin-dependent kinase 9-related pathway in mammalian gene expression and human diseases. Cell Cycle 2008; 7(23): 3664-8.
[3]
De Falco G, Bagella L, Claudio PP, et al. Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation. Oncogene 2000; 19(3): 373.
[4]
De Falco G, Neri LM, De Falco M, et al. Cdk9, a member of the cdc2-like family of kinases, binds to gp130, the receptor of the IL-6 family of cytokines. Oncogene 2002; 21(49): 7464.
[5]
Eberhardy SR, Farnham PJ. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem 2001; 276(51): 48562-71.
[6]
Gressel S, Schwalb B, Decker TM, et al. CDK9-dependent RNA polymerase II pausing controls transcription initiation. eLife 2017; 6: e29736.
[7]
Booth GT, Parua PK, Sanso M, Fisher RP, Lis JT. Cdk9 regulates a promoter-proximal checkpoint to modulate RNA Polymerase II elongation rate. bioRxiv 2017; 190512.
[8]
Parua PK, Booth GT, Sansó M, et al. A Cdk9–PP1 switch regulates the elongation–termination transition of RNA polymerase II. Nature 2018; 1.
[9]
Falco GD, Giordano A. CDK9: From basal transcription to cancer and AIDS. Cancer Biol Ther 2002; 1(4): 341-6.
[10]
De Falco G, Leucci E, Onnis A, et al. Cdk9/Cyclin T1 complex: A key player during the activation/differentiation process of normal lymphoid B cells. J Cell Physiol 2008; 215(1): 276-82.
[11]
Garriga J, Peng J, Parreño M, et al. Upregulation of cyclin T1/CDK9 complexes during T cell activation. Oncogene 1998; 17(24): 3093.
[12]
Sunagawa Y, Morimoto T, Takaya T, et al. Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes. J Biol Chem 2010; 285(13): 9556-68.
[13]
Tarhriz V, Wagner KD, Masoumi Z, et al. CDK9 regulates apoptosis of myoblast cells by modulation of microRNA‐1 expression. J Cell Biochem 2018.
[14]
Marchesi I, Nieddu V, Caracciolo V, et al. Activation and function of murine Cyclin T2A and Cyclin T2B during skeletal muscle differentiation. J Cell Biochem 2013; 114(3): 728-34.
[15]
David SY, Zhao R, Hsu EL, et al. Cyclin‐dependent kinase 9-cyclin K functions in the replication stress response. EMBO Rep 2010; 11(11): 876-82.
[16]
Yu DS, Cortez D. A role for cdk9-cyclin k in maintaining genome integrity. Cell Cycle 2011; 10(1): 28-32.
[17]
Bacon CW, D’Orso I. CDK9: A Signaling hub for transcriptional control. Transcription 2018; 19: 1-19.
[18]
Gilmour J, Assi SA, Noailles L, et al. The Co-operation of RUNX1 with LDB1, CDK9 and BRD4 drives transcription factor complex relocation during haematopoietic specification. Sci Rep 2018; 8(1): 10410.
[19]
MacLachlan TK, Sang N, De Luca A, et al. Binding of CDK9 to TRAF2. J Cell Biochem 1998; 71(4): 467-78.
[20]
Egloff S, Studniarek C, Kiss T. 7SK small nuclear RNA, a multifunctional transcriptional regulatory RNA with gene-specific features. Transcription 2018; 9(2): 95-101.
[21]
C Quaresma AJ. Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016; 44(16): 7527-39.
[22]
Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 2001; 414(6861): 322.
[23]
Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 2001; 414(6861): 317.
[24]
Kusuhara M, Yamaguchi K, Nagasaki K, et al. Production of endothelin in human cancer cell lines. Cancer Res 1990; 50(11): 3257-61.
[25]
Kobbi L, Demey-Thomas E, Braye F, et al. An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb. Proc Natl Acad Sci USA 2016; 113(45): 12721-6.
[26]
Barboric M, Peterlin BM. A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol 2005; 3(2): e76.
[27]
Cho W-K, Zhou M, Jang MK, et al. Modulation of the Brd4/P-TEFb interaction by the human T-lymphotropic virus type 1 tax protein. J Virol 2007; 81(20): 11179-86.
[28]
Patel MC, Debrosse M, Smith M, et al. BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes. Mol Cell Biol 2013; 33(12): 2497-507.
