Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

用于溃疡性结肠炎治疗的口服药物递送系统:与微粒和纳米粒子的比较研究

卷 19, 期 4, 2019

页: [304 - 311] 页: 8

弟呕挨: 10.2174/1568009618666181016152042

价格: $65

摘要

背景:口服微粒(MP)和纳米颗粒(NP)已被广泛用作治疗溃疡性结肠炎(UC)的治疗方法。然而,之前的研究没有比较研究MP和NP的治疗功效。 方法:在本研究中,使用单一油包水乳液溶剂蒸发技术制备姜黄素(CUR)负载的MP(CUR-MP)和CUR负载的NP(CUR-NP)。他们对UC的治疗结果进一步比较研究。 结果:得到的球形MP和NPs表现出轻微的负ζ电位,平均粒径分别为约1.7μm和270nm。结果发现,在同一研究期间,NPs的MP释放速率远高于MPs。体内实验证明口服施用CUR-MP和CUR-NP减少了由葡聚糖硫酸钠诱导的UC小鼠模型中的炎症症状。重要的是,与CUR-MP相比,CUR-NPs在减轻UC方面表现出更好的治疗效果。 结论:与MP相比,NPs可通过增强药物释放和细胞摄取效率来改善CUR的抗炎活性。因此,它们可以被用作有效的UC治疗的有希望的口服给药系统。

