[1]
Heinze, T. Nanoscience and nanotechnology in Europe: Analysis of publications and patent applications including comparisons with the United States. Nanotechnol. Law Business, 2004, 1(4), 1-19.
[2]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[3]
.
European Science Foundation, Nanomedicine an ESF-European Medical Research Councils,(EMRC) forward look report. 2005.
[5]
Gong, R.D.; Chen, G.M. Preparation and application of functionalized nano drug carriers. Saudi Pharm. J., 2016, 24(3), 254-257.
[6]
Couvreur, P. Polyalkylcyanoacrylates as colloidal drug carriers. Crit. Rev. Ther. Drug, 1988, 5(1), 1-20.
[7]
Barenholz, Y. Doxil(R) - The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[8]
Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed-Nanotechnol., 2013, 9(1), 1-14.
[9]
Sainz, V.; Conniot, J.; Matos, A.I.; Peres, C.; Zupancic, E.; Moura, L.; Silva, L.C.; Florindo, H.F.; Gaspar, R.S. Regulatory aspects on nanomedicines. Biochem. Biophys. Res. Commun., 2015, 468(3), 504-510.
[10]
Schmid, G. Nanoparticles: From Theory to Application; Wiley-VCH Publishers: Weinheim, Germany, 2005.
[11]
Hosokawa, M.; Nogi, K.; Naito, M.; Toyokazu, Y. Nanoparticle technology handbook; Elsevier: Amsterdam, 2007.
[12]
Couvreur, P.; Dubernet, C.; Puisieux, F. Controlled drug-delivery with nanoparticles - current possibilities and future-trends. Eur. J. Pharm. Biopharm., 1995, 41(1), 2-13.
[13]
Vauthier, C.; Couvreur, P. Development of nanoparticles made of polysaccharides as novel drug carrier systems.In Handbook of pharmaceutical controlled release technology; Wise, D.L., Ed.; Marcel Dekker: New York, 2000, pp. 13-429.
[14]
Vanderhoff, J.W. E. A. M. Ugelstad J. US Patent 4,177,177. Polymer emulsification process. 4,177,177, 1979.
[15]
Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm., 1989, 55(1), R1-R4.
[16]
Ozcan, I.; Bouchemal, K.; Segura-Sanchez, F.; Ozer, O.; Guneri, T.; Ponchel, G. Synthesis and characterization of surface-modified PBLG nanoparticles for bone targeting: in vitro and in vivo evaluations. J. Pharm. Sci., 2011, 100(11), 4877-4887.
[17]
Bindschaedler, C.; Gurny, R.; Doelker, E. Process for preparing a powder of water-insoluble polymer which can be redispersed in a liquid phase, the resulting powder and utilization thereof. U.S. Patent 4,968,350, 1990.
[18]
Jeon, H.J.; Jeong, J.I.; Jang, M.K.; Park, Y.H.; Nah, J.W. Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int. J. Pharm., 2000, 207(1-2), 99-108.
[19]
York, P. Strategies for particle design using supercritical fluid technologies. Pharm. Sci. Technol. Today, 1999, 2(11), 430-440.
[20]
Takeuchi, H.; Yamamoto, H.; Kawashima, Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev., 2001, 47(1), 39-54.
[21]
Thickett, S.C.; Gilbert, R.G. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer, 2007, 48(24), 6965-6991.
[22]
Harsha, S.N.; Aldhubiab, B.E.; Nair, A.B.; Alhaider, I.A.; Attimarad, M.; Venugopala, K.N.; Srinivasan, S.; Gangadhar, N.; Asif, A.H. Nanoparticle formulation by Buchi B-90 Nano Spray Dryer for oral mucoadhesion. Drug Des. Devel. Ther., 2015, 9, 273-282.
[23]
Maged, A.; Mahmoud, A.A.; Ghorab, M.M. Nano spray drying technique as a novel approach to formulate stable econazole nitrate nanosuspension formulations for ocular use. Mol. Pharm., 2016, 13(9), 2951-2965.
[24]
Johnston, M.J.; Semple, S.C.; Klimuk, S.K.; Ansell, S.; Maurer, N.; Cullis, P.R. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim. Biophys. Acta, 2007, 1768(5), 1121-1127.
[25]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[26]
Eroglu, I.; Azizoglu, E.; Ozyazici, M.; Nenni, M.; Gurer Orhan, H.; Ozbal, S.; Tekmen, I.; Ertam, I.; Unal, I.; Ozer, O. Effective topical delivery systems for corticosteroids: dermatological and histological evaluations. Drug Deliv., 2016, 23(5), 1502-1513.
[28]
Kazi, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[29]
Marwa, A.; Omaima, S.; Hanaa, E.L.G.; Mohammed, A-S. Preparation and in-vitro evaluation of diclofenac sodium niosomal formulations. Int. J. Pharm. Sci. Res., 2013, 4(5), 1757-1765.
[30]
Rogerson, A.; Cummings, J.; Willmott, N.; Florence, A.T. The distribution of doxorubicin in mice following administration in niosomes. J. Pharm. Pharmacol., 1988, 40(5), 337-342.
[31]
Jayaraman, S.C.; Ramachandran, C.; Weiner, N. Topical delivery of erythromycin from various formulations: an in vivo hairless mouse study. J. Pharm. Sci., 1996, 85(10), 1082-1084.
[32]
Baillie, A.J.; Coombs, G.H.; Dolan, T.F.; Laurie, J. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J. Pharm. Pharmacol., 1986, 38(7), 502-505.
[33]
Khandare, J.N.; Madhavi, G. BM, T. Niosomes novel drug delivery system. East. Pharma., 1994, 37, 61-64.
[34]
Kiwada, H.; Niimura, H.; Fujisaki, Y.; Yamada, S.; Kato, Y. Application of synthetic alkyl glycoside vesicles as drug carriers. I. Preparation and physical properties. Chem. Pharm. Bull., 1985, 33(2), 753-759.
[35]
Jadon, P.S.; Gajbhiye, V.; Jadon, R.S.; Gajbhiye, K.R.; Ganesh, N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech, 2009, 10(4), 1186-1192.
[36]
Hunter, C.A.; Dolan, T.F.; Coombs, G.H.; Baillie, A.J. Vesicular systems(niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J. Pharm. Pharmacol., 1988, 40(3), 161-165.
[37]
Bayindir, Z.S.; Be, A.B.; Yuksel, N. Paclitaxel-loaded niosomes for intravenous administration: Pharmacokinetics and tissue distribution in rats. Turk. J. Med. Sci., 2015, 45(6), 1403-1412.
[38]
Moser, P.; Marchand-Arvier, M.; Labrude, P.; Handjani-Vila, R.M.; Vigneron, C. Hemoglobin niosomes. I. Preparation, functional and physico-chemical properties, and stability. Pharm. Acta Helv., 1989, 64(7), 192-202.
[39]
Li, Q.; Li, Z.; Zeng, W.; Ge, S.; Lu, H.; Wu, C.; Ge, L.; Liang, D.; Xu, Y. Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur. J. Pharm. Sci., 2014, 62, 115-123.
[40]
Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J. Control. Release, 2012, 164(1), 17-25.
[41]
Mehta, S.K.; Jindal, N. Tyloxapol niosomes as prospective drug delivery module for antiretroviral drug nevirapine. AAPS PharmSciTech, 2015, 16(1), 67-75.
