Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives

Author(s): Emirhan Nemutlu*, İpek Eroğlu, Hakan Eroğlu and Sedef Kır

Volume 15, Issue 4, 2019

Page: [373 - 409] Pages: 37

DOI: 10.2174/1573411014666180912125931

Price: $65

Abstract

Background: Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation.

Methods: Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample.

Results: It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals.

Conclusion: This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.

Keywords: HPLC, in vitro release, liposomes, method selection, micelles and nanorods, nano-drug delivery, nanoanalysis, nanoparticles, niosomes, physicochemical, spectrophotometry, validation.

Graphical Abstract

[1]
Heinze, T. Nanoscience and nanotechnology in Europe: Analysis of publications and patent applications including comparisons with the United States. Nanotechnol. Law Business, 2004, 1(4), 1-19.
[2]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[3]
. European Science Foundation, Nanomedicine an ESF-European Medical Research Councils,(EMRC) forward look report. 2005.
[4]
Whitman, L.J. National Nanotechnolgy Initiative Plan, 2016. Available at: https://www.nano.gov/sites/default/files/2016_nni_strategic_plan_public_comment_draft.pdf
[5]
Gong, R.D.; Chen, G.M. Preparation and application of functionalized nano drug carriers. Saudi Pharm. J., 2016, 24(3), 254-257.
[6]
Couvreur, P. Polyalkylcyanoacrylates as colloidal drug carriers. Crit. Rev. Ther. Drug, 1988, 5(1), 1-20.
[7]
Barenholz, Y. Doxil(R) - The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[8]
Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed-Nanotechnol., 2013, 9(1), 1-14.
[9]
Sainz, V.; Conniot, J.; Matos, A.I.; Peres, C.; Zupancic, E.; Moura, L.; Silva, L.C.; Florindo, H.F.; Gaspar, R.S. Regulatory aspects on nanomedicines. Biochem. Biophys. Res. Commun., 2015, 468(3), 504-510.
[10]
Schmid, G. Nanoparticles: From Theory to Application; Wiley-VCH Publishers: Weinheim, Germany, 2005.
[11]
Hosokawa, M.; Nogi, K.; Naito, M.; Toyokazu, Y. Nanoparticle technology handbook; Elsevier: Amsterdam, 2007.
[12]
Couvreur, P.; Dubernet, C.; Puisieux, F. Controlled drug-delivery with nanoparticles - current possibilities and future-trends. Eur. J. Pharm. Biopharm., 1995, 41(1), 2-13.
[13]
Vauthier, C.; Couvreur, P. Development of nanoparticles made of polysaccharides as novel drug carrier systems.In Handbook of pharmaceutical controlled release technology; Wise, D.L., Ed.; Marcel Dekker: New York, 2000, pp. 13-429.
[14]
Vanderhoff, J.W. E. A. M. Ugelstad J. US Patent 4,177,177. Polymer emulsification process. 4,177,177, 1979.
[15]
Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm., 1989, 55(1), R1-R4.
[16]
Ozcan, I.; Bouchemal, K.; Segura-Sanchez, F.; Ozer, O.; Guneri, T.; Ponchel, G. Synthesis and characterization of surface-modified PBLG nanoparticles for bone targeting: in vitro and in vivo evaluations. J. Pharm. Sci., 2011, 100(11), 4877-4887.
[17]
Bindschaedler, C.; Gurny, R.; Doelker, E. Process for preparing a powder of water-insoluble polymer which can be redispersed in a liquid phase, the resulting powder and utilization thereof. U.S. Patent 4,968,350, 1990.
[18]
Jeon, H.J.; Jeong, J.I.; Jang, M.K.; Park, Y.H.; Nah, J.W. Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int. J. Pharm., 2000, 207(1-2), 99-108.
[19]
York, P. Strategies for particle design using supercritical fluid technologies. Pharm. Sci. Technol. Today, 1999, 2(11), 430-440.
[20]
Takeuchi, H.; Yamamoto, H.; Kawashima, Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev., 2001, 47(1), 39-54.
[21]
Thickett, S.C.; Gilbert, R.G. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer, 2007, 48(24), 6965-6991.
[22]
Harsha, S.N.; Aldhubiab, B.E.; Nair, A.B.; Alhaider, I.A.; Attimarad, M.; Venugopala, K.N.; Srinivasan, S.; Gangadhar, N.; Asif, A.H. Nanoparticle formulation by Buchi B-90 Nano Spray Dryer for oral mucoadhesion. Drug Des. Devel. Ther., 2015, 9, 273-282.
[23]
Maged, A.; Mahmoud, A.A.; Ghorab, M.M. Nano spray drying technique as a novel approach to formulate stable econazole nitrate nanosuspension formulations for ocular use. Mol. Pharm., 2016, 13(9), 2951-2965.
[24]
Johnston, M.J.; Semple, S.C.; Klimuk, S.K.; Ansell, S.; Maurer, N.; Cullis, P.R. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim. Biophys. Acta, 2007, 1768(5), 1121-1127.
[25]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[26]
Eroglu, I.; Azizoglu, E.; Ozyazici, M.; Nenni, M.; Gurer Orhan, H.; Ozbal, S.; Tekmen, I.; Ertam, I.; Unal, I.; Ozer, O. Effective topical delivery systems for corticosteroids: dermatological and histological evaluations. Drug Deliv., 2016, 23(5), 1502-1513.
[27]
U.S. National Institutes of Health Clinical Trials. www.clinicaltrials.gov
[28]
Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[29]
Marwa, A.; Omaima, S.; Hanaa, E.L.G.; Mohammed, A-S. Preparation and in-vitro evaluation of diclofenac sodium niosomal formulations. Int. J. Pharm. Sci. Res., 2013, 4(5), 1757-1765.
[30]
Rogerson, A.; Cummings, J.; Willmott, N.; Florence, A.T. The distribution of doxorubicin in mice following administration in niosomes. J. Pharm. Pharmacol., 1988, 40(5), 337-342.
[31]
Jayaraman, S.C.; Ramachandran, C.; Weiner, N. Topical delivery of erythromycin from various formulations: an in vivo hairless mouse study. J. Pharm. Sci., 1996, 85(10), 1082-1084.
[32]
Baillie, A.J.; Coombs, G.H.; Dolan, T.F.; Laurie, J. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J. Pharm. Pharmacol., 1986, 38(7), 502-505.
[33]
Khandare, J.N.; Madhavi, G. BM, T. Niosomes novel drug delivery system. East. Pharma., 1994, 37, 61-64.
[34]
Kiwada, H.; Niimura, H.; Fujisaki, Y.; Yamada, S.; Kato, Y. Application of synthetic alkyl glycoside vesicles as drug carriers. I. Preparation and physical properties. Chem. Pharm. Bull., 1985, 33(2), 753-759.
[35]
Jadon, P.S.; Gajbhiye, V.; Jadon, R.S.; Gajbhiye, K.R.; Ganesh, N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech, 2009, 10(4), 1186-1192.
[36]
Hunter, C.A.; Dolan, T.F.; Coombs, G.H.; Baillie, A.J. Vesicular systems(niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J. Pharm. Pharmacol., 1988, 40(3), 161-165.
[37]
Bayindir, Z.S.; Be, A.B.; Yuksel, N. Paclitaxel-loaded niosomes for intravenous administration: Pharmacokinetics and tissue distribution in rats. Turk. J. Med. Sci., 2015, 45(6), 1403-1412.