[29]
Itzen F, Greifenberg AK, Bösken CA, Geyer M. Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res 2014; 42(12): 7577-90.
[30]
Blank MF, Chen S, Poetz F. SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription. Nucleic Acids Res 2017; 45(5): 2675-86.
[31]
Ghanbarian H, Grandjean V, Cuzin F, Rassoulzadegan M. A network of regulations by small non-coding RNAs: The P-TEFb kinase in development and pathology. Front Genet 2011; 2: 95.
[32]
Kikuchi K, Hettmer S, Aslam MI, et al. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma. PLoS Genet 2014; 10(1): e1004107.
[33]
Xiao H, Xiao W, Cao J, et al. miR-206 functions as a novel cell cycle regulator and tumor suppressor in clear-cell renal cell carcinoma. Cancer Lett 2016; 374(1): 107-16.
[34]
Giacinti C, Chiandotto S, Tomei V, et al. The role of CDK9 in myogenesis. Ital J Anat Embryol 2014; 119(1): 1.
[35]
Chen J-F, Callis TE, Wang D-Z. microRNAs and muscle disorders. J Cell Sci 2009; 122(1): 13-20.
[36]
Weintraub H, Davis R, Tapscott S, et al. The myoD gene family: Nodal point during specification of the muscle cell lineage. Science 1991; 251(4995): 761-6.
[37]
Giacinti C, Musarò A, De Falco G, et al. Cdk9‐55: A new player in muscle regeneration. J Cell Physiol 2008; 216(3): 576-82.
[38]
Dey J, Deckwerth TL, Kerwin WS, Casalini JR, et al. Voruciclib, a clinical stage oral CDK9 inhibitor, represses MCL-1 and sensitizes high-risk Diffuse Large B-cell Lymphoma to BCL2 inhibition. Sci Rep 2017; 7(1): 18007.
[39]
Cowling VH, Cole MD, Eds. editors Mechanism of transcriptional
activation by the Myc oncoproteins Seminars in cancer biology; 2006 Elsevier.
[40]
Gargano B, Amente S, Majello B, Lania L. P-TEFb is a crucial co-factor for Myc transactivation. Cell Cycle 2007; 6(16): 2031-7.
[41]
Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 2018; 3(1): 5.
[42]
de Alboran IM, O’Hagan RC, Gärtner F, et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 2001; 14(1): 45-55.
[43]
Schlosser I. HoÈlzel M, Mürnseer M, et al. A role for c‐Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res 2003; 31(21): 6148-56.
[44]
Russo P, Arzani D, Trombino S, Falugi C. c-myc down-regulation induces apoptosis in human cancer cell lines exposed to RPR-115135 (C31H29NO4), a non-peptidomimetic farnesyltransferase inhibitor. J Pharmacol Exp Ther 2003; 304(1): 37-47.
[45]
Clavería C, Giovinazzo G, Sierra R, Torres M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature 2013; 500(7460): 39.
[46]
Gandarillas A, Watt FM. c-Myc promotes differentiation of human epidermal stem cells. Genes Develep 1997; 11(21): 2869-82.
[47]
Bellan C, De Falco G, Lazzi S, et al. CDK9/CYCLIN T1 expression during normal lymphoid differentiation and malignant transformation. J Pathol 2004; 203(4): 946-52.
[48]
Franco LC, Morales F, Boffo S, Giordano A. CDK9: A key player in cancer and other diseases. J Cell Biochem 2018; 119(2): 1273-84.
[49]
Kretz A-L, Schaum M, Richter J, et al. CDK9 is a prognostic marker and therapeutic target in pancreatic cancer. Tumour Biol 2017; 39(2): 1010428317694304.
[50]
Grana X, De Luca A, Sang N, et al. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci USA 1994; 91(9): 3834-8.
[51]
Sun A, Bagella L, Tutton S, Romano G, Giordano A. From G0 to S phase: A view of the roles played by the retinoblastoma (Rb) family members in the Rb‐E2F pathway. J Cell Biochem 2007; 102(6): 1400-4.
[52]
Shao Z, Robbins PD. Differential regulation of E2F and Sp1-mediated transcription by G1 cyclins. Oncogene 1995; 10(2): 221-8.
[53]
Simone C, Bagella L, Bellan C, Giordano A. Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene 2002; 4158.