[42]
Dong, P.W.; Wang, X.H.; Gu, Y.C.; Wang, Y.J.; Wang, Y.J.; Gong, C.Y.; Luo, F.; Guo, G.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloid Surf. A., 2010, 358(1-3), 128-134.
[43]
Hu, J.M.; Qian, Y.F.; Wang, X.F.; Liu, T.; Liu, S.Y. Drug-Loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR Imaging. Langmuir, 2012, 28(4), 2073-2082.
[44]
Liu, T.; Qian, Y.F.; Hu, X.L.; Ge, Z.S.; Liu, S.Y. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery. J. Mater. Chem., 2012, 22(11), 5020-5030.
[45]
Kwon, G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(5), 357-403.
[46]
Adams, M.L.; Kwon, G.S. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: Effects of acyl chain length. J. Control. Release, 2003, 87(1-3), 23-32.
[47]
Croy, S.R.; Kwon, G.S. The effects of Pluronic block copolymers on the aggregation state of nystatin. J. Control. Release, 2004, 95(2), 161-171.
[48]
Torchilin, V.P. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev., 2002, 54(2), 235-252.
[49]
Trubetskoy, V.S.; Gazelle, G.S.; Wolf, G.L.; Torchilin, V.P. Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: Design of long-circulating particulate contrast medium for X-ray computed tomography. J. Drug Target., 1997, 4(6), 381-388.
[50]
Weissig, V.; Whiteman, K.R.; Torchilin, V.P. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm. Res., 1998, 15(10), 1552-1556.
[51]
Kabanov, A.V.; Chekhonin, V.P.; Alakhov, V.; Batrakova, E.V.; Lebedev, A.S.; Melik-Nubarov, N.S.; Arzhakov, S.A.; Levashov, A.V.; Morozov, G.V.; Severin, E.S. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett., 1989, 258(2), 343-345.
[52]
Batrakova, E.V.; Han, H.Y.; Miller, D.W.; Kabanov, A.V. Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm. Res., 1998, 15(10), 1525-1532.
[53]
Kabanov, A.V.; Batrakova, E.V.; Meliknubarov, N.S.; Fedoseev, N.A.; Dorodnich, T.Y.; Alakhov, V.Y.; Chekhonin, V.P.; Nazarova, I.R.; Kabanov, V.A. A New Class of Drug Carriers - Micelles of Poly(Oxyethylene)-Poly(Oxypropylene) Block Copolymers as Microcontainers for Drug Targeting from Blood in Brain. J. Control. Release, 1992, 22(2), 141-157.
[54]
Katayose, S.; Kataoka, K. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug. Chem., 1997, 8(5), 702-707.
[55]
Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug. Chem., 1998, 9(6), 805-812.
[56]
Kabanov, A.V.; Vinogradov, S.V.; Suzdaltseva, Y.G.; Alakhov, V.Y. Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery. Bioconjug. Chem., 1995, 6(6), 639-643.
[57]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[58]
Torchilin, V.P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci., 2004, 61(19-20), 2549-2559.
[59]
Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 2001, 73(2-3), 137-172.
[60]
Adams, M.L.; Lavasanifar, A.; Kwon, G.S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci., 2003, 92(7), 1343-1355.
[61]
Kabanov, A.V.; Alakhov, V.Y. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit. Rev. Ther. Drug Carrier Syst., 2002, 19(1), 1-72.
[62]
Venkatesan, R.; Pichaimani, A.; Hari, K.; Balasubramanian, P.K.; Kulandaivel, J.; Premkumar, K. Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. J. Mater. Chem. B, 2013, 1(7), 1010-1018.
[63]
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol., 2004, 22(1), 47-52.
[64]
Nusz, G.J.; Curry, A.C.; Marinakos, S.M.; Wax, A.; Chilkoti, A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano, 2009, 3(4), 795-806.
[65]
Castellana, E.T.; Gamez, R.C.; Gomez, M.E.; Russell, D.H. Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. Langmuir, 2010, 26(8), 6066-6070.
[66]
Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.C.; Mornet, S.; Jerome, C.; Duguet, E. Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small, 2015, 11(19), 2323-2332.
[67]
Treguer-Delapierre, M.; Majimel, J.; Mornet, S.; Duguet, E.; Ravaine, S. Synthesis of non-spherical gold nanoparticles. Gold Bull., 2008, 41(2), 195-207.
[68]
Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method. Chem. Mater., 2003, 15(10), 1957-1962.
[69]
Shen, S.; Tang, H.; Zhang, X.; Ren, J.; Pang, Z.; Wang, D.; Gao, H.; Qian, Y.; Jiang, X.; Yang, W. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials, 2013, 34(12), 3150-3158.
[70]
Wijaya, A.; Schaffer, S.B.; Pallares, I.G.; Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano, 2009, 3(1), 80-86.
[71]
Liang, M.; Lin, I.C.; Whittaker, M.R.; Minchin, R.F.; Monteiro, M.J.; Toth, I. Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano, 2010, 4(1), 403-413.
[72]
Liu, J.; Rad, I.Y.; Sun, F.; Stansbury, J.W. Photo-Reactive nanogel as a means to tune properties during polymer network formation. Polym. Chem., 2014, 5(1), 1.
[73]
Bodor, N. Retrometabolic Approaches to Drug Targeting. In: Membranes and Barriers: Targeted Drug Delivery; Rapaka, R.S., Ed.; National Institute of Health Publication: Rockville, 1995, pp. 1-27.
[74]
Braun, K.; Pipkorn, R.; Waldeck, W. Development and characterization of drug delivery systems for targeting mammalian cells and tissues: A review. Curr. Med. Chem., 2005, 12(16), 1841-1858.
[75]
Carroll, J.B.; Warby, S.C.; Southwell, A.L.; Doty, C.N.; Greenlee, S.; Skotte, N.; Hung, G.; Bennett, C.F.; Freier, S.M.; Hayden, M.R. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol. Ther., 2011, 19(12), 2178-2185.
[76]
Milenic, D.E.; Brechbiel, M.W. Targeting of radio-isotopes for cancer therapy. Cancer Biol. Ther., 2004, 3(4), 361-370.
[77]
Liu, S.; Miller-Randolph, S.; Crown, D.; Moayeri, M.; Sastalla, I.; Okugawa, S.; Leppla, S.H. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host Microbe, 2010, 8(5), 455-462.
[78]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S81-S91.
[79]
Jain, S.K.; Gupta, Y.; Jain, A.; Saxena, A.R.; Khare, P.; Jain, A. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine, 2008, 4(1), 41-48.
[80]
Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat., 2005, 4(4), 363-374.
[81]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[82]
Thomas, G.D. Practical considerations in the exploitation of passive tumor targeting.In:Drug targeting; Francis, G.E.; Delgado, C., Eds.; Humana Press: Totowa, New Jersey, 1999, Vol. 25, pp. 97-113.
[83]
Lammers, T.; Peschke, P.; Kuhnlein, R.; Subr, V.; Ulbrich, K.; Huber, P.; Hennink, W.; Storm, G. Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems. Neoplasia, 2006, 8(10), 788-795.
[84]
Yockman, J.W.; Maheshwari, A.; Han, S.O.; Kim, S.W. Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J. Control. Release, 2003, 87(1-3), 177-186.
[85]
Moses, M.A.; Brem, H.; Langer, R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell, 2003, 4(5), 337-341.