[38]
Moser, P.; Marchand-Arvier, M.; Labrude, P.; Handjani-Vila, R.M.; Vigneron, C. Hemoglobin niosomes. I. Preparation, functional and physico-chemical properties, and stability. Pharm. Acta Helv., 1989, 64(7), 192-202.
[39]
Li, Q.; Li, Z.; Zeng, W.; Ge, S.; Lu, H.; Wu, C.; Ge, L.; Liang, D.; Xu, Y. Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur. J. Pharm. Sci., 2014, 62, 115-123.
[40]
Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J. Control. Release, 2012, 164(1), 17-25.
[41]
Mehta, S.K.; Jindal, N. Tyloxapol niosomes as prospective drug delivery module for antiretroviral drug nevirapine. AAPS PharmSciTech, 2015, 16(1), 67-75.
[42]
Dong, P.W.; Wang, X.H.; Gu, Y.C.; Wang, Y.J.; Wang, Y.J.; Gong, C.Y.; Luo, F.; Guo, G.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloid Surf. A., 2010, 358(1-3), 128-134.
[43]
Hu, J.M.; Qian, Y.F.; Wang, X.F.; Liu, T.; Liu, S.Y. Drug-Loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR Imaging. Langmuir, 2012, 28(4), 2073-2082.
[44]
Liu, T.; Qian, Y.F.; Hu, X.L.; Ge, Z.S.; Liu, S.Y. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery. J. Mater. Chem., 2012, 22(11), 5020-5030.
[45]
Kwon, G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(5), 357-403.
[46]
Adams, M.L.; Kwon, G.S. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: Effects of acyl chain length. J. Control. Release, 2003, 87(1-3), 23-32.
[47]
Croy, S.R.; Kwon, G.S. The effects of Pluronic block copolymers on the aggregation state of nystatin. J. Control. Release, 2004, 95(2), 161-171.
[48]
Torchilin, V.P. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev., 2002, 54(2), 235-252.
[49]
Trubetskoy, V.S.; Gazelle, G.S.; Wolf, G.L.; Torchilin, V.P. Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: Design of long-circulating particulate contrast medium for X-ray computed tomography. J. Drug Target., 1997, 4(6), 381-388.
[50]
Weissig, V.; Whiteman, K.R.; Torchilin, V.P. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm. Res., 1998, 15(10), 1552-1556.
[51]
Kabanov, A.V.; Chekhonin, V.P.; Alakhov, V.; Batrakova, E.V.; Lebedev, A.S.; Melik-Nubarov, N.S.; Arzhakov, S.A.; Levashov, A.V.; Morozov, G.V.; Severin, E.S. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett., 1989, 258(2), 343-345.
[52]
Batrakova, E.V.; Han, H.Y.; Miller, D.W.; Kabanov, A.V. Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm. Res., 1998, 15(10), 1525-1532.
[53]
Kabanov, A.V.; Batrakova, E.V.; Meliknubarov, N.S.; Fedoseev, N.A.; Dorodnich, T.Y.; Alakhov, V.Y.; Chekhonin, V.P.; Nazarova, I.R.; Kabanov, V.A. A New Class of Drug Carriers - Micelles of Poly(Oxyethylene)-Poly(Oxypropylene) Block Copolymers as Microcontainers for Drug Targeting from Blood in Brain. J. Control. Release, 1992, 22(2), 141-157.
[54]
Katayose, S.; Kataoka, K. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug. Chem., 1997, 8(5), 702-707.
[55]
Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug. Chem., 1998, 9(6), 805-812.
[56]
Kabanov, A.V.; Vinogradov, S.V.; Suzdaltseva, Y.G.; Alakhov, V.Y. Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery. Bioconjug. Chem., 1995, 6(6), 639-643.
[57]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[58]
Torchilin, V.P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci., 2004, 61(19-20), 2549-2559.
[59]
Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 2001, 73(2-3), 137-172.
[60]
Adams, M.L.; Lavasanifar, A.; Kwon, G.S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci., 2003, 92(7), 1343-1355.
[61]
Kabanov, A.V.; Alakhov, V.Y. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carrier Syst., 2002, 19(1), 1-72.
[62]
Venkatesan, R.; Pichaimani, A.; Hari, K.; Balasubramanian, P.K.; Kulandaivel, J.; Premkumar, K. Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. J. Mater. Chem. B, 2013, 1(7), 1010-1018.
[63]
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol., 2004, 22(1), 47-52.
[64]
Nusz, G.J.; Curry, A.C.; Marinakos, S.M.; Wax, A.; Chilkoti, A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano, 2009, 3(4), 795-806.
[65]
Castellana, E.T.; Gamez, R.C.; Gomez, M.E.; Russell, D.H. Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. Langmuir, 2010, 26(8), 6066-6070.
[66]
Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.C.; Mornet, S.; Jerome, C.; Duguet, E. Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small, 2015, 11(19), 2323-2332.
[67]
Treguer-Delapierre, M.; Majimel, J.; Mornet, S.; Duguet, E.; Ravaine, S. Synthesis of non-spherical gold nanoparticles. Gold Bull., 2008, 41(2), 195-207.
[68]
Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method. Chem. Mater., 2003, 15(10), 1957-1962.
[69]
Shen, S.; Tang, H.; Zhang, X.; Ren, J.; Pang, Z.; Wang, D.; Gao, H.; Qian, Y.; Jiang, X.; Yang, W. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials, 2013, 34(12), 3150-3158.
[70]
Wijaya, A.; Schaffer, S.B.; Pallares, I.G.; Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano, 2009, 3(1), 80-86.
[71]
Liang, M.; Lin, I.C.; Whittaker, M.R.; Minchin, R.F.; Monteiro, M.J.; Toth, I. Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano, 2010, 4(1), 403-413.
[72]
Liu, J.; Rad, I.Y.; Sun, F.; Stansbury, J.W. Photo-Reactive nanogel as a means to tune properties during polymer network formation. Polym. Chem., 2014, 5(1), 1.
[73]
Bodor, N. Retrometabolic Approaches to Drug Targeting. In: Membranes and Barriers: Targeted Drug Delivery; Rapaka, R.S., Ed.; National Institute of Health Publication: Rockville, 1995, pp. 1-27.
[74]
Braun, K.; Pipkorn, R.; Waldeck, W. Development and characterization of drug delivery systems for targeting mammalian cells and tissues: A review. Curr. Med. Chem., 2005, 12(16), 1841-1858.
[75]
Carroll, J.B.; Warby, S.C.; Southwell, A.L.; Doty, C.N.; Greenlee, S.; Skotte, N.; Hung, G.; Bennett, C.F.; Freier, S.M.; Hayden, M.R. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol. Ther., 2011, 19(12), 2178-2185.
[76]
Milenic, D.E.; Brechbiel, M.W. Targeting of radio-isotopes for cancer therapy. Cancer Biol. Ther., 2004, 3(4), 361-370.
[77]
Liu, S.; Miller-Randolph, S.; Crown, D.; Moayeri, M.; Sastalla, I.; Okugawa, S.; Leppla, S.H. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host Microbe, 2010, 8(5), 455-462.
[78]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S81-S91.
[79]
Jain, S.K.; Gupta, Y.; Jain, A.; Saxena, A.R.; Khare, P.; Jain, A. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine, 2008, 4(1), 41-48.
[80]
Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat., 2005, 4(4), 363-374.
[81]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[82]
Thomas, G.D. Practical considerations in the exploitation of passive tumor targeting.In:Drug targeting; Francis, G.E.; Delgado, C., Eds.; Humana Press: Totowa, New Jersey, 1999, Vol. 25, pp. 97-113.