[54]
Tong Z, Chatterjee D, Deng D, et al. Antitumor effects of cyclin dependent kinase 9 inhibition in esophageal adenocarcinoma. Oncotarget 2017; 8(17): 28696.
[55]
Veeranki OLM, Dokey R, Mejia A, et al. Role of CDK9 inhibition as a sensitizer to radiation in esophageal adenocarcinoma: In vitro and in vivo efficacy study. AACR 2017.
[56]
Marchesi I. A novel role of Cdk9/CyclinT2 complexes in skeletal muscle and rhabdomyosarcoma cells 2010.
[57]
Biswas S, Rao CM. Epigenetics in cancer: Fundamentals and beyond. Pharmacol Ther 2017; 173: 118-34.
[58]
Zhang H, Pandey S, Travers M, et al. Targeting CDK9 reactivates epigenetically silenced genes in cancer. AACR. Cell 2018; 175(5): 1244-58.e26.
[59]
Pierre RS, Kadoch C. Mammalian SWI/SNF complexes in cancer: Emerging therapeutic opportunities. Curr Opin Genet Dev 2017; 42: 56-67.
[60]
Lam F, Abbas AY, Shao H, et al. Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget 2014; 5(17): 7691.
[61]
Lineham E, Spencer J, Morley SJ. Dual abrogation of MNK and mTOR: a novel therapeutic approach for the treatment of aggressive cancers. Future Med Chem 2017; 9(13): 1539-55.
[62]
Sonawane YA, Taylor MA, Napoleon JV, et al. Cyclin dependent kinase 9 inhibitors for cancer therapy: Miniperspective. J Med Chem 2016; 59(19): 8667-84.
[63]
Kim JB, Sharp PA. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. J Biol Chem 2001; 276(15): 12317-23.
[64]
Ping Y-H, Rana TM. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 2001; 276(16): 12951-8.
[65]
Yang X, Herrmann CH, Rice AP. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J Virol 1996; 70(7): 4576-84.
[66]
Zhu Y, Pe’ery T, Peng J, et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 1997; 11(20): 2622-32.
[67]
Mancebo HS, Lee G, Flygare J, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997; 11(20): 2633-44.
[68]
Kwak YT, Ivanov D, Guo J, Nee E, Gaynor RB. Role of the human and murine cyclin T proteins in regulating HIV-1 tat-activation. J Mole Ziol 1999; 288(1): 57-69.
[69]
Fujinaga K, Taube R, Wimmer J, Cujec TP, Peterlin BM. Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proceedings National Acad Sci USA 1999; 96(4): 1285-90.
[70]
Yamaguchi Y, Takagi T, Wada T, et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 1999; 97(1): 41-51.
[71]
Booth GT, Parua PK, Sansó M, Fisher RP, Lis JT. Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Nat Commun 2018; 9(1): 543.
[72]
Bagashev A, Fan S, Mukerjee R, et al. Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle 2013; 12(10): 1569-77.
[73]
Castrogiovanni C, Waterschoot B, De Backer O, Dumont P. Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ 2018; 25(1): 190.
[74]
O’Brien SK, Cao H, Nathans R, Ali A, Rana TM. P-TEFb kinase complex phosphorylates histone H1 to regulate expression of cellular and HIV-1 genes. J Biol Chem 2010; 285(39): 29713-20.
[75]
Chun T-W, Engel D, Mizell SB, Ehler LA, Fauci AS. Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 1998; 188(1): 83-91.
[76]
Amini S, Clavo A, Nadraga Y, et al. Interplay between cdk9 and NF-κB factors determines the level of HIV-1 gene transcription in astrocytic cells. Oncogene 2002; 21(37): 5797.
[77]
Vijayalingam S, Chinnadurai G. Adenovirus L-E1A activates transcription through mediator complex-dependent recruitment of the super elongation complex. J Virol 2013; 87(6): 3425-34.
[78]
Prasad V, Suomalainen M, Hemmi S, Greber UF. Cell cycle-dependent kinase Cdk9 is a postexposure drug target against human adenoviruses. ACS Infect Dis 2017; 3(6): 398-405.
[79]
Bark-Jones S, Webb H, West M. EBV EBNA 2 stimulates CDK9-dependent transcription and RNA polymerase II phosphorylation on serine 5. Oncogene 2006; 25(12): 1775.
[80]
Bazarbachi A. CDK9 inhibition for ATL therapy. Blood 2017; 130(9): 1074-5.