[86]
Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res., 2005, 11(23), 8230-8234.
[87]
Nomura, T.; Saikawa, A.; Morita, S.; Sakaeda, T.; Yamashita, F.; Honda, K.; Takakura, Y.; Hashida, M. Pharmacokinetic characteristics and therapeutic effects of mitomycin C dextran conjugates after intratumoural injection. J. Control. Release, 1998, 52(3), 239-252.
[88]
Reddy, L.H.; Sharma, R.K.; Chuttani, K.; Mishra, A.K.; Murthy, R.R. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies. AAPS J., 2004, 6(3)e23
[89]
Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J. Pharmacol. Exp. Ther., 2005, 315(1), 196-202.
[90]
Williams, A.S.; Camilleri, J.P.; Goodfellow, R.M.; Williams, B.D. A single intra-articular injection of liposomally conjugated methotrexate suppresses joint inflammation in rat antigen-induced arthritis. Br. J. Rheumatol., 1996, 35(8), 719-724.
[91]
Boucher, W.; Stern, J.M.; Kotsinyan, V.; Kempuraj, D.; Papaliodis, D.; Cohen, M.S.; Theoharides, T.C. Intravesical nanocrystalline silver decreases experimental bladder inflammation. J. Urol., 2008, 179(4), 1598-1602.
[92]
Mugabe, C.; Matsui, Y.; So, A.I.; Gleave, M.E.; Baker, J.H.; Minchinton, A.I.; Manisali, I.; Liggins, R.; Brooks, D.E.; Burt, H.M. In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non-muscle-invasive bladder cancer. Clin. Cancer Res., 2011, 17(9), 2788-2798.
[93]
Erdogar, N.; Iskit, A.B.; Eroglu, H.; Sargon, M.F.; Mungan, N.A.; Bilensoy, E. Antitumor efficacy of bacillus calmette-guerin loaded cationic nanoparticles for intravesical immunotherapy of bladder tumor induced rat model. J. Nanosci. Nanotechnol., 2015, 15(12), 10156-10164.
[94]
Erdogar, N.; Iskit, A.B.; Eroglu, H.; Sargon, M.F.; Mungan, N.A.; Bilensoy, E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: safety and efficacy. Int. J. Pharm., 2014, 471(1-2), 1-9.
[95]
Nawroth, I.; Alsner, J.; Behlke, M.A.; Besenbacher, F.; Overgaard, J.; Howard, K.A.; Kjems, J. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFalpha prevents radiation-induced fibrosis. Radiother. Oncol., 2010, 97(1), 143-148.
[96]
Yokoyama, M. Drug targeting with nano-sized carrier systems. J. Artif. Organs, 2005, 8(2), 77-84.
[97]
Davis, S.S. Biomedical applications of nanotechnology--implications for drug targeting and gene therapy. Trends Biotechnol., 1997, 15(6), 217-224.
[98]
Singh, Y.; Palombo, M.; Sinko, P.J. Recent trends in targeted anticancer prodrug and conjugate design. Curr. Med. Chem., 2008, 15(18), 1802-1826.
[99]
Dhar, S.; Kolishetti, N.; Lippard, S.J.; Farokhzad, O.C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA, 2011, 108(5), 1850-1855.
[100]
Xiao, K.; Li, Y.P.; Luo, J.T.; Lee, J.S.; Xiao, W.W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32(13), 3435-3446.
[101]
Xiao, K.; Luo, J.T.; Li, Y.P.; Xiao, W.W.; Lee, J.S.; Gonik, A.M.; Lam, K.S. The passive targeting of polymeric micelles in various types and sizes of tumor models. Nanosci. Nanotechnol. Lett., 2010, 2(2), 79-85.
[102]
Seymour, L.W Systemic cancer therapy using polymer-based prodrugs and progenes Dumitriu, S. Ed. Marcel Dekker: New York,, 2002, pp. 843-851.
[103]
Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res., 2003, 42(6), 463-478.
[104]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[105]
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release, 2010, 141(3), 320-327.
[106]
Vasir, J.K.; Reddy, M.K.; Labhasetwar, V.D. Nanosystems in drug targeting: Opportunities and challenges. Curr. Nanosci., 2005, 1(1), 47-64.
[107]
Wang, Y.; Grainger, D.W. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv. Drug Deliv. Rev., 2012, 64(12), 1341-1357.
[108]
Wickham, T.J. Ligand-directed targeting of genes to the site of disease. Nat. Med., 2003, 9(1), 135-139.
[109]
Hamdy, S.; Haddadi, A.; Hung, R.W.; Lavasanifar, A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug Deliv. Rev., 2011, 63(10-11), 943-955.
[110]
Mahato, R.; Tai, W.; Cheng, K. Prodrugs for improving tumor targetability and efficiency. Adv. Drug Deliv. Rev., 2011, 63(8), 659-670.
[111]
Weitman, S.D.; Lark, R.H.; Coney, L.R.; Fort, D.W.; Frasca, V.; Zurawski, V.R.; Kamen, B.A. Distribution of the Folate Receptor Gp38 in Normal and Malignant-Cell Lines and Tissues. Cancer Res., 1992, 52(12), 3396-3401.
[112]
Leamon, C.P.; Reddy, J.A. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1127-1141.
[113]
Stella, B.; Arpicco, S.; Peracchia, M.T.; Desmaele, D.; Hoebeke, J.; Renoir, M.; D’Angelo, J.; Cattel, L.; Couvreur, P. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci., 2000, 89(11), 1452-1464.
[114]
Bies, C.; Lehr, C.M.; Woodley, J.F. Lectin-mediated drug targeting: history and applications. Adv. Drug Deliv. Rev., 2004, 56(4), 425-435.
[115]
Suzuki, R.; Takizawa, T.; Negishi, Y.; Utoguchi, N.; Maruyama, K. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int. J. Pharm., 2008, 354(1-2), 49-55.
[116]
Segura-Sanchez, F.; Montembault, V.; Fontaine, L.; Martinez-Barbosa, M.E.; Bouchemal, K.; Ponchel, G. Synthesis and characterization of functionalized poly(gamma-benzyl-L-glutamate) derivates and corresponding nanoparticles preparation and characterization. Int. J. Pharm., 2010, 387(1-2), 244-252.
[117]
Dromi, S.; Frenkel, V.; Luk, A.; Traughber, B.; Angstadt, M.; Bur, M.; Poff, J.; Xie, J.W.; Libutti, S.K.; Li, K.C.P.; Wood, B.J. Pulsed-high intensity focused ultrasound and low temperature sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res., 2007, 13(9), 2722-2727.
[118]
Chen, P.Y.; Liu, H.L.; Hua, M.Y.; Yang, H.W.; Huang, C.Y.; Chu, P.C.; Lyu, L.A.; Tseng, I.C.; Feng, L.Y.; Tsai, H.C.; Chen, S.M.; Lu, Y.J.; Wang, J.J.; Yen, T.C.; Ma, Y.H.; Wu, T.; Chen, J.P.; Chuang, J.I.; Shin, J.W.; Hsueh, C.; Wei, K.C. Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro-oncol., 2010, 12(10), 1050-1060.
[119]
D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharmaceut., 2014, 2014, 1-12.
[120]
U.S. Department of Health Food and Drug Administration Center for Drug Evaluation and ResearchDissolution Testing of Immediate Release Solid Oral Dosage Forms; Rockville, 1997.