[83]
Lammers, T.; Peschke, P.; Kuhnlein, R.; Subr, V.; Ulbrich, K.; Huber, P.; Hennink, W.; Storm, G. Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems. Neoplasia, 2006, 8(10), 788-795.
[84]
Yockman, J.W.; Maheshwari, A.; Han, S.O.; Kim, S.W. Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J. Control. Release, 2003, 87(1-3), 177-186.
[85]
Moses, M.A.; Brem, H.; Langer, R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell, 2003, 4(5), 337-341.
[86]
Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res., 2005, 11(23), 8230-8234.
[87]
Nomura, T.; Saikawa, A.; Morita, S.; Sakaeda, T.; Yamashita, F.; Honda, K.; Takakura, Y.; Hashida, M. Pharmacokinetic characteristics and therapeutic effects of mitomycin C dextran conjugates after intratumoural injection. J. Control. Release, 1998, 52(3), 239-252.
[88]
Reddy, L.H.; Sharma, R.K.; Chuttani, K.; Mishra, A.K.; Murthy, R.R. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies. AAPS J., 2004, 6(3)e23
[89]
Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J. Pharmacol. Exp. Ther., 2005, 315(1), 196-202.
[90]
Williams, A.S.; Camilleri, J.P.; Goodfellow, R.M.; Williams, B.D. A single intra-articular injection of liposomally conjugated methotrexate suppresses joint inflammation in rat antigen-induced arthritis. Br. J. Rheumatol., 1996, 35(8), 719-724.
[91]
Boucher, W.; Stern, J.M.; Kotsinyan, V.; Kempuraj, D.; Papaliodis, D.; Cohen, M.S.; Theoharides, T.C. Intravesical nanocrystalline silver decreases experimental bladder inflammation. J. Urol., 2008, 179(4), 1598-1602.
[92]
Mugabe, C.; Matsui, Y.; So, A.I.; Gleave, M.E.; Baker, J.H.; Minchinton, A.I.; Manisali, I.; Liggins, R.; Brooks, D.E.; Burt, H.M. In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non-muscle-invasive bladder cancer. Clin. Cancer Res., 2011, 17(9), 2788-2798.
[93]
Erdogar, N.; Iskit, A.B.; Eroglu, H.; Sargon, M.F.; Mungan, N.A.; Bilensoy, E. Antitumor efficacy of bacillus calmette-guerin loaded cationic nanoparticles for intravesical immunotherapy of bladder tumor induced rat model. J. Nanosci. Nanotechnol., 2015, 15(12), 10156-10164.
[94]
Erdogar, N.; Iskit, A.B.; Eroglu, H.; Sargon, M.F.; Mungan, N.A.; Bilensoy, E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: safety and efficacy. Int. J. Pharm., 2014, 471(1-2), 1-9.
[95]
Nawroth, I.; Alsner, J.; Behlke, M.A.; Besenbacher, F.; Overgaard, J.; Howard, K.A.; Kjems, J. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFalpha prevents radiation-induced fibrosis. Radiother. Oncol., 2010, 97(1), 143-148.
[96]
Yokoyama, M. Drug targeting with nano-sized carrier systems. J. Artif. Organs, 2005, 8(2), 77-84.
[97]
Davis, S.S. Biomedical applications of nanotechnology--implications for drug targeting and gene therapy. Trends Biotechnol., 1997, 15(6), 217-224.
[98]
Singh, Y.; Palombo, M.; Sinko, P.J. Recent trends in targeted anticancer prodrug and conjugate design. Curr. Med. Chem., 2008, 15(18), 1802-1826.
[99]
Dhar, S.; Kolishetti, N.; Lippard, S.J.; Farokhzad, O.C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA, 2011, 108(5), 1850-1855.
[100]
Xiao, K.; Li, Y.P.; Luo, J.T.; Lee, J.S.; Xiao, W.W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32(13), 3435-3446.
[101]
Xiao, K.; Luo, J.T.; Li, Y.P.; Xiao, W.W.; Lee, J.S.; Gonik, A.M.; Lam, K.S. The passive targeting of polymeric micelles in various types and sizes of tumor models. Nanosci. Nanotechnol. Lett., 2010, 2(2), 79-85.
[102]
Seymour, L.W Systemic cancer therapy using polymer-based prodrugs and progenes Dumitriu, S. Ed. Marcel Dekker: New York,, 2002, pp. 843-851.
[103]
Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res., 2003, 42(6), 463-478.
[104]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[105]
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release, 2010, 141(3), 320-327.
[106]
Vasir, J.K.; Reddy, M.K.; Labhasetwar, V.D. Nanosystems in drug targeting: Opportunities and challenges. Curr. Nanosci., 2005, 1(1), 47-64.
[107]
Wang, Y.; Grainger, D.W. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv. Drug Deliv. Rev., 2012, 64(12), 1341-1357.
[108]
Wickham, T.J. Ligand-directed targeting of genes to the site of disease. Nat. Med., 2003, 9(1), 135-139.
[109]
Hamdy, S.; Haddadi, A.; Hung, R.W.; Lavasanifar, A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug Deliv. Rev., 2011, 63(10-11), 943-955.
[110]
Mahato, R.; Tai, W.; Cheng, K. Prodrugs for improving tumor targetability and efficiency. Adv. Drug Deliv. Rev., 2011, 63(8), 659-670.
[111]
Weitman, S.D.; Lark, R.H.; Coney, L.R.; Fort, D.W.; Frasca, V.; Zurawski, V.R.; Kamen, B.A. Distribution of the Folate Receptor Gp38 in Normal and Malignant-Cell Lines and Tissues. Cancer Res., 1992, 52(12), 3396-3401.
[112]
Leamon, C.P.; Reddy, J.A. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1127-1141.
[113]
Stella, B.; Arpicco, S.; Peracchia, M.T.; Desmaele, D.; Hoebeke, J.; Renoir, M.; D’Angelo, J.; Cattel, L.; Couvreur, P. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci., 2000, 89(11), 1452-1464.
[114]
Bies, C.; Lehr, C.M.; Woodley, J.F. Lectin-mediated drug targeting: history and applications. Adv. Drug Deliv. Rev., 2004, 56(4), 425-435.
[115]
Suzuki, R.; Takizawa, T.; Negishi, Y.; Utoguchi, N.; Maruyama, K. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int. J. Pharm., 2008, 354(1-2), 49-55.
[116]
Segura-Sanchez, F.; Montembault, V.; Fontaine, L.; Martinez-Barbosa, M.E.; Bouchemal, K.; Ponchel, G. Synthesis and characterization of functionalized poly(gamma-benzyl-L-glutamate) derivates and corresponding nanoparticles preparation and characterization. Int. J. Pharm., 2010, 387(1-2), 244-252.
[117]
Dromi, S.; Frenkel, V.; Luk, A.; Traughber, B.; Angstadt, M.; Bur, M.; Poff, J.; Xie, J.W.; Libutti, S.K.; Li, K.C.P.; Wood, B.J. Pulsed-high intensity focused ultrasound and low temperature sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res., 2007, 13(9), 2722-2727.