[81]
Kapasi AJ, Clark CL, Tran K, Spector DH. Recruitment of cdk9 to the immediate-early viral transcriptosomes during human cytomegalovirus infection requires efficient binding to cyclin T1, a threshold level of IE2 86, and active transcription. J Virol 2009; 83(11): 5904-17.
[82]
Zaborowska J, Isa NF, Murphy S. P‐TEFb goes viral. BioEssays 2016; 38(S1)
[83]
Guo L, Wu W-j, Liu L-d, et al. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb. PLoS One 2012; 7(9): e45749.
[84]
Zhao Z, Tang K-W, Muylaert I, Samuelsson T, Elias P. Cdk9 and Spt5 are specifically required for expression of Herpes simplex virus 1 replication-dependent late genes. J Biol Chem 2017: jbc. M117. 806000.
[85]
Kadaja M, Silla T, Ustav E, Ustav M. Papillomavirus DNA replication-from initiation to genomic instability. Virol 2009; 384(2): 360-8.
[86]
Sumi E, Nomura T, Asada R, et al. Safety and plasma concentrations of a Cyclin-Dependent Kinase 9 (CDK9) inhibitor, fit039, administered by a single adhesive skin patch applied on normal skin and cutaneous warts. Clin Drug Invest 2018; pp. 1-7.
[87]
Ajiro M, Sakai H, Onogi H, et al. CDK9 inhibitor fit-039 suppresses viral oncogenes E6 and E7 and has a therapeutic effect on HPV-induced neoplasia. Clin Cancer Res 2018; 24(18): 4518-28.
[88]
Zhang J, Li G, Ye X. Cyclin T1/CDK9 interacts with influenza A virus polymerase and facilitates its association with cellular RNA polymerase II. J Virol 2010; 84(24): 12619-27.
[89]
Li Ll, Hu ST, Wang SH, et al. Positive Transcription Elongation Factor b (P‐TEFb) contributes to dengue virus‐stimulated induction of interleukin‐8 (IL‐8). Cell Microbiol 2010; 12(11): 1589-603.
[90]
Chang P-C, Li M. Kaposi’s sarcoma-associated herpesvirus K-cyclin interacts with Cdk9 and stimulates Cdk9-mediated phosphorylation of p53 tumor suppressor. J Virol 2008; 82(1): 278-90.
[91]
Tian B, Zhao Y, Sun H, et al. BRD4 mediates NF-κB-dependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation. Am J Physiol Lung Cell Mol Physiol 2016; 311(6): L1183-201.
[92]
Ijaz T, Tilton RG, Brasier AR. Cytokine amplification and macrophage effector functions in aortic inflammation and abdominal aortic aneurysm formation. J Thorac Dis 2016; 8(8): E746.
[93]
Bagella L, MacLachlan TK, Buono RJ, et al. Cloning of murine CDK9/PITALRE and its tissue‐specific expression in development. J Cell Physiol 1998; 177(2): 206-13.
[94]
Hou T, Ray S, Brasier AR. The functional role of an interleukin 6-inducible CDK9· STAT3 complex in human γ-fibrinogen gene expression. J Biol Chem 2007; 282(51): 37091-102.
[95]
Vomero M, Barbati C, Colasanti T, et al. Autophagy and rheumatoid arthritis: Current knowledges and future perspectives. Front Immunol 2018; •••: 9.
[96]
Hellvard A, Zeitlmann L, Heiser U, et al. Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Sci Rep 2016; 6: 31441.
[97]
Kourtzelis I, Kotlabova K, Lim J-H, et al. Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation. Thromb Haemost 2016; 115(4): 781.
[98]
Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018; 37(1): 36.
[99]
Morales F, Giordano A. Overview of CDK9 as a target in cancer research. Cell Cycle 2016; 15(4): 519-27.
[100]
Romano G. Deregulations in the cyclin-dependent kinase-9-related pathway in cancer: Implications for drug discovery and development. ISRN Oncol 2013; 2013.
[101]
Kumar SK, LaPlant B, Chng WJ, et al. Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma. Blood 2015; 125(3): 443-8.
[102]
Fu W, Ma L, Chu B, et al. The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol Cancer Therap 2011: Molcanther. 0167.2011.
[103]
Chen Z, Wang Z, Pang JC, et al. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Sci Rep 2016; 6: 29090.