[122]
European Medicines AgencyReflection paper on the dissolution specification for generic oral immediate release products; London, 2016.
[123]
Heng, D.; Cutler, D.J.; Chan, H.K.; Yun, J.; Raper, J.A. What is a suitable dissolution method for drug nanoparticles? Pharm. Res., 2008, 25(7), 1696-1701.
[124]
Bhardwaj, U.; Burgess, D.J. A novel USP apparatus 4 based release testing method for dispersed systems. Int. J. Pharm., 2010, 388(1-2), 287-294.
[125]
Bhagav, P.; Upadhyay, H.; Chandran, S. Brimonidine tartrate-eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech, 2011, 12(4), 1087-1101.
[126]
Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg., 2016, 3(1), 3.
[127]
Kuo, Y.C.; Chung, J.F. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf. B Biointerfaces, 2011, 83(2), 299-306.
[128]
Zhong, Y.; Wang, C.; Cheng, R.; Cheng, L.; Meng, F.; Liu, Z.; Zhong, Z. CRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. J. Control. Release, 2014, 195, 63-71.
[129]
Wang, M.; Yuan, Y.; Gao, Y.; Ma, H.M.; Xu, H.T.; Zhang, X.N.; Pan, W.S. Preparation and characterization of 5-fluorouracil pH-sensitive niosome and its tumor-targeted evaluation: In vitro and in vivo. Drug Dev. Ind. Pharm., 2012, 38(9), 1134-1141.
[130]
El-Menshawe, S.F. A novel approach to topical acetazolamide/PEG 400 ocular niosomes. J. Drug Deliv. Sci. Technol., 2012, 22(4), 295-299.
[131]
Maniya, N.H.; Patel, S.R.; Murthy, Z.V.P. Controlled delivery of acyclovir from porous silicon micro- and nanoparticles. Appl. Surf. Sci., 2015, 330, 358-365.
[132]
Butreddy, A.; Narala, A.; Dudhipala, N. Formulation and characterization of Liquid Crystalline Hydrogel of Agomelatin: In vitro and Ex vivo evaluation. J. Appl. Pharm. Sci., 2015, 5(9), 110-114.
[133]
Ortan, A.; Ferdes, M.; Rodino, S.; Pirvu, C.D.; Draganescu, D. Liposomally encapsulated volatile oil of Anethum graveolens. Farmacia, 2013, 61(2), 361-370.
[134]
Zhao, L.; Temelli, F.; Chen, L. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods, 2017, 34, 159-167.
[135]
Chen, Y.S.; Alany, R.G.; Young, S.A.; Green, C.R.; Rupenthal, I.D. In vitro release characteristics and cellular uptake of poly(D,L-lactic-co-glycolic acid) nanoparticles for topical delivery of antisense oligodeoxynucleotides. Drug Deliv., 2011, 18(7), 493-501.
[136]
Ahmed, A.B.; Konwar, R.; Sengupta, R. Atorvastatin calcium loaded chitosan nanoparticles: In vitro evaluation and in vivo pharmacokinetic studies in rabbits. Braz. J. Pharm. Sci., 2015, 51(2), 467-477.
[137]
Wei, Y.; Guo, J.; Zheng, X.; Wu, J.; Zhou, Y.; Yu, Y.; Ye, Y.; Zhang, L.; Zhao, L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int. J. Nanomedicine, 2014, 9(1), 3623-3630.
[138]
Panchamukhi, S.I.; Mulla, J.A.S.; Shetty, N.S.; Khazi, M.I.A.; Khan, A.Y.; Kalashetti, M.B.; Khazi, I.A.M. Benzothieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidines: Synthesis, characterization, antimicrobial activity, and incorporation into solid lipid nanoparticles. Archiv der Pharmazie, 2011, 344(6), 358-365.
[139]
Zhu, Y.; Peng, W.; Zhang, J.; Wang, M.; Firempong, C.K.; Feng, C.; Liu, H.; Xu, X.; Yu, J. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. J. Funct. Foods, 2014, 8(1), 358-366.
[140]
Cipolla, D.; Wu, H.; Eastman, S.; Redelmeier, T.; Gonda, I.; Chan, H.K. Development and characterization of an in vitro release assay for liposomal ciprofloxacin for inhalation. J. Pharm. Sci., 2014, 103(1), 314-327.
[141]
Cipolla, D.; Wu, H.; Gonda, I.; Eastman, S.; Redelmeier, T.; Chan, H.K. Modifying the release properties of liposomes toward personalized medicine. J. Pharm. Sci., 2014, 103(6), 1851-1862.
[142]
Cipolla, D.; Wu, H.; Eastman, S.; Redelmeier, T.; Gonda, I.; Chan, H.K. Tuning Ciprofloxacin Release Profiles from Liposomally Encapsulated Nanocrystalline Drug. Pharm. Res., 2016, 33(11), 2748-2762.
[143]
Chen, S.; Liu, W.; Wan, J.; Cheng, X.; Gu, C.; Zhou, H.; Chen, S.; Zhao, X.; Tang, Y.; Yang, X. Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique. Drug Dev. Ind. Pharm., 2013, 39(1), 20-28.
[144]
Al-Kady, A.S.; Gaber, M.; Hussein, M.M.; Ebeid, E.Z.M. Nanostructure-loaded mesoporous silica for controlled release of coumarin derivatives: A novel testing of the hyperthermia effect. Eur. J. Pharm. Biopharm., 2011, 77(1), 66-74.
[145]
Feng, R.; Zhu, W.; Song, Z.; Zhao, L.; Zhai, G. Novel star-type methoxy-poly(ethylene glycol)(PEG)-poly(ε- caprolactone)(PCL) copolymeric nanoparticles for controlled release of curcumin. J. Nanopart. Res., 2013, 15(6), 1.
[146]
Jambhrunkar, S.; Qu, Z.; Popat, A.; Yang, J.; Noonan, O.; Acauan, L.; Ahmad Nor, Y.; Yu, C.; Karmakar, S. Effect of surface functionality of silica nanoparticles on cellular uptake and cytotoxicity. Mol. Pharm., 2014, 11(10), 3642-3655.
[147]
Song, Z.; Zhu, W.; Yang, F.; Liu, N.; Feng, R. Preparation, characterization, in vitro release, and pharmacokinetic studies of curcumin-loaded mPEG–PVL nanoparticles. Polym. Bull., 2014, 72(1), 75-91.
[148]
Sun, W.; Zou, Y.; Guo, Y.; Wang, L.; Xiao, X.; Sun, R.; Zhao, K. Construction and characterization of curcumin nanoparticles system. J. Nanopart. Res., 2014, 16(3), 1.
[149]
Roy, B.; Guha, P.; Bhattarai, R.; Nahak, P.; Karmakar, G.; Chettri, P.; Panda, A.K. Influence of lipid composition, pH, and temperature on physicochemical properties of liposomes with curcumin as model drug. J. Oleo Sci., 2016, 65(5), 399-411.
[150]
Kumar, K.; Rai, A.K. Development and evaluation of proniosome- encapsulated curcumin for transdermal administration. Trop. J. Pharm. Res., 2011, 10(6), 697-703.