[118]
Chen, P.Y.; Liu, H.L.; Hua, M.Y.; Yang, H.W.; Huang, C.Y.; Chu, P.C.; Lyu, L.A.; Tseng, I.C.; Feng, L.Y.; Tsai, H.C.; Chen, S.M.; Lu, Y.J.; Wang, J.J.; Yen, T.C.; Ma, Y.H.; Wu, T.; Chen, J.P.; Chuang, J.I.; Shin, J.W.; Hsueh, C.; Wei, K.C. Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro-oncol., 2010, 12(10), 1050-1060.
[119]
D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharmaceut., 2014, 2014, 1-12.
[120]
U.S. Department of Health Food and Drug Administration Center for Drug Evaluation and ResearchDissolution Testing of Immediate Release Solid Oral Dosage Forms; Rockville, 1997.
[121]
ICH The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Dissolution Test General Chapterhttp://www.ich.org/products/guidelines/quality/quality-single/article/dissolution-test-general-chapter.html(Accessed 09.07.2017)
[122]
European Medicines AgencyReflection paper on the dissolution specification for generic oral immediate release products; London, 2016.
[123]
Heng, D.; Cutler, D.J.; Chan, H.K.; Yun, J.; Raper, J.A. What is a suitable dissolution method for drug nanoparticles? Pharm. Res., 2008, 25(7), 1696-1701.
[124]
Bhardwaj, U.; Burgess, D.J. A novel USP apparatus 4 based release testing method for dispersed systems. Int. J. Pharm., 2010, 388(1-2), 287-294.
[125]
Bhagav, P.; Upadhyay, H.; Chandran, S. Brimonidine tartrate-eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech, 2011, 12(4), 1087-1101.
[126]
Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg., 2016, 3(1), 3.
[127]
Kuo, Y.C.; Chung, J.F. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf. B Biointerfaces, 2011, 83(2), 299-306.
[128]
Zhong, Y.; Wang, C.; Cheng, R.; Cheng, L.; Meng, F.; Liu, Z.; Zhong, Z. CRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. J. Control. Release, 2014, 195, 63-71.
[129]
Wang, M.; Yuan, Y.; Gao, Y.; Ma, H.M.; Xu, H.T.; Zhang, X.N.; Pan, W.S. Preparation and characterization of 5-fluorouracil pH-sensitive niosome and its tumor-targeted evaluation: In vitro and in vivo. Drug Dev. Ind. Pharm., 2012, 38(9), 1134-1141.
[130]
El-Menshawe, S.F. A novel approach to topical acetazolamide/PEG 400 ocular niosomes. J. Drug Deliv. Sci. Technol., 2012, 22(4), 295-299.
[131]
Maniya, N.H.; Patel, S.R.; Murthy, Z.V.P. Controlled delivery of acyclovir from porous silicon micro- and nanoparticles. Appl. Surf. Sci., 2015, 330, 358-365.
[132]
Butreddy, A.; Narala, A.; Dudhipala, N. Formulation and characterization of Liquid Crystalline Hydrogel of Agomelatin: In vitro and Ex vivo evaluation. J. Appl. Pharm. Sci., 2015, 5(9), 110-114.
[133]
Ortan, A.; Ferdes, M.; Rodino, S.; Pirvu, C.D.; Draganescu, D. Liposomally encapsulated volatile oil of Anethum graveolens. Farmacia, 2013, 61(2), 361-370.
[134]
Zhao, L.; Temelli, F.; Chen, L. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods, 2017, 34, 159-167.
[135]
Chen, Y.S.; Alany, R.G.; Young, S.A.; Green, C.R.; Rupenthal, I.D. In vitro release characteristics and cellular uptake of poly(D,L-lactic-co-glycolic acid) nanoparticles for topical delivery of antisense oligodeoxynucleotides. Drug Deliv., 2011, 18(7), 493-501.
[136]
Ahmed, A.B.; Konwar, R.; Sengupta, R. Atorvastatin calcium loaded chitosan nanoparticles: In vitro evaluation and in vivo pharmacokinetic studies in rabbits. Braz. J. Pharm. Sci., 2015, 51(2), 467-477.
[137]
Wei, Y.; Guo, J.; Zheng, X.; Wu, J.; Zhou, Y.; Yu, Y.; Ye, Y.; Zhang, L.; Zhao, L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int. J. Nanomedicine, 2014, 9(1), 3623-3630.
[138]
Panchamukhi, S.I.; Mulla, J.A.S.; Shetty, N.S.; Khazi, M.I.A.; Khan, A.Y.; Kalashetti, M.B.; Khazi, I.A.M. Benzothieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidines: Synthesis, characterization, antimicrobial activity, and incorporation into solid lipid nanoparticles. Archiv der Pharmazie, 2011, 344(6), 358-365.
[139]
Zhu, Y.; Peng, W.; Zhang, J.; Wang, M.; Firempong, C.K.; Feng, C.; Liu, H.; Xu, X.; Yu, J. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. J. Funct. Foods, 2014, 8(1), 358-366.
[140]
Cipolla, D.; Wu, H.; Eastman, S.; Redelmeier, T.; Gonda, I.; Chan, H.K. Development and characterization of an in vitro release assay for liposomal ciprofloxacin for inhalation. J. Pharm. Sci., 2014, 103(1), 314-327.
[141]
Cipolla, D.; Wu, H.; Gonda, I.; Eastman, S.; Redelmeier, T.; Chan, H.K. Modifying the release properties of liposomes toward personalized medicine. J. Pharm. Sci., 2014, 103(6), 1851-1862.
[142]
Cipolla, D.; Wu, H.; Eastman, S.; Redelmeier, T.; Gonda, I.; Chan, H.K. Tuning Ciprofloxacin Release Profiles from Liposomally Encapsulated Nanocrystalline Drug. Pharm. Res., 2016, 33(11), 2748-2762.
[143]
Chen, S.; Liu, W.; Wan, J.; Cheng, X.; Gu, C.; Zhou, H.; Chen, S.; Zhao, X.; Tang, Y.; Yang, X. Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique. Drug Dev. Ind. Pharm., 2013, 39(1), 20-28.
[144]
Al-Kady, A.S.; Gaber, M.; Hussein, M.M.; Ebeid, E.Z.M. Nanostructure-loaded mesoporous silica for controlled release of coumarin derivatives: A novel testing of the hyperthermia effect. Eur. J. Pharm. Biopharm., 2011, 77(1), 66-74.
[145]
Feng, R.; Zhu, W.; Song, Z.; Zhao, L.; Zhai, G. Novel star-type methoxy-poly(ethylene glycol)(PEG)-poly(ε- caprolactone)(PCL) copolymeric nanoparticles for controlled release of curcumin. J. Nanopart. Res., 2013, 15(6), 1.
[146]
Jambhrunkar, S.; Qu, Z.; Popat, A.; Yang, J.; Noonan, O.; Acauan, L.; Ahmad Nor, Y.; Yu, C.; Karmakar, S. Effect of surface functionality of silica nanoparticles on cellular uptake and cytotoxicity. Mol. Pharm., 2014, 11(10), 3642-3655.
[147]
Song, Z.; Zhu, W.; Yang, F.; Liu, N.; Feng, R. Preparation, characterization, in vitro release, and pharmacokinetic studies of curcumin-loaded mPEG–PVL nanoparticles. Polym. Bull., 2014, 72(1), 75-91.
[148]
Sun, W.; Zou, Y.; Guo, Y.; Wang, L.; Xiao, X.; Sun, R.; Zhao, K. Construction and characterization of curcumin nanoparticles system. J. Nanopart. Res., 2014, 16(3), 1.