[104]
Baker A, Gregory GP, Verbrugge I, et al. The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclinical models of MLL-rearranged acute myeloid leukemia. Cancer Res 2016; 76(5): 1158-69.
[105]
Baumann K, Kim H, Rinke J, Plaum T, Wagner U, Reinartz S. Effects of alvocidib and carboplatin on ovarian cancer cells in vitro. Experimental oncology. 2013(35,№ 3):168-73.
[106]
Mariaule G, Belmont P. Cyclin-dependent kinase inhibitors as marketed anticancer drugs: where are we now? A short survey. Mol 2014; 19(9): 14366-82.
[107]
Brägelmann J, Dammert MA, Dietlein F, et al. Systematic kinase inhibitor profiling identifies CDK9 as a synthetic lethal target in NUT midline carcinoma. Cell Reports 2017; 20(12): 2833-45.
[108]
Byth KF, Thomas A, Hughes G, et al. AZD5438, a potent oral inhibitor of cyclin-dependent kinases 1, 2, and 9, leads to pharmacodynamic changes and potent antitumor effects in human tumor xenografts. Mol Cancer Ther 2009; 8(7): 1856-66.
[109]
Boss DS, Schwartz GK, Middleton MR, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of the oral cyclin-dependent kinase inhibitor AZD5438 when administered at intermittent and continuous dosing schedules in patients with advanced solid tumours. Ann Oncol 2009; 21(4): 884-94.
[110]
Cirstea D, Hideshima T, Santo L, et al. Small-molecule multi-targeted kinase inhibitor RGB-286638 triggers P53-dependent and-independent anti-multiple myeloma activity through inhibition of transcriptional CDKs. Leukemia 2013; 27(12): 2366.
[111]
Siemeister G, Luecking U, Wagner C, et al. Molecular and pharmacodynamic characteristics of the novel multi-target tumor growth inhibitor ZK 304709. Biomed Pharmacother 2006; 60(6): 269-72.
[112]
Hofmeister CC, Berdeja JG, Vesole DH, Suvannasankha A, Parrott T, Abonour R. TG02, an oral CDK9-inhibitor, in combination with carfilzomib demonstrated objective responses in carfilzomib refractory multiple myeloma patients. Am Soc Hematol 2015.
[113]
Yin T, Lallena MJ, Kreklau EL, et al. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther 2014; 13(6): 1442-56.
[114]
Mohapatra S, Coppola D, Riker AI, Pledger WJ. Roscovitine inhibits differentiation and invasion in a three-dimensional skin reconstruction model of metastatic melanoma. Mol Cancer Res 2007; 5(2): 145-51.
[115]
Joshi KS, Rathos MJ, Mahajan P, et al. P276-00, a novel cyclin-dependent inhibitor induces G1-G2 arrest, shows antitumor activity on cisplatin-resistant cells and significant in vivo efficacy in tumor models. Mol Cancer Ther 2007; 6(3): 926-34.
[116]
Xie S, Jiang H, Zhai X-w, et al. Antitumor action of CDK inhibitor LS-007 as a single agent and in combination with ABT-199 against human acute leukemia cells. Acta Pharmacol Sin 2016; 37(11): 1481.
[117]
Alzani R, Pedrini O, Albanese C, et al. Therapeutic efficacy of the pan-cdk inhibitor PHA-793887 in vitro and in vivo in engraftment and high-burden leukemia models. Experimental hematology. 2010;38(4):259-69. e2.
[118]
Yecies D, Carlson NE, Deng J, Letai A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 2010; 115(16): 3304-13.
[119]
Albert T, Rigault C, Eickhoff J, et al. Characterization of molecular and cellular functions of the cyclin‐dependent kinase CDK9 using a novel specific inhibitor. Br J Pharmacol 2014; 171(1): 55-68.
[120]
Lücking U, Scholz A, Lienau P, et al. Identification of atuveciclib (BAY 1143572), the first highly selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem 2017; 12(21): 1776-93.
[121]
Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 2009; 8(7): 547.
[122]
Bettayeb K, Sallam H, Ferandin Y, et al. N-&-N, a new class of cell death-inducing kinase inhibitors derived from the purine roscovitine. Mol Cancer Ther 2008; 7(9): 2713-24.
[123]
Tanaka T, Okuyama-Dobashi K, Murakami S, et al. Inhibitory effect of CDK9 inhibitor FIT-039 on hepatitis B virus propagation. Antiviral Res 2016; 133: 156-64.