[151]
Righeschi, C.; Bergonzi, M.C.; Isacchi, B.; Bazzicalupi, C.; Gratteri, P.; Bilia, A.R. Enhanced curcumin permeability by SLN formulation: The PAMPA approach. LWT - Food Sci. Technol., 2016, 66, 475-483.
[152]
Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F.J. PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv., 2016, 23(7), 2095-2114.
[153]
Zaki, R.M.; Ali, A.A.; El Menshawe, S.F.; Bary, A.A. Formulation and in vitro evalution of diacerein loaded niosomes. Int. J. Pharm. Pharm. Sci., 2014, 6(Suppl. 2), 515-521.
[154]
Liu, D.; Ge, Y.; Tang, Y.; Yuan, Y.; Zhang, Q.; Li, R.; Xu, Q. Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: Preparation, characterization and in vitro studies. J. Microencapsul., 2010, 27(8), 726-734.
[155]
El-Naggar, M.E.; El-Rafie, M.H.; El-sheikh, M.A.; El-Feky, G.S.; Hebeish, A. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. Int. J. Biol. Macromol., 2015, 81, 718-729.
[156]
Naguib, Y.W.; Rodriguez, B.L.; Li, X.; Hursting, S.D.; Williams, R.O.; Cui, Z. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: In vitro and in vivo evaluation. Mol. Pharm., 2014, 11(4), 1239-1249.
[157]
Csikós, Z.; Kerekes, K.; Fazekas, E.; Kun, S.; Borbély, J. Biopolymer based nanosystem for doxorubicin targeted delivery. Am. J. Cancer Res., 2017, 7(3), 715-726.
[158]
Wang, W.; Zhang, P.; Shan, W.; Gao, J.; Liang, W. A novel chitosan-based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy. J. Biomater. Sci. Polym. Ed., 2013, 24(14), 1649-1659.
[159]
Zhong, Y.; Wang, C.; Cheng, L.; Meng, F.; Zhong, Z.; Liu, Z. Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. Biomacromolecules, 2013, 14(7), 2411-2419.
[160]
Yu, J.; Ha, W.; Sun, J.N.; Shi, Y.P. Supramolecular hybrid hydrogel based on host-guest interaction and its application in drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(22), 19544-19551.
[161]
Qiu, L.; Xu, C.R.; Zhong, F.; Hong, C.Y.; Pan, C.Y. Fabrication of Functional Nano-objects through RAFT Dispersion Polymerization and Influences of Morphology on Drug Delivery. ACS Appl. Mater. Interfaces, 2016, 8(28), 18347-18359.
[162]
Zhang, L.; Zhang, P.; Zhao, Q.; Zhang, Y.; Cao, L.; Luan, Y. Doxorubicin-loaded polypeptide nanorods based on electrostatic interactions for cancer therapy. J. Colloid Interface Sci., 2016, 464, 126-136.
[163]
Gardikis, K.; Signorelli, M.; Ferrario, C.; Schiraldi, A.; Fortina, M.G.; Hatziantoniou, S.; Demetzos, C.; Fessas, D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced Drug Delivery Nano Systems: A calorimetric approach. Int. J. Pharm., 2017, 516(1-2), 178-184.
[164]
Scheeren, L.E.; Nogueira, D.R.; Macedo, L.B.; Vinardell, M.; Mitjans, M.; Infante, M.; Rolim, C.M.B. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids Surf. B Biointerfaces, 2016, 138, 117-127.
[165]
Ganesh, M.; Hemalatha, P.; Mei, P.M.; Rajasekar, K.; Jang, H.T. A new fluoride mediated synthesis of mesoporous silica and their usefulness in controlled delivery of duloxetine hydrochloride a serotonin re-uptake inhibitor. J. Ind. Eng. Chem., 2012, 18(2), 684-689.
[166]
Granja, A.; Vieira, A.C.; Chaves, L.L.; Nunes, C.; Neves, A.R.; Pinheiro, M.; Reis, S. Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chem., 2017, 237, 803-810.
[167]
Granja, A.; Vieira, A.C.; Chaves, L.L.; Nunes, C.; Neves, A.R.; Pinheiro, M.; Reis, S. Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chem., 2017, 237, 803-810.
[168]
Jigar, V.; Vishal, G.; Tejas, G.; Vishal, C.; Umesh, U. Formulation and characterization of topical gel of erythromycin entrapped into niosomes. Int. J. Pharm. Tech. Res., 2011, 3(3), 1714-1718.
[169]
Ha, W.; Wu, H.; Wang, X.L.; Peng, S.L.; Ding, L.S.; Zhang, S.; Li, B.J. Self-aggregates of cholesterol-modified carboxymethyl konjac glucomannan conjugate: Preparation, characterization, and preliminary assessment as a carrier of etoposide. Carbohydr. Polym., 2011, 86(2), 513-519.
[170]
Fetih, G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J. Drug Deliv. Sci. Technol., 2016, 35, 8-15.
[171]
Yuan, H.; Li, X.; Zhang, C.; Pan, W.; Liang, Y.; Chen, Y.; Chen, W.; Liu, L.; Wang, X. Nanosuspensions as delivery system for gambogenic acid: characterization and in vitro/in vivo evaluation. Drug Deliv., 2016, 23(8), 2772-2779.
[172]
Raval, A.; Pillai, S.A.; Bahadur, A.; Bahadur, P. Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs. J. Mol. Liq., 2017, 230, 473-481.
[173]
Mosselhy, D.A.; Ge, Y.; Gasik, M.; Nordström, K.; Natri, O.; Hannula, S.P. Silica-gentamicin nanohybrids: Synthesis and antimicrobial action. Materials, 2016, 9(3), 1.
[174]
Yan, X.Q.; Shi, Y.L.; Jiang, Q.F.; Ping, G.F.; Deng, Z.J. Design of amphiphilic PCL-PEG-PCL block copolymers as vehicles of Ginkgolide B and their brain-targeting studies. J. Biomater. Sci. Polym. Ed., 2017, 28(14), 1497-1510.
[175]
Yata, V.K.; Ghosh, S.S. Investigating structure and fluorescence properties of green fluorescent protein released from chitosan nanoparticles. Mater. Lett., 2012, 73, 209-211.
[176]
Mokale, V.; Khatumaria, B.; Verma, U.; Shimpi, N.; Naik, J.; Mishra, S. Formulation and development of nanoparticles for quick and complete release of hydrochlorothiazide by nanonization technique. Micro Nanosyst., 2014, 6(2), 109-117.
[177]
Jensen, L.B.; Magnussson, E.; Gunnarsson, L.; Vermehren, C.; Nielsen, H.M.; Petersson, K. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int. J. Pharm., 2010, 390(1), 53-60.
[178]
Paul, W.; Sharma, C.P. Synthesis and characterization of alginate coated zinc calcium phosphate nanoparticles for intestinal delivery of insulin. Process Biochem., 2012, 47(5), 882-886.
[179]
Pippa, N.; Karayianni, M.; Pispas, S.; Demetzos, C. Complexation of cationic-neutral block polyelectrolyte with insulin and in vitro release studies. Int. J. Pharm., 2015, 491(1-2), 136-143.
[180]
Feczkó, T.; Fodor-Kardos, A.; Sivakumaran, M.; Haque Shubhra, Q.T. In vitro IFN-α release from IFN-α- and pegylated IFN-α-loaded poly(lactic-co-glycolic acid) and pegylated poly(lactic-co-glycolic acid) nanoparticles. Nanomedicine, 2016, 11(16), 2029-2034.