[149]
Roy, B.; Guha, P.; Bhattarai, R.; Nahak, P.; Karmakar, G.; Chettri, P.; Panda, A.K. Influence of lipid composition, pH, and temperature on physicochemical properties of liposomes with curcumin as model drug. J. Oleo Sci., 2016, 65(5), 399-411.
[150]
Kumar, K.; Rai, A.K. Development and evaluation of proniosome- encapsulated curcumin for transdermal administration. Trop. J. Pharm. Res., 2011, 10(6), 697-703.
[151]
Righeschi, C.; Bergonzi, M.C.; Isacchi, B.; Bazzicalupi, C.; Gratteri, P.; Bilia, A.R. Enhanced curcumin permeability by SLN formulation: The PAMPA approach. LWT - Food Sci. Technol., 2016, 66, 475-483.
[152]
Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F.J. PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv., 2016, 23(7), 2095-2114.
[153]
Zaki, R.M.; Ali, A.A.; El Menshawe, S.F.; Bary, A.A. Formulation and in vitro evalution of diacerein loaded niosomes. Int. J. Pharm. Pharm. Sci., 2014, 6(Suppl. 2), 515-521.
[154]
Liu, D.; Ge, Y.; Tang, Y.; Yuan, Y.; Zhang, Q.; Li, R.; Xu, Q. Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: Preparation, characterization and in vitro studies. J. Microencapsul., 2010, 27(8), 726-734.
[155]
El-Naggar, M.E.; El-Rafie, M.H.; El-sheikh, M.A.; El-Feky, G.S.; Hebeish, A. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. Int. J. Biol. Macromol., 2015, 81, 718-729.
[156]
Naguib, Y.W.; Rodriguez, B.L.; Li, X.; Hursting, S.D.; Williams, R.O.; Cui, Z. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: In vitro and in vivo evaluation. Mol. Pharm., 2014, 11(4), 1239-1249.
[157]
Csikós, Z.; Kerekes, K.; Fazekas, E.; Kun, S.; Borbély, J. Biopolymer based nanosystem for doxorubicin targeted delivery. Am. J. Cancer Res., 2017, 7(3), 715-726.
[158]
Wang, W.; Zhang, P.; Shan, W.; Gao, J.; Liang, W. A novel chitosan-based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy. J. Biomater. Sci. Polym. Ed., 2013, 24(14), 1649-1659.
[159]
Zhong, Y.; Wang, C.; Cheng, L.; Meng, F.; Zhong, Z.; Liu, Z. Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. Biomacromolecules, 2013, 14(7), 2411-2419.
[160]
Yu, J.; Ha, W.; Sun, J.N.; Shi, Y.P. Supramolecular hybrid hydrogel based on host-guest interaction and its application in drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(22), 19544-19551.
[161]
Qiu, L.; Xu, C.R.; Zhong, F.; Hong, C.Y.; Pan, C.Y. Fabrication of Functional Nano-objects through RAFT Dispersion Polymerization and Influences of Morphology on Drug Delivery. ACS Appl. Mater. Interfaces, 2016, 8(28), 18347-18359.
[162]
Zhang, L.; Zhang, P.; Zhao, Q.; Zhang, Y.; Cao, L.; Luan, Y. Doxorubicin-loaded polypeptide nanorods based on electrostatic interactions for cancer therapy. J. Colloid Interface Sci., 2016, 464, 126-136.
[163]
Gardikis, K.; Signorelli, M.; Ferrario, C.; Schiraldi, A.; Fortina, M.G.; Hatziantoniou, S.; Demetzos, C.; Fessas, D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced Drug Delivery Nano Systems: A calorimetric approach. Int. J. Pharm., 2017, 516(1-2), 178-184.
[164]
Scheeren, L.E.; Nogueira, D.R.; Macedo, L.B.; Vinardell, M.; Mitjans, M.; Infante, M.; Rolim, C.M.B. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids Surf. B Biointerfaces, 2016, 138, 117-127.
[165]
Ganesh, M.; Hemalatha, P.; Mei, P.M.; Rajasekar, K.; Jang, H.T. A new fluoride mediated synthesis of mesoporous silica and their usefulness in controlled delivery of duloxetine hydrochloride a serotonin re-uptake inhibitor. J. Ind. Eng. Chem., 2012, 18(2), 684-689.
[166]
Granja, A.; Vieira, A.C.; Chaves, L.L.; Nunes, C.; Neves, A.R.; Pinheiro, M.; Reis, S. Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chem., 2017, 237, 803-810.
[167]
Granja, A.; Vieira, A.C.; Chaves, L.L.; Nunes, C.; Neves, A.R.; Pinheiro, M.; Reis, S. Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chem., 2017, 237, 803-810.
[168]
Jigar, V.; Vishal, G.; Tejas, G.; Vishal, C.; Umesh, U. Formulation and characterization of topical gel of erythromycin entrapped into niosomes. Int. J. Pharm. Tech. Res., 2011, 3(3), 1714-1718.
[169]
Ha, W.; Wu, H.; Wang, X.L.; Peng, S.L.; Ding, L.S.; Zhang, S.; Li, B.J. Self-aggregates of cholesterol-modified carboxymethyl konjac glucomannan conjugate: Preparation, characterization, and preliminary assessment as a carrier of etoposide. Carbohydr. Polym., 2011, 86(2), 513-519.
[170]
Fetih, G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J. Drug Deliv. Sci. Technol., 2016, 35, 8-15.
[171]
Yuan, H.; Li, X.; Zhang, C.; Pan, W.; Liang, Y.; Chen, Y.; Chen, W.; Liu, L.; Wang, X. Nanosuspensions as delivery system for gambogenic acid: characterization and in vitro/in vivo evaluation. Drug Deliv., 2016, 23(8), 2772-2779.
[172]
Raval, A.; Pillai, S.A.; Bahadur, A.; Bahadur, P. Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs. J. Mol. Liq., 2017, 230, 473-481.
[173]
Mosselhy, D.A.; Ge, Y.; Gasik, M.; Nordström, K.; Natri, O.; Hannula, S.P. Silica-gentamicin nanohybrids: Synthesis and antimicrobial action. Materials, 2016, 9(3), 1.
[174]
Yan, X.Q.; Shi, Y.L.; Jiang, Q.F.; Ping, G.F.; Deng, Z.J. Design of amphiphilic PCL-PEG-PCL block copolymers as vehicles of Ginkgolide B and their brain-targeting studies. J. Biomater. Sci. Polym. Ed., 2017, 28(14), 1497-1510.
[175]
Yata, V.K.; Ghosh, S.S. Investigating structure and fluorescence properties of green fluorescent protein released from chitosan nanoparticles. Mater. Lett., 2012, 73, 209-211.
[176]
Mokale, V.; Khatumaria, B.; Verma, U.; Shimpi, N.; Naik, J.; Mishra, S. Formulation and development of nanoparticles for quick and complete release of hydrochlorothiazide by nanonization technique. Micro Nanosyst., 2014, 6(2), 109-117.
[177]
Jensen, L.B.; Magnussson, E.; Gunnarsson, L.; Vermehren, C.; Nielsen, H.M.; Petersson, K. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int. J. Pharm., 2010, 390(1), 53-60.
[178]
Paul, W.; Sharma, C.P. Synthesis and characterization of alginate coated zinc calcium phosphate nanoparticles for intestinal delivery of insulin. Process Biochem., 2012, 47(5), 882-886.
[179]
Pippa, N.; Karayianni, M.; Pispas, S.; Demetzos, C. Complexation of cationic-neutral block polyelectrolyte with insulin and in vitro release studies. Int. J. Pharm., 2015, 491(1-2), 136-143.