关键词: 口服给药,给药系统,溃疡性结肠炎,微粒,纳米粒,炎症。

图形摘要

[1]
Xiao, B.; Xu, Z.G.; Viennois, E.; Zhang, Y.; Zhang, Z.; Zhang, M.; Han, M.; Kang, Y.; Merlin, D. Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Mol. Ther., 2017, 25(7), 1628-1640.
[2]
Nguyen, H.T.; Dalmasso, G.; Torkvist, L.; Halfvarson, J.; Yan, Y.; Laroui, H.; Shmerling, D.; Tallone, T.; D’Amato, M.; Sitaraman, S.V.; Merlin, D. CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J. Clin. Invest., 2011, 121(5), 1733-1747.
[3]
Xiao, B.; Laroui, H.; Ayyadurai, S.; Viennois, E.; Charania, M.A.; Zhang, Y.; Merlin, D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy. Biomaterials, 2013, 34(30), 7471-7482.
[4]
Pichai, M.V.; Ferguson, L.R. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases. World J. Gastroenterol., 2012, 18(23), 2895-2901.
[5]
Laroui, H.; Theiss, A.L.; Yan, Y.; Dalmasso, G.; Nguyen, H.T.; Sitaraman, S.V.; Merlin, D. Functional TNFalpha gene silencing mediated by polyethyleneimine/TNFalpha siRNA nanocomplexes in inflamed colon. Biomaterials, 2011, 32(4), 1218-1228.
[6]
Gómez-Estaca1, J.; Balaguer, M.P.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocoll., 2017, 70, 313-320.
[7]
Xiao, B.; Zhang, Z.; Viennois, E.; Kang, Y.; Zhang, M.; Han, M.K.; Chen, J.; Merlin, D. Combination therapy for ulcerative colitis: Orally targeted nanoparticles prevent mucosal damage and relieve inflammation. Theranostics, 2016, 6(12), 2250.
[8]
He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213.
[9]
Beloqui, A.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Preat, V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm., 2014, 473(1), 203-212.
[10]
Lahiff, C.; Moss, A.C. Curcumin for clinical and endoscopic remission in ulcerative colitis. Inflamm. Bowel Dis., 2011, 17(7), E66.
[11]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[12]
Dulbecco, P.; Savarino, V. Therapeutic potential of curcumin in digestive diseases. World J. Gastroenterol., 2013, 19(48), 9256-9270.
[13]
Irving, G.R.; Karmokar, A.; Berry, D.P.; Brown, K.; Steward, W.P. Curcumin: the potential for efficacy in gastrointestinal diseases. Best Pract. Res. Clin. Gastroenterol., 2011, 25(4), 519-534.
[14]
Hani, U.; Shivakumar, H.G.; Osmani, R.A.; Srivastava, A.; Kumar Varma, N.S. Development of a curcumin bioadhesive monolithic tablet for treatment of vaginal candidiasis. Iran. J. Pharm. Res., 2016, 15(1), 23-34.
[15]
Hazzah, H.A.; Farid, R.M.; Nasra, M.M.; El-Massik, M.A.; Abdallah, O.Y. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization. Int. J. Pharm., 2015, 492(1), 248-257.
[16]
Ni, J.; Tian, F.; Dahmani, F.Z.; Yang, H.; Yue, D.; He, S.; Zhou, J.; Yao, J. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs. Drug Deliv., 2016, 23(9), 3424-3435.
[17]
Xiao, B.; Laroui, H.; Viennois, E.; Ayyadurai, S.; Charania, M.A.; Zhang, Y.; Zhang, Z.; Baker, M.T.; Zhang, B.; Gewirtz, A.T.; Merlin, D. Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice. Gastroenterology, 2014, 146(5), 1289-1300.
[18]
Xiao, B.; Merlin, D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin. Drug Deliv., 2012, 9(11), 1393-1407.
[19]
Lautenschlager, C.; Schmidt, C.; Lehr, C.M.; Fischer, D.; Stallmach, A. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur. J. Pharm. Biopharm., 2013, 85(3), 578-586.
[20]
Lamprecht, A.; Schafer, U.; Lehr, C.M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res., 2001, 18(6), 788-793.
[21]
Doshi, N.; Mitragotri, S. Designer biomaterials for nanomedicine. Adv. Funct. Mater., 2009, 19(24), 3843-3854.
[22]
Youshia, J.; Lamprecht, A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin. Drug Deliv., 2016, 13(2), 281-294.
[23]
Mir, M.; Ahmed, N.; Rehman, A. Recent applications of PLGA based nanostructures in drug delivery. Colloid. Surface B., 2017, 159, 217-231.
[24]
Beloqui, A.; Memvanga, P.B.; Coco, R.; Reimondez-Troitiño, S.; Alhouayek, M.; Muccioli, G.G.; Alonso, M.J.; Csaba, N.; de la Fuente, M.; Préat, V. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloid Surface B., 2016, 143, 327-335.
[25]
Moulari, B.; Beduneau, A.; Pellequer, Y.; Lamprecht, A. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J. Control. Release, 2014, 188, 9-17.
[26]
Huang, Z.; Gan, J.; Jia, L.; Guo, G.; Wang, C.; Zang, Y.; Ding, Z.; Chen, J.; Zhang, J.; Dong, L. An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials, 2015, 48, 26-36.
[27]
Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H.D.; Golomb, G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release, 2009, 133(2), 90-95.
[28]
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. Adv. Colloid Interface Sci., 2011, 163(2), 90-122.
[29]
Chen, Y.F.; Rosenzweig, Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett., 2002, 2(11), 1299-1302.
[30]
Mu, L.; Feng, S.S. PLGA/TPGS nanoparticles for controlled release of paclitaxel: Effects of the emulsifier and drug loading ratio. Pharm. Res., 2003, 20(11), 1864-1872.
[31]
Hassan, C.M.; Peppas, N.A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci., 2000, 153, 37-65.
[32]
Ramasamy, T.; Kim, J.H.; Choi, J.Y.; Tran, T.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J. Mater. Chem. B , 2014, 2(37), 6324-6333.
[33]
Wu, H.; Wang, S.; Fang, H.; Zan, X.; Zhang, J.; Wan, Y. Chitosan-polycaprolactone copolymer microspheres for transforming growth factor-beta1 delivery. Colloids Surf. B Biointerfaces, 2011, 82(2), 602-608.
[34]
Aigner, A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J. Biomed. Biotechnol., 2006, 71659.
[35]
Perse, M.; Cerar, A. Dextran sodium sulphate colitis mouse model: Traps and tricks. J. Biomed. Biotechnol., 2012, 2012, 718617.
[36]
Grisham, M.B. Do different animal models of IBD serve different purposes? Inflamm. Bowel Dis., 2008, 14(S2), S132-S133.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy