[1]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H. Electrocatalytic determination of sulfite at the surface of a new ferrocene derivative-modified carbon paste electrode. Int. J. Electrochem. Sci., 2007, 2, 257-269.
[2]
Bellar, T.A.; Brown, M.F.; Sigsby, J.E. Determination of atmospheric pollutants in the part-per-billon range by gas chromatography. A simple trapping system for use with flame ionization detectors. Anal. Chem., 1963, 35(12), 1924-1927.
[3]
Hashemi, B.; Zohrabi, P.; Raza, N.; Kim, K.H. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. TrAC Tr. Anal. Chem., 2017, 972017. , 65-82.
[4]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H. Electrocatalytic determination of sulfite using 1-[4-(ferrocenylethynyl)phenyl]-1-ethanone modified carbon paste electrode. Asian J. Chem., 2008, 20(1), 483-494.
[5]
Sierra-Rosales, P.; Toledo‐Neira, C.; Squella, J.A. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs. Sens. Actuators B Chem., 2017, 240, 1257-1264.
[6]
Otero, P.; Saha, S.K.; Hussein, A.; Barron, J.; Murray, P. Simultaneous dtermination of 23 Azo dyes in paprika by gas chromatography-mass spectrometry. Food Anal. Methods, 2017, 10(4), 876-884.
[7]
Gupta, V.K.; Eren, T.; Atar, N.; Yola, M.L.; Parlak, C.; Karimi-Maleh, H. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq., 2015, 208, 122-129.
[8]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaeid, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: An experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[9]
Dorraji, P.S.; Jalali, F. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food Chem., 2017, 227, 73-77.
[10]
Tikhomirova, T.I.; Ramazanova, G.R.; Apyari, V.V. A hybrid sorption - Spectrometric method for determination of synthetic anionic dyes in foodstuffs. Food Chem., 2017, 221, 351-355.
[11]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Yola, M.L.; Gupta, V.K.; Ensafi, A.A. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-Mercaptopurine anticancer drug. Ind. Eng. Chem. Res., 2015, 54, 3634-3639.
[12]
Asari-Bami, H.; Khalilzadeh, M.A.; Karimi-Maleh, H. Electrochemical determination of tert-butylhydroxyanisole uses carbon paste electrode modified with ionic liquid and CdO nanoparticle. Anal. Bioanal. Electrochem., 2016, 8, 1033-1043.
[13]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141, 4311-4317.
[14]
Rudbaraki, A.; Khalilzadeh, M.A. Analysis of nitrite using a voltammetric sensors employing NiO nanoparticle modified carbon paste electrode. Anal. Bioanal. Electrochem., 2016, 8, 741-748.
[15]
Tahernejad, R.; Sheikhshoaie, I. Kojic acid analysis in foodstuff using a reduced graphene oxide/NiO nanocomposite modified electrode. Anal. Bioanal. Electrochem., 2017, 9, 784-792.
[16]
Prival, M.J.; Mitchell, V.D. Analysis of a method for testing azo dyes for mutagenic activity in Salmonella typhimurium in the presence of flavin mononucleotide and hamster liver S9. Mut. Res. Environ. Mutag. Rel. Sub., 1982, 97, 103-116.
[17]
Ensafi Ali, A.; Karimi-Maleh, H.; Mallakpour, S. Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N-(3, 4- dihydroxyphenethyl)-3, 5-dinitrobenzamide-modified carbon nanotubes paste electrode. Electroanalysis, 2012, 24, 666-675.
[18]
Xiao, F.; Ruan, C.; Liu, L.; Yan, R.; Zhao, F.; Zeng, B. Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sens. Actuators B Chem., 2008, 134, 895-901.
[19]
Manjunatha, J.G.; Deraman, M. Graphene paste electrode modified with sodium dodecyl sulfate surfactant for the determination of dopamine, ascorbic acid and uric acid. Anal. Bioanal. Electrochem., 2017, 9, 198-213.
[21]
Huang, Y.; Chen, M.; Li, X.; Zhang, C. Voltammetric separation and determination of glutathione and L-tyrosine with chlorogenic acid as an electrocatalytic mediator. Electroanalysis, 2017, 29, 1141-1146.
[22]
Horita, M.; Tosin Buenoa, C.; Horimoto, A.R.; Lemos, P.A.; Morandini-Filho, A.A.; Krieger, J.E.; Santos, P.C.J.L.; Pereira, A.C. MTRR rs326119 polymorphism is associated with plasma concentrations of homocysteine and cobalamin, but not with congenital heart disease or coronary atherosclerosis in Brazilian patients. IJC Heart Vasc., 2017, 14, 1-5.
[23]
Elizabeth, K.E.; Praveen, S.L.; Preethi, N.R.; Jissa, V.T.; Pillai, M.R. Folate, vitamin B12, homocysteine and polymorphisms in folate metabolizing genes in children with congenital heart disease and their mothers. Eur. J. Clin. Nutr., 2017, 71, 1437-1441.
[24]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[25]
Hongo, T.; Sunderkrishnan, R.; Awsare, B. A case of a critically Ill, acetaminophen/diphenhydramine overdose requiring prolonged N-acetylcysteine infusion due to a delayed rise in liver Injury markers. Am. J. Respir. Crit. Care Med., 2017, 195, A3798.
[26]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H. Electrocatalytic oxidation of thiosulfate at 2, 7-bis(ferrocenylethyl)-fluoren-9-one-modified carbon paste electrode (2, 7-BFEFMCPE): Application to the catalytic determination of thiosulfate in real sample. Chin. Chem. Lett., 2010, 21, 1462-1466.
[27]
Liu, L.; Zhou, X.; Lu, M.; Zhang, M.; Yang, C.; Ma, R.; Ghaffar-Memon, A.; Shi, H.; Qian, Y. An array fluorescent biosensor based on planar waveguide for multi-analyte determination in water samples. Sens. Actuators B, 2017, 240, 107-113.
[28]
Wang, S.; Niu, H.; Zeng, T.; Zhang, X.; Cao, D.; Cai, Y. Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Microporous Mesoporous Mater., 2017, 239, 390-395.
[29]
Rapant, S.; Cvečková, V.; Fajčíková, K.; Dietzová, Z.; Stehlíková, B. Chemical composition of groundwater/drinking water and oncological disease mortality in Slovak Republic. Environ. Geochem. Health, 2017, 39, 191-208.
[30]
Yoshimura, Y.; Oktaviani, N.A.; Yonezawa, K.; Kamikubo, H.; Mulder, F.A.A. Unambiguous determination of protein arginine ionization states in solution by NMR spectroscopy. Angew. Chem. Int. Ed. Engl., 2017, 56, 239-242.
[31]
Sabet, F.S.; Hosseini, M.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem., 2017, 220, 527-532.
[32]
Kumar, U.R.A.; Basavaiah, K.; Tharpi, K.; Vinay, K.B. Determination of raloxifene hydrochloride in human urine by LC-MS-MS. Ind. Eng. Chem. Res., 2009, 15, 119-123.
[33]
Arabali, V.; Ebrahimi, M.; Gheibi, S.; Khaleghi, F.; Bijad, M.; Rudbaraki, A.; Abbasghorbani, M.; Ganjali, M.R. Bisphenol A analysis in food samples using modified nanostructure carbon paste electrode as a sensor. Food Anal. Methods, 2016, 9, 1763-1769.
[34]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion-carbon nanotube composite glassy carbon electrode. Electrochim. Acta, 2011, 56, 4188-4196.
[35]
Farahani, H.; Ganjali, M.R.; Dinarvand, R.; Norouzi, P. Study on the performance of the headspace liquid-phase microextraction, gas chromatography-mass spectrometry in the determination of sorbic and benzoic acids in soft drinks and environmental water samples. J. Agric. Food Chem., 2009, 57, 2633-2639.
[36]
Puttaiah, M.; Yanjerappa, A.N. Development of gold modified disposable pencil graphite electrode for the electrochemical investigation of acetaminophen present in pharmaceutical formulations and biological samples. Anal. Bioanal. Electrochem., 2017, 9, 841-861.
[37]
Hajiaghababaei, L.; Tajmiri, T.; Badiei, A.; Ganjali, M.R.; Khaniani, Y.; Ziarani, G.M. Heavy metals determination in water and food samples after preconcentration by a new nanoporous adsorbent. Food Chem., 2013, 141, 1916-1922.
[38]
Omanovic-Miklicanin, E.; Valzacchi, S. Development of new chemiluminescence biosensors for determination of biogenic amines in meat. Food Chem., 2017, 235, 98-103.
[39]
Al-Momani, I.F.; Rababah, M.H. Automated flow injection spectrophotometric determination of the proton pump inhibitor omeprazole in pharmaceutical formulations. Int. J. Pharm. Chem., 2017, 3(4), 52-55.
[40]
Zeeb, M.; Ganjali, M.R.; Norouzi, P. Preconcentration and trace letermination of chromium using modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction: application to different water and food samples. Food Anal. Methods, 2013, 6, 1398-1406.
[41]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H. Voltammetric determination of L-cysteic acid on a 1-[4-(ferrocenyl-ethynyl)phnyl]-1-ethanone modified carbon paste electrode. Bull. Chem. Soc. Ethiop., 2008, 22(2), 173-182.
[42]
Amendola, L.; Cortese, M.; Vinatoru, D.; Sposato, S.; Insogna, S. Innovative analytical method for the determination of underivatized tributyltin and pentachlorophenol in seawater by gas chromatography-triple quadrupole mass spectrometry. Anal. Chim. Acta, 2017, 975, 70-77.
[43]
Bidari, A.; Ganjali, M.R.; Assadi, Y.; Kiani, A.; Norouzi, P. Assay of total mercury in commercial food supplements of marine origin by means of DLLME/ICP-AES. Food Anal. Methods, 2012, 5, 695-701.
[44]
Yola, M.L.; Atar, N.; Eren, T.; Karimi-Maleh, H.; Wang, S. Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Advances, 2015, 5, 65953-65962.
[45]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H. Carbon paste electrode incorporating 1-[4-(ferrocenyl ethynyl) phenyl]-1-ethanone for electrocatalytic and voltammetric determination of tryptophan. Electroanalysis, 2008, 20, 1259-1262.
[46]
Alizadeh, T.; Ganjali, M.R.; Zare, M.; Norouzi, P. Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem., 2012, 130, 1108-1114.
[47]
Wang, Z.; Shang, H.; Zhao, R.; Xing, X.; Wang, Y. ZnO Nanoparticles as sensing materials with high gas response for Detection of n-butanol Gas, ZnO nanoparticles as sensing materials with high gas response for detection of n-butanol gas. J. Nanostruct., 2017, 7(2), 103-110.
[48]
Jayakumar, C.; Magdalane, C.M.; Kanimozhi, K. Fabrication of nano poly cresol red over glassy carbon electrode and its application in selective determination of uric acid in the presence of ascorbic acid. J. Nanostruct., 2017, 7(2), 155-164.
[49]
Kasinathan Kaviyarasu 4, 5, Boniface jeyaraj.
[50]
Bidari, A.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.R.M.; Assadi, Y. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction. Food Chem., 2011, 126, 1840-1844.
[51]
Dey, D.; Roy, P.; De, D.; Ghosh, T. Detection of ammonia and phosphine gas using heterojunction biomolecular chain with multilayer GaAs nanopore electrode. J. Nanostruct., 2017, 7(1), 21-31.
[52]
Mazloum-Ardakani, M.; Farbod, F.; Hosseinzadeh, L. An electrochemical sensor based on nickel oxides nanoparticle/graphene composites for electrochemical detection of epinephrine. J. Nanostruct., 2016, 6(4), 293-300.
[53]
Zeeb, M.; Ganjali, M.R.; Norouzi, P.; Kalaee, M.R. Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry. Food Chem. Toxicol., 2011, 49, 1086-1091.
[54]
Mirmomtaz, E.; Ensafi, A.A.; Karimi-Maleh, H. Electrocatalytic determination of 6-tioguanine at a p-aminophenol modified carbon paste electrode. Electroanalysis, 2008, 20, 1973-1979.
[55]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[56]
Akbari-adergani, B.; Norouzi, P.; Ganjali, M.R.; Dinarvand, R. Ultrasensitive flow-injection electrochemical method for determination of histamine in tuna fish samples. Food Res. Int., 2010, 43, 1116-1122.
[57]
Göde, C.; Yola, M.L.; Yılmaz, A.; Atar, N.; Wang, S. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe (III), Cd (II) and Pb (II). J. Colloid Interface Sci., 2017, 508, 525-531.
[58]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[59]
Beheshti, A.; Riahi, S.; Pourbasheer, E.; Ganjali, M.R.; Norouzi, P. Simultaneous spectrophotometric determination of 2-thiouracil and 2-mercaptobenzimidazole in animal tissue using multivariate calibration methods: concerns and rapid methods for detection. J. Food Sci., 2010, 75, C135-C139.
[60]
Yola, M.L.; Göde, C.; Atar, N. Determination of rutin by CoFe2O4 nanoparticles ionic liquid nanocomposite as a voltammetric sensor. J. Mol. Liq., 2017, 246, 350-353.
[61]
Faridbod, F.; Ganjali, M.R.; Dinarvand, R.; Riahi, S.; Norouzi, P.; Olia, M.B.Z. Citalopram analysis in formulation and urine by a novel citalopram potentiometric membrane sensor. J. Food Drug Anal., 2009, 17, 264-273.
[62]
Doulache, M.; Bakirhan, N.K.; Uslu, B.; Saidat, B.; Trari, M.; Ozkan, S.A. Simple and sensitive adsorptive stripping voltammetric assay of granisetron from its dosage form by platinum nanoparticles modified electrodes. Sens. Actuat. B., 2017, 251, 572-582.
[63]
Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal., 2018, 147, 439-457.
[64]
Keivani, Z.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via ananostructure modified sensor. J. Colloid Interface Sci., 2017, 507, 11-17.
[65]
Kurbanoglu, S.; Ozkan, S.A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron., 2017, 89, 886-898.
[66]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[67]
Kurbanoglu, S.; Uslu, B.; Ozkan, S.A. Carbon-based nanostructures for electrochemical analysis of oral medicines. Nanostruct. Oral Med., 2017, 28, 885-938.
[68]
Scremin, J.; Karimi-Maleh, H.; Romao Sartori, E. Electrochemical study of the antiplatelet agent ticlopidine and its voltammetric determination in pharmaceutical and urine samples using a borondoped diamond electrode. Anal. Methods, 2015, 7, 3750-3756.
[69]
Rohani, A.; Sanghavi, B.J.; Salahi, A.; Liao, K.T.; Chou, C.F.; Swami, N.S. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization. Nanoscale, 2017, 9, 12124-12131.
[70]
Fernandez, R.E.; Sanghavi, B.J.; Farmehini, V.; Chávez, J.L.; Hagen, J.; Kelley-Loughnane, N.; Chou, C.F.; Swami, N.S. Aptamer-functionalized graphene-gold nanocomposites for label-free detection of dielectrophoretic-enriched neuropeptide Y. Electrochem. Commun., 2016, 72, 144-147.
[71]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[72]
Adams, R.N. Carbon paste electrode, C60: buckminsterfullerene. Anal. Chem., 1958, 30, 1576-1576.
[73]
Olson, K.; Adams, R.N. Carbon paste electrodes application to anodic voltammetry. Anal. Chim. Acta, 1960, 22, 582-589.
[74]
Olson, K.; Lee, y.; Adams, R.N. Oxidation and reduction of p-nitroaniline. J. Electroanal. Chem., 1959, 2, 396-399.
[75]
Galus, Z.; Adams, R.N. Anodic oxidation of N-methylaniline and N, N-dimethyl-p-Toluidine. J. Phys. Chem., 1963, 67, 862-866.
[76]
Jacobs, E.S. Anodic stripping voltammetry of gold and silver with carbon paste electrodes. Anal. Chem., 1963, 35, 2112-2115.
[77]
Karimi, F.; Fallah-Shojaei, A.; Tabatabaeian, K.; Shakeri, S. CoFe2O4 nanoparticle/ionic liquid modified carbon paste electrode as an amplified sensor for epirubicin analysis as an anticancer drug. J. Mol. Liq., 2017, 242, 685-689.
[78]
Fekry, A.M. A new simple electrochemical moxifloxacin Hydrochloride sensor built on carbon paste modified with silver nanoparticles. Biosens. Bioelectron., 2017, 87, 1065-1070.
[79]
Ganesh, P.S.; Swamy, B.E.K.; Harisha, K.V. Electropolymerisation of DL-methionine at carbon paste electrode and its application to the determination of catechol and hydroquinone. Anal. Bioanal. Electrochem., 2017, 9, 74-47.
[80]
Gheibi, S.; Gharibi, G.; Khalilzadeh, M.A.; Pourfarzad, A. Electrochemical analysis of ascorbic acid in food and drug samples using a biosynthesized Ag nanoparticle as a mediator in carbon paste matrix. Anal. Bioanal. Electrochem., 2017, 9, 365-373.
[81]
Foroughi, M.M.; Tajik, S. SiO2@Fe3O4 Nanocomposite decorated graphene modified carbon ionic liquid electrode as an electrochemical sensor for the determination of tyrosine. Anal. Bioanal. Electrochem., 2017, 9, 495-505.
[82]
Karami, Z.; Sheikhshoaie, I. rGO/ZnO nanocomposite modified carbon paste electrode as sensor for tyrosine analysis. Anal. Bioanal. Electrochem., 2017, 9, 834-840.
[83]
Shabani-Nooshabadi, M.; Roostaee, M.; Karimi-Maleh, H. Incorporation of graphene oxide-NiO nanocomposite and n-hexyl-3-methylimidazolium hexafluoro phosphate into carbon paste electrode: application as an electrochemical sensor for simultaneous determination of benserazide, levodopa and tryptophan. J. Iran. Chem. Soc., 2017, 14, 955-961.
[84]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[85]
Abbaspour, A.; Mehrgardi, M.A. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. Anal. Chem., 2004, 76(19), 5690-5696.
[86]
Millan, K.M.; Saraullo, A.; Mikkelsen, S.R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal. Chem., 1994, 66(18), 2943-2948.
[87]
Moscone, D.; D’Ottavi, D.; Compagnone, D.; Palleschi, G. Construction and analytical characterization of prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal. Chem., 2001, 73(11), 2529-2535.
[88]
Rahmanifar, E.; Yoosefian, M.; Karimi-Maleh, H. Application of CdO/SWCNTs nanocomposite ionic liquids carbon paste electrode as a voltammetric sensor for determination of benserazide. Curr. Anal. Chem., 2017, 13, 46-51.
[89]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Moradi, R. Simultaneous detection of nalbuphine and diclofenac as important analgesic drugs in biological and pharmaceutical samples using a Pt:Co nanostructure-based electrochemical sensor. J. Electrochem. Soc., 2017, 164, B60-B65.
[90]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetil in pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan Inst. Chem. Eng., 2017, 80, 989-996.
[91]
Khani.; Rofouei, M.K.; Arab, P.; Gupta, V.K.; Vafaei, Z. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II). J. Hazard. Mater., 2010, 183, 402-409.
[92]
Liu, H.; He, P.; Li, Z.; Sun, C.; Shi, L.; Liu, Y.; Zhu, G.; Li, J. An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem. Commun., 2005, 7, 1357-1363.
[93]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of levodopa in the presence of vitamin B6 using carbon paste electrode modified with 1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO nanoparticles. Electroanalysis, 2017, 29, 1854-1859.
[94]
Rubianes, M.D.; Rivas, G.A. Carbon nanotubes paste electrode. Electrochem. Commun., 2003, 5, 689-694.
[95]
Wang, J. Carbon-Nanotube based electrochemical biosensors: A review. Electroanalysis, 2005, 17, 4-14.
[96]
Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun., 2002, 4, 743-746.
[97]
Šljukić, B.; Banks, C.E.; Compton, R.G. Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett., 2006, 6(7), 1556-1558.
[98]
Safari, F.; Keyvanfard, M.; Karimi-Maleh, H.; Alizad, K. Voltammetric determination of penicillamine using a carbon paste electrode modified with multiwall carbon nanotubes in the presence of methyldopa as a mediator. Iran. J. Pharm. Res., 2017, 16(3), 1019-1029.
[99]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[100]
Karimi-Maleh, H.; Ganjali, M.R.; Norouzi, P.; Bananezhad, A. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater. Sci. Eng. C, 2017, 73, 472-477.
[101]
Halbert, K.M.; Baldwin, R.P. Electrocatalytic and analytical response of cobalt phthalocyanine containing carbon paste electrodes toward sulfhydryl compounds. Anal. Chem., 1985, 57, 591-595.
[102]
Musameh, M.; Wang, J. Sensitive and stable amperometric measurements at ionic liquid-carbon paste microelectrodes. Anal. Chim. Acta, 2008, 606, 45-49.
[103]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. Simultaneous determination of amaranth and nitrite in foodstuffs via electrochemical sensor based on carbon paste electrode modified with CuO/SWCNTs and room temperature ionic liquid. Food Anal. Methods, 2017, 10, 3773-3780.
[104]
Sheikhshoaie, M.; Karimi-Maleh, H.; Sheikhshoaie, I.; Ranjbar, M. Voltammetric amplified sensor employing RuO2 nano-road and room temperature ionic liquid for amaranth analysis in food samples. J. Mol. Liq., 2017, 229, 489-494.
[105]
Sun, W.; Gao, R.; Jiao, K. Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J. Phys. Chem. B, 2007, 111, 4560-4567.
[106]
Sun, W.; Yang, M.; Jiao, K. Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application. Anal. Bioanal. Chem., 2007, 389, 1283-1291.
[107]
Arabali, V.; Ebrahimi, M.; Karimi-Maleh, H. Highly sensitive determination of promazine in pharmaceutical and biological samples using a ZnO nanoparticle-modified ionic liquid carbon paste electrode. Chin. Chem. Lett., 2016, 27, 779-782.
[108]
Karimi-Maleh, H. FallahShojaei, A.; Tabatabaeian, K.; Karimi, F. Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methyl imidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[109]
Safavi, A.; Maleki, N.; Moradlou, O.; Tajabadi, F. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal. Biochem., 2006, 359, 224-229.
[110]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A novel strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids. Electroanalysis, 2016, 28, 366-371.
[111]
Nalini, B.; Narayanan, S.S. Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium(III) diphenyldithiocarbamate-modified carbon paste electrode. Anal. Chim. Acta, 2000, 405, 93-97.
[112]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food Drug Anal., 2017, 25, 1000-1007.
[113]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[114]
Mazloum-Ardakania, M.; Taleat, Z.; Beitollahi, H.; Salavati-Niasari, M.; Mirjalili, B.B.F.; Taghavini, N. Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode. J. Electroanal. Chem., 2008, 624, 73-78.
[115]
Shahrokhian, S.; Ghalkhani, M.; Amini, M.Z. Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sens. Actuators B, 2009, 137, 669-675.
[116]
Rezaei, B.; Majidi, N.; Ensafi, A.A.; Karimi-Maleh, H. Molecularly imprinted-multiwall carbon nanotube paste electrode as a biosensor for voltammetric detection of rutin. Anal. Methods, 2011, 3, 2510-2516.
[117]
Asnaashariisfahani, M.; Karimi-maleh, H.; Ahmar, H.; Ensafi, A.A.; Fakhari, A.R.; Khalilzadeh, M.A.; Karimi, F. Novel 8, 9-dihydroxy-7-methyl-12H-benzothiazolo[2, 3-b]quinazolin-12-one multiwalled carbon nanotubes paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Anal. Methods, 2012, 4, 3275-3282.
[118]
Pahlavan, A.; Rezanejad, N.; Karimi-Maleh, H.; Jamali, M.R.; Abbasghorbani, M.; Beitollahi, H.; Atar, N. Voltammetric nanostructure based sensor for determination of sudan I in food samples. Int. J. Electrochem. Sci., 2015, 10, 3644-3656.
[119]
Paredes, P.A.; Parellada, J.; Fernández, V.M.; Katakis, I.; Domínguez, E. Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis. Biosens. Bioelectron., 1997, 12, 1233-1243.
[120]
Lin, H.; Li, G.; Wu, K. Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chem., 2008, 107, 531-536.