[180]
Feczkó, T.; Fodor-Kardos, A.; Sivakumaran, M.; Haque Shubhra, Q.T. In vitro IFN-α release from IFN-α- and pegylated IFN-α-loaded poly(lactic-co-glycolic acid) and pegylated poly(lactic-co-glycolic acid) nanoparticles. Nanomedicine, 2016, 11(16), 2029-2034.
[181]
Dutta, P.; Dey, J.; Perumal, V.; Mandal, M. Amino acid based amphiphilic copolymer micelles as carriers of non-steroidal anti-inflammatory drugs: Solubilization, in vitro release and biological evaluation. Int. J. Pharm., 2011, 407(1-2), 207-216.
[182]
Elkomy, M.H.; Elmenshawe, S.F.; Eid, H.M.; Ali, A.M.A. Topical ketoprofen nanogel: artificial neural network optimization, clustered bootstrap validation, and in vivo activity evaluation based on longitudinal dose response modeling. Drug Deliv., 2016, 23(9), 3294-3306.
[183]
Danish, M.K.; Vozza, G.; Byrne, H.J.; Frias, J.M.; Ryan, S.M. Comparative study of the structural and physicochemical properties of two food derived antihypertensive tri-peptides, Isoleucine-Proline-Proline and Leucine-Lysine-Proline encapsulated into a chitosan based nanoparticle system. Innov. Food Sci. Emerg. Technol., 2017, 44, 139-148.
[184]
Hu, D.; Lin, C.; Liu, L.; Li, S.; Zhao, Y. Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. J. Food Eng., 2012, 109(3), 545-552.
[185]
El-Badry, M.; Fetih, G.; Fathalla, D.; Shakeel, F. Transdermal delivery of meloxicam using niosomal hydrogels: In vitro and pharmacodynamic evaluation. Pharm. Dev. Technol., 2015, 20(7), 820-826.
[186]
Raj, J.; Uppuluri, K.B. Metformin loaded casein micelles for sustained delivery: Formulation, characterization and in-vitro evaluation. Biomed. Pharmacol. J., 2015, 8(1), 83-89.
[187]
Gopi, G.; Kannan, K. Fabrication and in vitro evaluation of nateglinide-loaded ethyl cellulose nanoparticles. Asian J. Pharmaceut. Clin. Res., 2015, 8(6), 93-96.
[188]
Yang, R.; Huang, X.; Dou, J.; Zhai, G.; Lequn, S. Self-microemulsifying drug delivery system for improved oral bioavailability of oleanolic acid: Design and evaluation. Int. J. Nanomedicine, 2013, 8, 2917-2926.
[189]
Kaithwas, V.; Dora, C.P.; Kushwah, V.; Jain, S. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf. B Biointerfaces, 2017, 154, 10-20.
[190]
Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym., 2013, 95(1), 50-56.
[191]
Lopes-De-Araújo, J.; Neves, A.R.; Gouveia, V.M.; Moura, C.C.; Nunes, C.; Reis, S. Oxaprozin-Loaded Lipid Nanoparticles towards Overcoming NSAIDs Side-Effects. Pharm. Res., 2016, 33(2), 301-314.
[192]
Liang, Y.; Xiao, L.; Li, Y.; Zhai, Y.; Xie, C.; Deng, L.; Dong, A. Poly(ester anhydride)/mPEG amphiphilic block co-polymer nanoparticles as delivery devices for paclitaxel. J. Biomater. Sci. Polym. Ed., 2011, 22(4-6), 701-715.
[193]
Abouelmagd, S.A.; Sun, B.; Chang, A.C.; Ku, Y.J.; Yeo, Y. Release kinetics study of poorly water-soluble drugs from nanoparticles: Are we doing it right? Mol. Pharm., 2015, 12(3), 997-1003.
[194]
Rao, L.; Ma, Y.; Zhuang, M.; Luo, T.; Wang, Y.; Hong, A. Chitosan-decorated selenium nanoparticles as protein carriers to improve the in vivo half-life of the peptide therapeutic BAY 55-9837 for type 2 diabetes mellitus. Int. J. Nanomedicine, 2014, 9, 4819-4828.
[195]
Moreno-Bautista, G.; Tam, K.C. Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids Surf. A Physicochem. Eng. Asp., 2011, 389(1-3), 299-303.
[196]
Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Singh, B.; Yadav, S.C. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf. B Biointerfaces, 2010, 80(2), 184-192.
[197]
Shi, F.; Feng, N.; Omari-Siaw, E. Realgar nanoparticle-based microcapsules: Preparation and in-vitro/in-vivo characterizations. J. Pharm. Pharmacol., 2015, 67(1), 35-42.
[198]
Lokhande, A.B.; Deshmukh, T.A.; Patil, V.R. Evaluation of repaglinide encapsulated nanoparticles prepared by sonication method. Int. J. Pharm. Pharm. Sci., 2013, 5(Suppl. 3), 517-520.
[199]
Vijayan, V.; Reddy, K.R.; Sakthivel, S.; Swetha, C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2013, 111, 150-155.
[200]
Negi, P.; Aggarwal, M.; Sharma, G.; Rathore, C.; Sharma, G.; Singh, B.; Katare, O.P. Niosome-based hydrogel of resveratrol for topical applications: An effective therapy for pain related disorder(s). Biomed. Pharmacother., 2017, 88, 480-487.
[201]
Mehta, S.K.; Jindal, N. Mixed micelles of Lecithin-Tyloxapol as pharmaceutical nanocarriers for anti-tubercular drug delivery. Colloids Surf. B Biointerfaces, 2013, 110, 419-425.
[202]
Joshi, S.A.; Chavhan, S.S.; Sawant, K.K. Rivastigmine-loaded PLGA and PBCA nanoparticles: Preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur. J. Pharm. Biopharm., 2010, 76(2), 189-199.
[203]
Shirsat, A.E.; Chitlange, S.S. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles. J. Adv. Pharm. Technol. Res., 2015, 6(3), 88-96.
[204]
Singh, D.; Somani, V.K.; Aggarwal, S.; Bhatnagar, R. PLGA(85:15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: A promising alternate to traditional adjuvants. Mol. Immunol., 2015, 68, 272-279.
[205]
Yesil-Celiktas, O.; Cetin-Uyanikgil, E.O. In vitro release kinetics of polycaprolactone encapsulated plant extract fabricated by supercritical antisolvent process and solvent evaporation method. J. Supercrit. Fluids, 2012, 62, 219-225.
[206]
Ji, J.; Hao, S.; Wu, D.; Huang, R.; Xu, Y. Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydr. Polym., 2011, 85(4), 803-808.
[207]
Jia, L.J.; Zhang, D.R.; Li, Z.Y.; Feng, F.F.; Wang, Y.C.; Dai, W.T.; Duan, C.X.; Zhang, Q. Preparation and characterization of silybin-loaded nanostructured lipid carriers. Drug Deliv., 2010, 17(1), 11-18.
[208]
Duman, G.; Aslan, I.; Özer, A.Y.; Inanc¸, I.; Taralp, A. Liposome, gel and lipogelosome formulations containing sodium hyaluronate. J. Liposome Res., 2014, 24(4), 259-269.
[209]
Thapa, R.K.; Baskaran, R.; Madheswaran, T.; Rhyu, J.Y.; Kim, J.O.; Yong, C.S.; Yoo, B.K. Effect of saturated fatty acids on tacrolimus-loaded liquid crystalline nanoparticles. J. Drug Deliv. Sci. Technol., 2013, 23(2), 137-141.