[181]
Dutta, P.; Dey, J.; Perumal, V.; Mandal, M. Amino acid based amphiphilic copolymer micelles as carriers of non-steroidal anti-inflammatory drugs: Solubilization, in vitro release and biological evaluation. Int. J. Pharm., 2011, 407(1-2), 207-216.
[182]
Elkomy, M.H.; Elmenshawe, S.F.; Eid, H.M.; Ali, A.M.A. Topical ketoprofen nanogel: artificial neural network optimization, clustered bootstrap validation, and in vivo activity evaluation based on longitudinal dose response modeling. Drug Deliv., 2016, 23(9), 3294-3306.
[183]
Danish, M.K.; Vozza, G.; Byrne, H.J.; Frias, J.M.; Ryan, S.M. Comparative study of the structural and physicochemical properties of two food derived antihypertensive tri-peptides, Isoleucine-Proline-Proline and Leucine-Lysine-Proline encapsulated into a chitosan based nanoparticle system. Innov. Food Sci. Emerg. Technol., 2017, 44, 139-148.
[184]
Hu, D.; Lin, C.; Liu, L.; Li, S.; Zhao, Y. Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. J. Food Eng., 2012, 109(3), 545-552.
[185]
El-Badry, M.; Fetih, G.; Fathalla, D.; Shakeel, F. Transdermal delivery of meloxicam using niosomal hydrogels: In vitro and pharmacodynamic evaluation. Pharm. Dev. Technol., 2015, 20(7), 820-826.
[186]
Raj, J.; Uppuluri, K.B. Metformin loaded casein micelles for sustained delivery: Formulation, characterization and in-vitro evaluation. Biomed. Pharmacol. J., 2015, 8(1), 83-89.
[187]
Gopi, G.; Kannan, K. Fabrication and in vitro evaluation of nateglinide-loaded ethyl cellulose nanoparticles. Asian J. Pharmaceut. Clin. Res., 2015, 8(6), 93-96.
[188]
Yang, R.; Huang, X.; Dou, J.; Zhai, G.; Lequn, S. Self-microemulsifying drug delivery system for improved oral bioavailability of oleanolic acid: Design and evaluation. Int. J. Nanomedicine, 2013, 8, 2917-2926.
[189]
Kaithwas, V.; Dora, C.P.; Kushwah, V.; Jain, S. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf. B Biointerfaces, 2017, 154, 10-20.
[190]
Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym., 2013, 95(1), 50-56.
[191]
Lopes-De-Araújo, J.; Neves, A.R.; Gouveia, V.M.; Moura, C.C.; Nunes, C.; Reis, S. Oxaprozin-Loaded Lipid Nanoparticles towards Overcoming NSAIDs Side-Effects. Pharm. Res., 2016, 33(2), 301-314.
[192]
Liang, Y.; Xiao, L.; Li, Y.; Zhai, Y.; Xie, C.; Deng, L.; Dong, A. Poly(ester anhydride)/mPEG amphiphilic block co-polymer nanoparticles as delivery devices for paclitaxel. J. Biomater. Sci. Polym. Ed., 2011, 22(4-6), 701-715.
[193]
Abouelmagd, S.A.; Sun, B.; Chang, A.C.; Ku, Y.J.; Yeo, Y. Release kinetics study of poorly water-soluble drugs from nanoparticles: Are we doing it right? Mol. Pharm., 2015, 12(3), 997-1003.
[194]
Rao, L.; Ma, Y.; Zhuang, M.; Luo, T.; Wang, Y.; Hong, A. Chitosan-decorated selenium nanoparticles as protein carriers to improve the in vivo half-life of the peptide therapeutic BAY 55-9837 for type 2 diabetes mellitus. Int. J. Nanomedicine, 2014, 9, 4819-4828.
[195]
Moreno-Bautista, G.; Tam, K.C. Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids Surf. A Physicochem. Eng. Asp., 2011, 389(1-3), 299-303.
[196]
Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Singh, B.; Yadav, S.C. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf. B Biointerfaces, 2010, 80(2), 184-192.
[197]
Shi, F.; Feng, N.; Omari-Siaw, E. Realgar nanoparticle-based microcapsules: Preparation and in-vitro/in-vivo characterizations. J. Pharm. Pharmacol., 2015, 67(1), 35-42.
[198]
Lokhande, A.B.; Deshmukh, T.A.; Patil, V.R. Evaluation of repaglinide encapsulated nanoparticles prepared by sonication method. Int. J. Pharm. Pharm. Sci., 2013, 5(Suppl. 3), 517-520.
[199]
Vijayan, V.; Reddy, K.R.; Sakthivel, S.; Swetha, C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2013, 111, 150-155.
[200]
Negi, P.; Aggarwal, M.; Sharma, G.; Rathore, C.; Sharma, G.; Singh, B.; Katare, O.P. Niosome-based hydrogel of resveratrol for topical applications: An effective therapy for pain related disorder(s). Biomed. Pharmacother., 2017, 88, 480-487.
[201]
Mehta, S.K.; Jindal, N. Mixed micelles of Lecithin-Tyloxapol as pharmaceutical nanocarriers for anti-tubercular drug delivery. Colloids Surf. B Biointerfaces, 2013, 110, 419-425.
[202]
Joshi, S.A.; Chavhan, S.S.; Sawant, K.K. Rivastigmine-loaded PLGA and PBCA nanoparticles: Preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur. J. Pharm. Biopharm., 2010, 76(2), 189-199.
[203]
Shirsat, A.E.; Chitlange, S.S. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles. J. Adv. Pharm. Technol. Res., 2015, 6(3), 88-96.
[204]
Singh, D.; Somani, V.K.; Aggarwal, S.; Bhatnagar, R. PLGA(85:15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: A promising alternate to traditional adjuvants. Mol. Immunol., 2015, 68, 272-279.
[205]
Yesil-Celiktas, O.; Cetin-Uyanikgil, E.O. In vitro release kinetics of polycaprolactone encapsulated plant extract fabricated by supercritical antisolvent process and solvent evaporation method. J. Supercrit. Fluids, 2012, 62, 219-225.
[206]
Ji, J.; Hao, S.; Wu, D.; Huang, R.; Xu, Y. Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydr. Polym., 2011, 85(4), 803-808.
[207]
Jia, L.J.; Zhang, D.R.; Li, Z.Y.; Feng, F.F.; Wang, Y.C.; Dai, W.T.; Duan, C.X.; Zhang, Q. Preparation and characterization of silybin-loaded nanostructured lipid carriers. Drug Deliv., 2010, 17(1), 11-18.
[208]
Duman, G.; Aslan, I.; Özer, A.Y.; Inanc¸, I.; Taralp, A. Liposome, gel and lipogelosome formulations containing sodium hyaluronate. J. Liposome Res., 2014, 24(4), 259-269.
[209]
Thapa, R.K.; Baskaran, R.; Madheswaran, T.; Rhyu, J.Y.; Kim, J.O.; Yong, C.S.; Yoo, B.K. Effect of saturated fatty acids on tacrolimus-loaded liquid crystalline nanoparticles. J. Drug Deliv. Sci. Technol., 2013, 23(2), 137-141.
[210]
Marini, V.G.; Martelli, S.M.; Zornio, C.F.; Caon, T.; Simões, C.M.O.; Micke, G.A.; De Oliveira, M.A.L.; Machado, V.G.; Soldi, V. Biodegradable nanoparticles obtained from zein as a drug delivery system for terpinen-4-ol. Quim. Nova, 2014, 37(5), 839-843.
[211]
Shah, R.M.; Malherbe, F.; Eldridge, D.; Palombo, E.A.; Harding, I.H. Physicochemical characterization of solid lipid nanoparticles(SLNs) prepared by a novel microemulsion technique. J. Colloid Interface Sci., 2014, 428, 286-294.
[212]
Phatak, A.A.; Sonawane, D.C.; Chaudhari, P.D. Preparation and evaluation of stable nonionic surfactant vesicular system for tramadol HCl. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(3), 1268-1277.
[213]
Li, H.; Wen, X.S.; Di, W. In vitro and in vivo evaluation of Triptolide-loaded Pluronic P105 polymeric micelles. Arzneim.-. Forsch. Drug Res., 2012, 62(7), 340-344.
[214]
Yang, Z.; Liu, J.; Gao, J.; Chen, S.; Huang, G. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int. J. Pharm., 2015, 495(1), 508-515.
[215]
Morais, J.M.; Burgess, D.J. In vitro release testing methods for vitamin e nanoemulsions. Int. J. Pharm., 2014, 475(1), 393-400.
[216]
Sankar, V.; Madhura Keerthi, K.; Parmar, N. Formulation and in-vitro evaluation of zidovudine-lamivudine nanoparticles. Ind. J. Pharmaceut. Educat. Res., 2012, 46(2), 192-196.
[217]
Li, X.; Naguib, Y.W.; Cui, Z. In vivo distribution of zoledronic acid in a bisphosphonate-metal complex-based nanoparticle formulation synthesized by a reverse microemulsion method. Int. J. Pharm., 2017, 526(1-2), 69-76.
[218]
Al-Kinani, A.A.; Naughton, D.P.; Calabrese, G.; Vangala, A.; Smith, J.R.; Pierscionek, B.K.; Alany, R.G. Analysis of 2-oxothiazolidine-4-carboxylic acid by hydrophilic interaction liquid chromatography: Application for ocular delivery using chitosan nanoparticles. Anal. Bioanal. Chem., 2015, 407(9), 2645-2650.
[219]
Tamilvanan, S.; Kumar, B.A. Influence of acetazolamide loading on the(in vitro) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Drug Dev. Ind. Pharm., 2011, 37(9), 1003-1015.
[220]
Jia, Y.; Ji, J.; Wang, F.; Shi, L.; Yu, J.; Wang, D. Formulation, characterization, and in vitro/vivo studies of aclacinomycin A-loaded solid lipid nanoparticles. Drug Deliv., 2016, 23(4), 1317-1325.
[221]
Luan, J.; Zhang, D.; Hao, L.; Li, C.; Qi, L.; Guo, H.; Liu, X.; Zhang, Q. Design and characterization of Amoitone B-loaded nanostructured lipid carriers for controlled drug release. Drug Deliv., 2013, 20(8), 324-330.
[222]
Yesil-Celiktas, O.; Pala, C.; Cetin-Uyanikgil, E.O.; Sevimli-Gur, C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Anal. Biochem., 2017, 519, 1-7.
[223]
Garcia, X.; Escribano, E.; Domenech, J.; Queralt, J.; Freixes, J. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles. J. Nanopart. Res., 2011, 13(5), 2213-2223.
[224]
Zhu, Y.; Wang, M.; Zhang, J.; Peng, W.; Firempong, C.K.; Deng, W.; Wang, Q.; Wang, S.; Shi, F.; Yu, J.; Xu, X.; Zhang, W. Improved oral bioavailability of capsaicin via liposomal nanoformulation: Preparation, in vitro drug release and pharmacokinetics in rats. Arch. Pharm. Res., 2015, 38(4), 512-521.
[225]
Li, D.; Martini, N.; Wu, Z.; Wen, J. Development of an isocratic HPLC method for catechin quantification and its application to formulation studies. Fitoterapia, 2012, 83(7), 1267-1274.
[226]
Nguyen, T.T.T.N.; Østergaard, J.; Stürup, S.; Gammelgaard, B. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS. Int. J. Pharm., 2013, 449(1-2), 95-102.
[227]
Li, M.; Li, Y.; Liu, W.; Li, R.; Qin, C.; Liu, N.; Han, J. The preparation of Cistanche phenylethanoid glycosides liquid proliposomes: Optimized formulation, characterization and proliposome dripping pills in vitro and in vivo evaluation. European J. Pharmaceut. Sci., 2016, 93, 224-232.
[228]
Nguyen, A.T.B.; Winckler, P.; Loison, P.; Wache, Y.; Chambin, O. Physico-chemical state influences in vitro release profile of curcumin from pectin beads. Colloids Surf. B Biointerfaces, 2014, 121, 290-298.
[229]
das Neves, J.; Sarmento, B.; Amiji, M. M.; Bahia, M. F. Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles. J. Pharm. Biomed. Anal., 2010, 52(2), 167-172.
[230]
Singh, S.; Jain, A.; Singh, S.K.; Singh, Y. Development of lipid nanoparticles of diacerein, an antiosteoarthritic drug for enhancement in bioavailability and reduction in its side effects. J. Biomed. Nanotechnol., 2013, 9(5), 891-900.
[231]
Lei, M.; Ma, M.; Pang, X.; Tan, F.; Li, N. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods. Nanoscale, 2015, 7(38), 15999-16011.
[232]
Ying, X.Y.; Du, Y.Z.; Hong, L.H.; Yuan, H.; Hu, F.Q. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics. J. Magn. Magn. Mater., 2011, 323(8), 1088-1093.
[233]
Singh, G.; Pai, R.S. Optimization(central composite design) and validation of HPLC method for investigation of emtricitabine loaded poly(lactic-co-glycolic acid) nanoparticles: In vitro drug release and in vivo pharmacokinetic studies. Sci. World J., 2014, 2014, 1.
[234]
Liu, H.; Shang, K.; Liu, W.; Leng, D.; Li, R.; Kong, Y.; Zhang, T. Improved oral bioavailability of glyburide by a self-nanoemulsifying drug delivery system. J. Microencapsul., 2014, 31(3), 277-283.
[235]
Parmar, A.; Chavda, S.; Bahadur, P. Pluronic-cationic surfactant mixed micelles: Solubilization and release of the drug hydrochlorothiazide. Colloids Surf. A Physicochem. Eng. Asp., 2014, 441, 389-397.
[236]
Montenegro, L.; Campisi, A.; Sarpietro, M.G.; Carbone, C.; Acquaviva, R.; Raciti, G.; Puglisi, G. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev. Ind. Pharm., 2011, 37(6), 737-746.
[237]
Andreani, T.; de Souza, A.L.; Kiill, C.P.; Lorenzón, E.N.; Fangueiro, J.F.; Calpena, A.C.; Chaud, M.V.; Garcia, M.L.; Gremião, M.P.; Silva, A.M.; Souto, E.B. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. Int. J. Pharm., 2014, 473(1-2), 627-635.
[238]
Wang, Y.; Zhang, X.; Cheng, C.; Li, C. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine, 2014, 9(4), 451-464.