[121]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Fabrication of fast and sensitive nanostructure voltammetric sensor for determination of curcumin in the presence of vitamin B9 in food samples. Electroanalysis, 2016, 28, 2590-2597.
[122]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[123]
Gheibi, S.; Karimi-Maleh, H.; Khalilzadeh, M.A.; Bagheri, H. A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode. J. Food Sci. Technol., 2015, 52, 276-284.
[124]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT - Food Sci. Technol., 2014, 57, 679-685.
[125]
Taherkhani, A.; Jamali, T.; Hadadzadeh, H.; Karimi-Maleh, H.; Beitollahi, H.; Taghavi, M.; Karimi, F. ZnO nanoparticle-modified ionic liquid-carbon paste electrode for voltammetric determination of folic acid in food and pharmaceutical samples. Ionics, 2014, 20, 421-429.
[126]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[127]
Karimi-Maleh, H.; Moazampour, M.; Yoosefian, M.; Sanati, A.L.; Tahernejad-Javazmi, F.; Mahani, M. An electrochemical nanosensor for simultaneous voltammetric determination of ascorbic acid and sudan I in food samples. Food Anal. Methods, 2014, 7, 2169-2176.
[128]
Ghoreishi, S.M.; Behpour, M.; Golestaneh, M. Simultaneous determination of Sunset yellow and Tartrazine in soft drinks using gold nanoparticles carbon paste electrode. Food Chem., 2012, 132, 637-641.
[129]
Ruiz, M.A. CalvoJosé, M.P.; Pingarrón, M. Catalytic-voltamm-etric determination of the antioxidant tert-butylhydroxyanisole (BHA) at a nickel phthalocyanine modified carbon paste electrode. Talanta, 1994, 41, 289-294.
[130]
Asunción Ruiz, M.; Ańez-Sedeń, P.; Pin, J.M. Voltammetric determination of the antioxidant tert-butylhydroxytoluene (BHT) at a carbon paste electrode modified with nickel phthalocyanine. Electroanalysis, 1994, 6, 475-479.
[131]
Franzoi, A.C.; Spinelli, A.; Vieira, I.C. Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly(vinylpyrrolidone). J. Pharm. Biomed. Anal., 2008, 47, 973-977.
[132]
Alfonso de Araújo, T.; Jacques Barbosa, A.M.; Viana, L.H.; Ferreira, V.S. Voltammetric determination of tert-butylhydroquinone in biodiesel using a carbon paste electrode in the presence of surfactant. Colloids Surf. B Biointerfaces, 2010, 79, 409-414.
[133]
Pisoschi, A.M.; Pop, A.; Negulescu, G.P.; Pisoschi, A. Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at Pt and carbon paste electrodes. Molecules, 2011, 16, 1349-1365.
[134]
Beitollahi, H.; Mohadesi, A.; Mostafavi, M.; Karimi-Maleh, H.; Baghayeri, M.; Akbari, A. Voltammetric sensor for simultaneous determination of ascorbic acid, acetaminophen, and tryptophan in pharmaceutical products. Ionics, 2014, 20, 729-737.
[135]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Daryanavard, M.; Hadadzadeh, H.; Ensafi, A.A.; Abbasghorbani, M. Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at ruthenium(II) complex-ZnO/CNTs nanocomposite modified carbon paste electrode. Electroanalysis, 2014, 26, 962-970.
[136]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[137]
Kazemi, S.; Karimi-Maleh, H.; Hosseinzadeh, R.; Faraji, F. Selective and sensitive voltammetric sensor based on modified multiwall carbon nanotubes paste electrode for simultaneous determination of L-cysteine and folic acid. Ionics, 2013, 19, 933-940.
[138]
Keyvanfard, M.; Shakeri, R.; Karimi-Maleh, H.; Alizad, K. Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater. Sci. Eng. C, 2013, 33, 811-816.
[139]
Fan, K.; Luo, X.; Ping, J.; Tang, W.; Wu, J.; Ying, Y.; Zhou, Q. Sensitive determination of (-)-epigallocatechin gallate in tea infusion using a novel ionic liquid carbon paste electrode. J. Agric. Food Chem., 2012, 60(25), 6333-6340.
[140]
Gupta, V.K.; Golestani, F.; Ahmadzadeh, S.; Karimi-Maleh, H.; Fazli, G.; Khosravi, S. NiO/CNTs nanocomposite modified ionic liquid carbon paste electrode as a voltammetric sensor for determination of quercetin. Int. J. Electrochem. Sci., 2015, 10, 3657-3667.
[141]
Bavandpour, R.; Karimi-Maleh, H.; Asif, M.; Gupta, V.K.; Atar, N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq., 2016, 213, 369-373.
[142]
Karimi-Maleh, H.; Rostami, S.; Gupta, V.K.; Fouladgar, M. Evaluation of ZnO nanoparticle ionic liquid composite as a voltammetric sensing of isoprenaline in the presence of aspirin for liquid phase determination. J. Mol. Liq., 2015, 201, 102-107.