[210]
Marini, V.G.; Martelli, S.M.; Zornio, C.F.; Caon, T.; Simões, C.M.O.; Micke, G.A.; De Oliveira, M.A.L.; Machado, V.G.; Soldi, V. Biodegradable nanoparticles obtained from zein as a drug delivery system for terpinen-4-ol. Quim. Nova, 2014, 37(5), 839-843.
[211]
Shah, R.M.; Malherbe, F.; Eldridge, D.; Palombo, E.A.; Harding, I.H. Physicochemical characterization of solid lipid nanoparticles(SLNs) prepared by a novel microemulsion technique. J. Colloid Interface Sci., 2014, 428, 286-294.
[212]
Phatak, A.A.; Sonawane, D.C.; Chaudhari, P.D. Preparation and evaluation of stable nonionic surfactant vesicular system for tramadol HCl. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(3), 1268-1277.
[213]
Li, H.; Wen, X.S.; Di, W. In vitro and in vivo evaluation of Triptolide-loaded Pluronic P105 polymeric micelles. Arzneim.-. Forsch. Drug Res., 2012, 62(7), 340-344.
[214]
Yang, Z.; Liu, J.; Gao, J.; Chen, S.; Huang, G. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int. J. Pharm., 2015, 495(1), 508-515.
[215]
Morais, J.M.; Burgess, D.J. In vitro release testing methods for vitamin e nanoemulsions. Int. J. Pharm., 2014, 475(1), 393-400.
[216]
Sankar, V.; Madhura Keerthi, K.; Parmar, N. Formulation and in-vitro evaluation of zidovudine-lamivudine nanoparticles. Ind. J. Pharmaceut. Educat. Res., 2012, 46(2), 192-196.
[217]
Li, X.; Naguib, Y.W.; Cui, Z. In vivo distribution of zoledronic acid in a bisphosphonate-metal complex-based nanoparticle formulation synthesized by a reverse microemulsion method. Int. J. Pharm., 2017, 526(1-2), 69-76.
[218]
Al-Kinani, A.A.; Naughton, D.P.; Calabrese, G.; Vangala, A.; Smith, J.R.; Pierscionek, B.K.; Alany, R.G. Analysis of 2-oxothiazolidine-4-carboxylic acid by hydrophilic interaction liquid chromatography: Application for ocular delivery using chitosan nanoparticles. Anal. Bioanal. Chem., 2015, 407(9), 2645-2650.
[219]
Tamilvanan, S.; Kumar, B.A. Influence of acetazolamide loading on the(in vitro) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Drug Dev. Ind. Pharm., 2011, 37(9), 1003-1015.
[220]
Jia, Y.; Ji, J.; Wang, F.; Shi, L.; Yu, J.; Wang, D. Formulation, characterization, and in vitro/vivo studies of aclacinomycin A-loaded solid lipid nanoparticles. Drug Deliv., 2016, 23(4), 1317-1325.
[221]
Luan, J.; Zhang, D.; Hao, L.; Li, C.; Qi, L.; Guo, H.; Liu, X.; Zhang, Q. Design and characterization of Amoitone B-loaded nanostructured lipid carriers for controlled drug release. Drug Deliv., 2013, 20(8), 324-330.
[222]
Yesil-Celiktas, O.; Pala, C.; Cetin-Uyanikgil, E.O.; Sevimli-Gur, C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Anal. Biochem., 2017, 519, 1-7.
[223]
Garcia, X.; Escribano, E.; Domenech, J.; Queralt, J.; Freixes, J. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles. J. Nanopart. Res., 2011, 13(5), 2213-2223.
[224]
Zhu, Y.; Wang, M.; Zhang, J.; Peng, W.; Firempong, C.K.; Deng, W.; Wang, Q.; Wang, S.; Shi, F.; Yu, J.; Xu, X.; Zhang, W. Improved oral bioavailability of capsaicin via liposomal nanoformulation: Preparation, in vitro drug release and pharmacokinetics in rats. Arch. Pharm. Res., 2015, 38(4), 512-521.
[225]
Li, D.; Martini, N.; Wu, Z.; Wen, J. Development of an isocratic HPLC method for catechin quantification and its application to formulation studies. Fitoterapia, 2012, 83(7), 1267-1274.
[226]
Nguyen, T.T.T.N.; Østergaard, J.; Stürup, S.; Gammelgaard, B. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS. Int. J. Pharm., 2013, 449(1-2), 95-102.
[227]
Li, M.; Li, Y.; Liu, W.; Li, R.; Qin, C.; Liu, N.; Han, J. The preparation of Cistanche phenylethanoid glycosides liquid proliposomes: Optimized formulation, characterization and proliposome dripping pills in vitro and in vivo evaluation. European J. Pharmaceut. Sci., 2016, 93, 224-232.
[228]
Nguyen, A.T.B.; Winckler, P.; Loison, P.; Wache, Y.; Chambin, O. Physico-chemical state influences in vitro release profile of curcumin from pectin beads. Colloids Surf. B Biointerfaces, 2014, 121, 290-298.
[229]
das Neves, J.; Sarmento, B.; Amiji, M. M.; Bahia, M. F. Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles. J. Pharm. Biomed. Anal., 2010, 52(2), 167-172.
[230]
Singh, S.; Jain, A.; Singh, S.K.; Singh, Y. Development of lipid nanoparticles of diacerein, an antiosteoarthritic drug for enhancement in bioavailability and reduction in its side effects. J. Biomed. Nanotechnol., 2013, 9(5), 891-900.
[231]
Lei, M.; Ma, M.; Pang, X.; Tan, F.; Li, N. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods. Nanoscale, 2015, 7(38), 15999-16011.
[232]
Ying, X.Y.; Du, Y.Z.; Hong, L.H.; Yuan, H.; Hu, F.Q. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics. J. Magn. Magn. Mater., 2011, 323(8), 1088-1093.
[233]
Singh, G.; Pai, R.S. Optimization(central composite design) and validation of HPLC method for investigation of emtricitabine loaded poly(lactic-co-glycolic acid) nanoparticles: In vitro drug release and in vivo pharmacokinetic studies. Sci. World J., 2014, 2014, 1.
[234]
Liu, H.; Shang, K.; Liu, W.; Leng, D.; Li, R.; Kong, Y.; Zhang, T. Improved oral bioavailability of glyburide by a self-nanoemulsifying drug delivery system. J. Microencapsul., 2014, 31(3), 277-283.
[235]
Parmar, A.; Chavda, S.; Bahadur, P. Pluronic-cationic surfactant mixed micelles: Solubilization and release of the drug hydrochlorothiazide. Colloids Surf. A Physicochem. Eng. Asp., 2014, 441, 389-397.
[236]
Montenegro, L.; Campisi, A.; Sarpietro, M.G.; Carbone, C.; Acquaviva, R.; Raciti, G.; Puglisi, G. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev. Ind. Pharm., 2011, 37(6), 737-746.
[237]
Andreani, T.; de Souza, A.L.; Kiill, C.P.; Lorenzón, E.N.; Fangueiro, J.F.; Calpena, A.C.; Chaud, M.V.; Garcia, M.L.; Gremião, M.P.; Silva, A.M.; Souto, E.B. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. Int. J. Pharm., 2014, 473(1-2), 627-635.
[238]
Wang, Y.; Zhang, X.; Cheng, C.; Li, C. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine, 2014, 9(4), 451-464.