[239]
Mirza, M.A.; Talegaonkar, S.; Iqbal, Z. Quantitative analysis of itraconazole in bulk, marketed, and nano formulation by validated, stability indicating high performance thin layer chromatography. J. Liq. Chromatogr. Relat. Technol., 2012, 35(11), 1459-1480.
[240]
Parikh, N.; Venishetty, V.K.; Sistla, R. Simultaneous determination of ketoconazole, ritonavir and lopinavir in solid lipid nanoparticles by RP-LC. Chromatographia, 2010, 71(9-10), 941-946.
[241]
Zhou, J.; Zhou, D. Improvement of oral bioavailability of lovastatin by using nanostructured lipid carriers. Drug Des. Devel. Ther., 2015, 9, 5269-5275.
[242]
Martins, L.G. khalil, N. M.; Mainardes, R. M. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles. J. Pharm. Anal., 2017, 7(6), 388-393.
[243]
Karabey-Akyürek, Y.; Nemutlu, E.; Bilensoy, E.; Öner, L. An improved and validated HPLC method for the determination of methylprednisolone sodium succinate and its degradation products in nanoparticles. Curr. Pharm. Anal., 2017, 13(2), 162-168.
[244]
Bobbala, S.; McDowell, A.; Hook, S. Quantitation of the immunological adjuvants, monophosphoryl lipid A and Quil A in poly(lactic-co-glycolic acid) nanoparticles using high performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 975, 45-51.
[245]
Wang, Y.; Wang, S.; Firempong, C.K.; Zhang, H.; Wang, M.; Zhang, Y.; Zhu, Y.; Yu, J.; Xu, X. Enhanced Solubility and Bioavailability of Naringenin via Liposomal Nanoformulation: Preparation and In vitro and In vivo Evaluations. AAPS PharmSciTech, 2017, 18(3), 586-594.
[246]
Guan, T.; Miao, Y.; Xu, L.; Yang, S.; Wang, J.; He, H.; Tang, X.; Cai, C.; Xu, H. Injectable nimodipine-loaded nanoliposomes: Preparation, lyophilization and characteristics. Int. J. Pharm., 2011, 410(1-2), 180-187.
[247]
Singla, P.; Chabba, S.; Mahajan, R.K. A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles. Colloids Surf. A Physicochem. Eng. Asp., 2016, 504, 479-488.
[248]
Huang, X.; Huang, X.; Jiang, X.H.; Hu, F.Q.; Du, Y.Z.; Zhu, Q.F.; Jin, C.S. In vitro antitumour activity of stearic acid-g-chitosan oligosaccharide polymeric micelles loading podophyllotoxin. J. Microencapsul., 2012, 29(1), 1-8.
[249]
Badran, M.M.; Harisa, G.I.; Alqahtani, S.A.; Alanazi, F.K.; Zoheir, K.M.A. Pravastatin-loaded chitosan nanoparticles: Formulation, characterization and cytotoxicity studies. J. Drug Deliv. Sci. Technol., 2016, 32, 1-9.
[250]
Guo, F.; Lin, M.; Gu, Y.; Zhao, X.; Hu, G. Preparation of PEG-modified proanthocyanidin liposome and its application in cosmetics. Eur. Food Res. Technol., 2015, 240(5), 1013-1021.
[251]
Da Silva, S.B.; Oliveira, A.; Ferreira, D.; Sarmento, B.; Pintado, M. Development and validation method for simultaneous quantification of phenolic compounds in natural extracts and nanosystems. Phytochem. Anal., 2013, 24(6), 638-644.
[252]
Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Kumar, V.; Singh, B.; Chaudhary, A.; Yadav, S.C. Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf. B Biointerfaces, 2011, 82(1), 224-232.
[253]
Barwal, I.; Yadav, S.C. Rebaudioside a loaded poly-d,l-lactide-nanoparticles as an anti-diabetic nanomedicine. J. Bionanosci., 2014, 8(2), 137-140.
[254]
Macedo, A.S.; Quelhas, S.; Silva, A.M.; Souto, E.B. Nanoemulsions for delivery of flavonoids: Formulation and in vitro release of rutin as model drug. Pharm. Dev. Technol., 2014, 19(6), 677-680.
[255]
Umerska, A.; Corrigan, O.I.; Tajber, L. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Int. J. Pharm., 2014, 477(1-2), 102-112.
[256]
Tiwari, R.; Pathak, K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm., 2011, 415(1-2), 232-243.
[257]
Raval, A.; Parmar, A.; Raval, A.; Bahadur, P. Preparation and optimization of media using Pluronic® micelles for solubilization of sirolimus and release from the drug eluting stents. Colloids Surf. B Biointerfaces, 2012, 93, 180-187.
[258]
Zhang, H.; Zhang, F.M.; Yan, S.J. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles. Int. J. Nanomedicine, 2012, 7, 2901-2910.
[259]
Tariq, M.; Iqbal, Z.; Ali, J.; Baboota, S.; Parveen, R.; Mirza, M.; Ahmad, S.; Sahni, J. Development and validation of a stability-indicating high-performance thin-layer chromatographic method for the simultaneous quantification of sparfloxacin and flurbiprofen in nanoparticulate formulation. J. Planar Chromatogr. Mod. TLC, 2014, 27(2), 124-131.
[260]
Khan, S.; Shaharyar, M.; Fazil, M.; Baboota, S.; Ali, J. Tacrolimus-loaded nanostructured lipid carriers for oral delivery – Optimization of production and characterization. Eur. J. Pharm. Biopharm., 2016, 108, 277-288.
[261]
Claro De Souza, M.; Marotta-Oliveira, S.S.; Rocha, N.H.S.; Eloy, J.O.; Marchetti, J.M. Development of a Method to Evaluate the Release Profile of Tamoxifen from Pegylated Hybrid Micelles. J. Liq. Chromatogr. Relat. Technol., 2015, 38(12), 1223-1229.
[262]
Engleder, E.; Honeder, C.; Klobasa, J.; Wirth, M.; Arnoldner, C.; Gabor, F. Preclinical evaluation of thermoreversible triamcinolone acetonide hydrogels for drug delivery to the inner ear. Int. J. Pharm., 2014, 471(1-2), 297-302.
[263]
Wang, Q.; Ma, D.; Higgins, J.P. Analytical method selection for drug product dissolution testing. Dissolut. Technol., 2006, 13(3), 6.
[264]
Tang, D.Q.; Zou, L.; Yin, X.X.; Ong, C.N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrom. Rev., 2016, 35(5), 574-600.
[265]
Ikegami, T.; Tomomatsu, K.; Takubo, H.; Horie, K.; Tanaka, N. Separation efficiencies in hydrophilic interaction chromatography. J. Chromatogr. A, 2008, 1184(1-2), 474-503.
[266]
Guideline, I. H. T. Validation of analytical procedures: text and methodology. Q2(R1) 2005, 1
[267]
Nemutlu, E.; Kir, S.; Katlan, D.; Beksac, M.S. Simultaneous multiresponse optimization of an HPLC method to separate seven cephalosporins in plasma and amniotic fluid: Application to validation and quantification of cefepime, cefixime and cefoperazone. Talanta, 2009, 80(1), 117-126.
[268]
Nemutlu, E.; Kir, S.; Ozyuncu, O.; Beksac, M.S. Simultaneous separation and determination of seven Quinolones using HPLC: Analysis of Levofloxacin and moxifloxacin in plasma and amniotic fluid. Chromatographia, 2007, 66, S15-S24.