[143]
Ferancová, A.; Korgová, E.; Mikó, R.; Labuda, J. Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin. J. Electroanal. Chem., 2000, 492, 74-77.
[144]
Gupta, V.K.; Rostami, S. Karimi-Maleh, Karimi, F.; Keyvanfard, M.; Saleh, T.A. Square Wave Voltammetric Analysis of carbidopa based on carbon paste electrode modified with ZnO/CNTs nanocomposite and n-hexyl-3-methylimidazolium hexafluoro phosphate ionic liquid. Int. J. Electrochem. Sci., 2015, 10, 1517-1528.
[145]
Shahrokhian, S.; Asadian, E. Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim. Acta, 2010, 55, 666-672.
[146]
Fouladgar, M.; Karimi-Maleh, H.; Gupta, V.K. Highly sensitive voltammetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. J. Mol. Liq., 2015, 208, 78-83.
[147]
Gupta, V.K.; Khosravi, S.; Karimi-Maleh, H.; Alizadeh, M.; Sharafi, S. A voltammetric sensor for determination of methyldopa in the presence of hydrochlorothiazide using Fe:Co nanoalloy modified carbon paste electrode. Int. J. Electrochem. Sci., 2015, 10, 3269-3281.
[148]
Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta, 2010, 55(28), 8638-8648.
[149]
Radi, A. Anodic voltammetric assay of lansoprazole and omeprazole on a carbon paste electrode. J. Pharm. Biomed. Anal., 2003, 31, 1007-1012.
[150]
Yang, G.J.; Wang, K.; Xu, J.J.; Chen, H.Y. Determination of theophylline in drugs and tea on nanosized cobalt phthalocyanine particles modified carbon paste electrode. Anal. Lett., 2004, 37, 629-643.
[151]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochim. Acta, 2016, 183, 2957-2964.
[152]
Arabali, V.; Karimi-Maleh, H. Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N-(4-hydroxyphenyl)-3, 5-dinitrobenzamide and magnesium oxide nanoparticles. Anal. Methods, 2016, 8, 5604-5610.
[153]
Karimi-Maleh, H.; Ahanjan, K.; Taghavi, M.; Ghaemy, M. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods, 2016, 8, 1780-1788.
[154]
Akbari chermini, S.; Krimi, H.; Keyvanfard, M.; Alizad, K. Voltammmetric determination of captopril using multiwall carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Iran. J. Pharm. Res., 2016, 15(1), 107-117.
[155]
Yi, H.; Li, C. Voltammetric determination of ciprofloxacin based on the enhancement effect of cetyltrimethylammonium bromide (CTAB) at carbon paste electrode. Russ. J. Electrochem., 2007, 43, 1377-1381.
[156]
Beitollahi, H.; Karimi-Maleh, H.; Khabazzadeh, H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3, 4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem., 2008, 80, 9848-9851.
[157]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3, 5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[158]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J. Mol. Liq., 2014, 196, 258-263.
[159]
Karimi-Maleh, H.; Moazampour, M.; Gupta, V.K.; Sanati, A.L. Electrocatalytic determination of captopril in real samples using NiOnanoparticle modified (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol carbon paste electrode. Sens. Actuators B, 2014, 199, 47-53.
[160]
Karimi-Maleh, H.; Sanati, A.L.; Gupta, V.K.; Yoosefian, M.; Asif, M.; Bahari, A. A voltammetric biosensor based on ionic liquid/NiO nanoparticlemodified carbon paste electrode for the determination ofnicotinamide adenine dinucleotide (NADH). Sens. Actuators B, 2014, 204, 647-654.
[161]
Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C, 2014, 35, 379-385.
[162]
Bagheri, H.; Karimi-Maleh, H.; Karimi, F.; Mallakpour, S.; Keyvanfard, M. Square wave voltammetric determination of captopril in liquid phase using N-(4-hydroxyphenyl)-3, 5-dinitrobenzamide modified ZnO/CNT carbon paste electrode as a novel electrochemical sensor. J. Mol. Liq., 2014, 198, 193-199.
[163]
Pahlavan, A.; Karimi-Maleh, H.; Karimi, F.; Aboukazempour Amiri, M.; Khoshnama, Z.; Roodbari Shahmiri, M.; Keyvanfard, M. Application of CdO nanoparticle ionic liquid modified carbon paste electrode as a high sensitive biosensor for square wave voltammetric determination of NADH. Mater. Sci. Eng. C, 2014, 45, 210-215.
[164]
Karimi-Maleh, H.; Salimi-Amiri, M.; Karimi, F.; Khalilzadeh, M.A.; Baghayeri, M. A Voltammetric sensor based on NiO nanoparticle-modified carbon-paste electrode for determination of cysteamine in the presence of high concentration of tryptophan. J. Chem., 2013, 2013, Article ID 946230
[165]
Cheraghi, S.; Taher, M.A.; Bijad, M.; Sadeghifar, H.A. Review: Stripping voltammetric methods as a high sensitive strategy for trace analysis of ions, pharmaceutical and food samples. Curr. Anal. Chem., 2017, 13, 5-12.
[166]
El Mhammedi, M.A.; Achak, M.; Bakasse, M.; Chtaini, A. Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: Application in river water samples. J. Hazard. Mater., 2009, 163, 323-328.
[167]
Ganjali, M.R.; Kazemi, N.M.; Faridbod, F.; Khee, S.; Norouzi, P. Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. J. Hazard. Mater., 2010, 173, 415-419.
[168]
Ensafi, A.A.; Karimi-Maleh, H. Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int. J. Electrochem. Sci., 2010, 5, 392-406.
[169]
Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Nasiri, V.; Khalilzadeh, M.A.; Biparva, P. Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: Application for determination of sulfite in real samples. Ionics, 2012, 18, 687-694.
[170]
Khalilzadeh, M.A.; Karimi-Maleh, H. Sensitive and selective determination of phenylhydrazine in the presence of hydrazine. Anal. Lett., 2010, 43, 186-196.
[171]
Afzali, D.; Karimi-Maleh, H.; Khalilzadeh, M.A. Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nanotube paste electrode. Environ. Chem. Lett., 2011, 9, 375-381.
[172]
Ensafi, A.A.; Lotfi, M.; Karimi-Maleh, H. New modified-multiwall carbon nanotubes paste electrode for electrocatalytic oxidation and determination of hydrazine using square wave voltammetry. Chin. J. Catal., 2012, 33, 487-493.
[173]
Javanbakht, M.; Ganjali, M.R.; Norouzi, P.; Badiei, A.; Hasheminasab, A.; Abdouss, M. Carbon paste electrode modified with functionalized nanoporous silica gel as a new sensor for eetermination of silver ion. Electroanalysis, 2007, 19, 1307-1314.
[174]
Abbaspour, A.; Moosavi, S.M.M. Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. Talanta, 2002, 56, 91-96.
[175]
Ensafi, A.A.; Karimi-Maleh, H.; Keyvanfard, M. A new voltammetric sensor for the determination of sulfite in water and wastewater using modified-multiwall carbon nanotubes paste electrode. Int. J. Environ. Anal. Chem., 2013, 93, 650-660.
[176]
Sadeghi, R.; Karimi-Maleh, H.; Khalilzadeh, M.A.; Beitollahi, H.; Ranjbarha, Z.; Pasha Zanousi, M.B. A new strategy for determination of hydroxylamine and phenol in water and waste water samples using modified nanosensor. Environ. Sci. Pollut. Res., 2013, 20, 6584-6593.
[177]
Karimi-Maleh, H.; Moazampour, M.; Ensafi, A.A.; Mallakpour, S.; Hatami, M. An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res., 2014, 21, 5879-5888.
[178]
Gupta, V.K.; Karimi-Maleh, H.; Sadegh, R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci., 2015, 10, 303-316.
[179]
Golestanifar, F.; Karimi-Maleh, H.; Atar, N.; Aydoğdu, E.; Ertan, B.; Taghavi, M.; Yola, M.L.; Ghaemy, M. Voltammetric determination of hydroxylamine using a ferrocene derivative and NiO/CNTs nanocomposite modified carbon paste electrode. Int. J. Electrochem. Sci., 2015, 10, 5456-5464.
[180]
Wong, A.; Santos, A.M.; Fatibello-Filho, O. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens. Actuators B Chem., 2018, 255, 2264-2273.
[181]
Lima, D. NCalaça, G.N., Viana, A.C.; Pessôa, C.A. Porphyran-capped gold nanoparticles modified carbon paste electrode: a simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil. Appl. Surf. Sci., 2018, 427, 742-753.
[182]
Sipa, K.; Brycht, M.; Leniart, A.; Urbaniak, P.; Nosal-Wiercińska, A.; Pałecz, B.; Skrzypek, S. β-Cyclodextrins incorporated multi-walled carbon nanotubes modified electrode for the voltammetric determination of the pesticide dichlorophen. Talanta, 2018, 176, 625-634.
[183]
Nagles, E.; García-Beltrán, O.; Calderón, J.A. Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids. Electrochim. Acta, 2017, 258, 512-532.
[184]
Mohamed, M.A.; El-Gendy, D.M.; Ahmed, N.; Banks, C.E.; Allam, N.K. 3D spongy graphene-modified screen-printed sensors for the voltammetric determination of the narcotic drug codeine. Biosens. Bioelectron., 2018, 101, 90-95.
[185]
Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon paste electrodes in facts, numbers, and notes: A Review on the occasion of the 50‐Years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis, 2009, 21, 7-28.
[186]
Kurbanoglu, S.; Ozkan, S.A. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal., 2018, 147, 439-457.
[187]
Walcarius, A. Recent trends on electrochemical sensors based on ordered mesoporous carbon. Sensors, 2017, 17(8), 1863.
[188]
Gilmartin, M.A.T.; Hart, J.P. Sensing with chemically and biologically modified carbon electrodes. A review. Analyst, 1995, 120, 1029-1045.