[239]
Mirza, M.A.; Talegaonkar, S.; Iqbal, Z. Quantitative analysis of itraconazole in bulk, marketed, and nano formulation by validated, stability indicating high performance thin layer chromatography. J. Liq. Chromatogr. Relat. Technol., 2012, 35(11), 1459-1480.
[240]
Parikh, N.; Venishetty, V.K.; Sistla, R. Simultaneous determination of ketoconazole, ritonavir and lopinavir in solid lipid nanoparticles by RP-LC. Chromatographia, 2010, 71(9-10), 941-946.
[241]
Zhou, J.; Zhou, D. Improvement of oral bioavailability of lovastatin by using nanostructured lipid carriers. Drug Des. Devel. Ther., 2015, 9, 5269-5275.
[242]
Martins, L.G. khalil, N. M.; Mainardes, R. M. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles. J. Pharm. Anal., 2017, 7(6), 388-393.
[243]
Karabey-Akyürek, Y.; Nemutlu, E.; Bilensoy, E.; Öner, L. An improved and validated HPLC method for the determination of methylprednisolone sodium succinate and its degradation products in nanoparticles. Curr. Pharm. Anal., 2017, 13(2), 162-168.
[244]
Bobbala, S.; McDowell, A.; Hook, S. Quantitation of the immunological adjuvants, monophosphoryl lipid A and Quil A in poly(lactic-co-glycolic acid) nanoparticles using high performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 975, 45-51.
[245]
Wang, Y.; Wang, S.; Firempong, C.K.; Zhang, H.; Wang, M.; Zhang, Y.; Zhu, Y.; Yu, J.; Xu, X. Enhanced Solubility and Bioavailability of Naringenin via Liposomal Nanoformulation: Preparation and In vitro and In vivo Evaluations. AAPS PharmSciTech, 2017, 18(3), 586-594.
[246]
Guan, T.; Miao, Y.; Xu, L.; Yang, S.; Wang, J.; He, H.; Tang, X.; Cai, C.; Xu, H. Injectable nimodipine-loaded nanoliposomes: Preparation, lyophilization and characteristics. Int. J. Pharm., 2011, 410(1-2), 180-187.
[247]
Singla, P.; Chabba, S.; Mahajan, R.K. A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles. Colloids Surf. A Physicochem. Eng. Asp., 2016, 504, 479-488.
[248]
Huang, X.; Huang, X.; Jiang, X.H.; Hu, F.Q.; Du, Y.Z.; Zhu, Q.F.; Jin, C.S. In vitro antitumour activity of stearic acid-g-chitosan oligosaccharide polymeric micelles loading podophyllotoxin. J. Microencapsul., 2012, 29(1), 1-8.
[249]
Badran, M.M.; Harisa, G.I.; Alqahtani, S.A.; Alanazi, F.K.; Zoheir, K.M.A. Pravastatin-loaded chitosan nanoparticles: Formulation, characterization and cytotoxicity studies. J. Drug Deliv. Sci. Technol., 2016, 32, 1-9.
[250]
Guo, F.; Lin, M.; Gu, Y.; Zhao, X.; Hu, G. Preparation of PEG-modified proanthocyanidin liposome and its application in cosmetics. Eur. Food Res. Technol., 2015, 240(5), 1013-1021.
[251]
Da Silva, S.B.; Oliveira, A.; Ferreira, D.; Sarmento, B.; Pintado, M. Development and validation method for simultaneous quantification of phenolic compounds in natural extracts and nanosystems. Phytochem. Anal., 2013, 24(6), 638-644.
[252]
Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Kumar, V.; Singh, B.; Chaudhary, A.; Yadav, S.C. Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf. B Biointerfaces, 2011, 82(1), 224-232.
[253]
Barwal, I.; Yadav, S.C. Rebaudioside a loaded poly-d,l-lactide-nanoparticles as an anti-diabetic nanomedicine. J. Bionanosci., 2014, 8(2), 137-140.
[254]
Macedo, A.S.; Quelhas, S.; Silva, A.M.; Souto, E.B. Nanoemulsions for delivery of flavonoids: Formulation and in vitro release of rutin as model drug. Pharm. Dev. Technol., 2014, 19(6), 677-680.
[255]
Umerska, A.; Corrigan, O.I.; Tajber, L. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Int. J. Pharm., 2014, 477(1-2), 102-112.
[256]
Tiwari, R.; Pathak, K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm., 2011, 415(1-2), 232-243.
[257]
Raval, A.; Parmar, A.; Raval, A.; Bahadur, P. Preparation and optimization of media using Pluronic® micelles for solubilization of sirolimus and release from the drug eluting stents. Colloids Surf. B Biointerfaces, 2012, 93, 180-187.
[258]
Zhang, H.; Zhang, F.M.; Yan, S.J. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles. Int. J. Nanomedicine, 2012, 7, 2901-2910.
[259]
Tariq, M.; Iqbal, Z.; Ali, J.; Baboota, S.; Parveen, R.; Mirza, M.; Ahmad, S.; Sahni, J. Development and validation of a stability-indicating high-performance thin-layer chromatographic method for the simultaneous quantification of sparfloxacin and flurbiprofen in nanoparticulate formulation. J. Planar Chromatogr. Mod. TLC, 2014, 27(2), 124-131.
[260]
Khan, S.; Shaharyar, M.; Fazil, M.; Baboota, S.; Ali, J. Tacrolimus-loaded nanostructured lipid carriers for oral delivery – Optimization of production and characterization. Eur. J. Pharm. Biopharm., 2016, 108, 277-288.
[261]
Claro De Souza, M.; Marotta-Oliveira, S.S.; Rocha, N.H.S.; Eloy, J.O.; Marchetti, J.M. Development of a Method to Evaluate the Release Profile of Tamoxifen from Pegylated Hybrid Micelles. J. Liq. Chromatogr. Relat. Technol., 2015, 38(12), 1223-1229.
[262]
Engleder, E.; Honeder, C.; Klobasa, J.; Wirth, M.; Arnoldner, C.; Gabor, F. Preclinical evaluation of thermoreversible triamcinolone acetonide hydrogels for drug delivery to the inner ear. Int. J. Pharm., 2014, 471(1-2), 297-302.
[263]
Wang, Q.; Ma, D.; Higgins, J.P. Analytical method selection for drug product dissolution testing. Dissolut. Technol., 2006, 13(3), 6.
[264]
Tang, D.Q.; Zou, L.; Yin, X.X.; Ong, C.N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrom. Rev., 2016, 35(5), 574-600.
[265]
Ikegami, T.; Tomomatsu, K.; Takubo, H.; Horie, K.; Tanaka, N. Separation efficiencies in hydrophilic interaction chromatography. J. Chromatogr. A, 2008, 1184(1-2), 474-503.
[266]
Guideline, I. H. T. Validation of analytical procedures: text and methodology. Q2(R1) 2005, 1
[267]
Nemutlu, E.; Kir, S.; Katlan, D.; Beksac, M.S. Simultaneous multiresponse optimization of an HPLC method to separate seven cephalosporins in plasma and amniotic fluid: Application to validation and quantification of cefepime, cefixime and cefoperazone. Talanta, 2009, 80(1), 117-126.
[268]
Nemutlu, E.; Kir, S.; Ozyuncu, O.; Beksac, M.S. Simultaneous separation and determination of seven Quinolones using HPLC: Analysis of Levofloxacin and moxifloxacin in plasma and amniotic fluid. Chromatographia, 2007, 66, S15-S24.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy