Abstract
Tuberculosis (TB) takes the second place among the reasons for mortality from infectious diseases. For this reason, the problem of tuberculosis treatment requires urgent attention all over the world. Some 2-amino substituted 1,3-benzothiazin-4-ones (2-amino-1,3-BTZs) represent a promising new class of antitubercular agents. Other 1,3-benzothiazin-4-one derivatives, mostly 2-aryl and 2- (pyridin-2-yl) ones, are attractive due to their ability to suppress oxidative stress-induced cardiomyocyte apoptosis. This review covers the synthetic approaches to 2-amino- and 2-aryl(heteryl) substituted 1,3-benzothiazin-4-ones (1,3-BTZs). A brief overview of structure-activity relationships is presented.
Keywords: Antitubercular agent, 1, 3-Benzothiazin-4-one, Cyclocondensation, 2-Mercaptobenzoic acid, 2-Halogenobenzoyl isothiocyanate, apoprosis.
Graphical Abstract
(b)Badshah, S.L.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules, 2016, 21, 1054-1073.
(b)Makarov, V.; Manina, G.; Mikusova, K.; Möellmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.; Milano, A.P.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324, 801-804.
(c)Makarov, V.; Ryabova, O.B.; Yuschenko, A.; Urlyapova, N.; Daubova, A.; Zipfel, P.F.; Moellmann, U.J. Synthesis and antileprosy activity of some dialkyldithiocarbamates. Antumicrob. Chemother, 2006, 57, 1134-1138.
(d)Makarov, V.; Cole, S.; Moellmann, U. New benzothiazinone derivatives and their use as antibacterial agents., Patent EP2029583, March 04,. 2009.
(e)Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A.R.; Deprez, B.; Willand, N. Tuberculosis: The drug development pipeline at a glance. Eur. J. Med. Chem., 2012, 51, 1-16.
(f)Poce, C.; Cocozza, M.; Consalvi, S.; Biava, M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur. J. Med. Chem., 2014, 86, 335-351.
(g)Joshi, S.D.; Kumar, D.; Dixit, S.R.; Joshi, A.S.; Aminabhavi, T.M. Drug resistance of antitubercular agents at the genetic level in mycobacterium species: A road map to drug development for counteracting the resistance. Mini Rev. Org. Chem., 2016, 13, 262-280.
(b)Batt, S.M.; Izquierdo, M.C.; Pichel, J.C.; Stubbs, C.J.; Peral, L.V.G.D.; Pérez-Herrán, E.; Dhar, N.; Mouzon, B.; Rees, M.; Hutchinson, J.P.; Young, R.J.; McKinney, J.D.; Aguirre, D.B.; Ballell, L.; Besra, G.S.; Argyrou, A. Whole cell target engagement identifies novel inhibitors of mycobacterium tuberculosis decaprenyl-phosphoryl-β-D-ribose oxidase. ACS Infect. Dis., 2015, 1, 615-626.
(c)Majewski, M.W.; Watson, K.D.; Cho, S.; Miller, P.A.; Franzblau, S.G.; Miller, M. Syntheses and biological evaluations of highly functionalized hydroxamate containing and N-methylthio monobactams as anti-tuberculosis and β-lactamase inhibitory agents. J. Med. Chem. Commun, 2016, 7, 141-147.
(d)Udwadia, Z.F.; Amale, R.A.; Ajbani, K.K.; Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis., 2011, 54, 579-581.
(e)Umesiri, F.E.; Sanki, A.K.; Boucau, J.; Ronning, D.R.; Sucbeck, S.J. Recent advances toward the inhibition of mAG and LAM synthesis in mycobacterium tuberculosis. Med. Res. Rev., 2010, 30, 290-326.
(f)Rivers, E.C.; Mancera, R.L. New anti-tuberculosis drugs with novel mechanisms of action. Curr. Med. Chem., 2008, 15, 1956-1967.
(g)Tripathi, R.P.; Bisht, S.S.; Ajay, A.; Sharma, A.; Misra, M.; Gupt, M.P. Developments in chemical approaches to treat tuberculosis in the last decade. Curr. Med. Chem., 2012, 19, 488-517.
(h)Rawat, B.; Rawat, D.S. Antituberculosis drug research: A critical overview. Med. Res. Rev., 2013, 33, 693-764.
(i)Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388-404.
(j)Branco, F.S.C.; Pinto, A.C.; Boechat, N. An update on the chemistry and medicinal chemistry of novel antimycobacterial compounds. Curr. Top. Med. Chem., 2013, 13, 2808-2847.
(b)Kajino, M.; Imaeda, T. 1,3- Benzothiazinone derivative and use thereof. Patent EP1897880, March 12 2008.
(c)Kajino, M.; Kawada, A.; Nakayama, Y.; Kimura, H.; Twaraishi, T. 1,3-Benzothiazinone derivative and use thereof. Patent EP1424336, June 02 2004.
Kretov, A.E.; Momsenko, A.P.; Levin, Y.A. Synthesis of dihydro-1,3-thiazine derivatives; Khim. Geterotsikl Soedin, 1973, pp. 644-650.
bKajino, M.; Kawada, A.; Nakayama, Y.; Kimura, H. 1,3-Benzothiazinone derivative and use thereof. Patent WO 2003020719, March 13 2003.
bMakarov, V.; Cole, S.T.; Moellmann, U. New benzothiazinone derivatives and their use as antibacterial agents. Patent WO 2007134625, November 29 2007.
cMoellmann, U.; Makarov, V.A.; Cole, S.T. New antimicrobial compounds, their synthesis and their use for treatment of mammalian infections.Patent WO 2009010163, January 22 2009.
dMoellmann, U.; Makarov, V.A.; Cole, S.T. New antimicrobial compounds, their synthesis and their use for treatment of mammalian infection. Patent EP2020406, February 04 2009.
bCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Novel anti-tuberculosis agents.Patent WO 2012085654, June 06, 2012.
bPeng, C.T.; Gao, C.; Wang, N.Y.; You, X.Y.; Zhang, L.D.; Zhu, Y.X.; Xv, Y.; Zuo, W.Q.; Ran, K.; Deng, H.X.; Lei, Q.; Xiao, K.J.; Yu, L.T. Synthesis and tuberculostatic activity of fluorine-containing derivatives of quinolone, quinazolinone, and benzothiazinone. Bioorg. Med. Chem. Lett., 2015, 25, 1373-1376.
bNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Charushin, V.N. Polyfluorobenzoyl chlorides and isothiocyanates in reactions with CH-reactive benzimidazoles. Russ. Chem. Bull., 2005, 54, 733-737.
cNosova, E.V.; Laeva, A.A.; Trashakhova, T.V.; Golovchenko, A.V.; Lipunova, G.N.; Slepukhin, P.A.; Charushin, V.N. Fluorine-containing heterocycles: XVIII. Monofluoro derivatives of quinazolines and 1,3-benzothiazin-4-ones. Russ. J. Org. Chem., 2009, 45, 904-912.
dLipunova, G.N.; Nosova, E.V.; Laeva, A.A.; Trashakhova, T.V.; Slepukhin, P.A.; Charushin, V.N. Fluorine-containing heterocycles: XVII. (Tetrafluorobenzoyl)-thioureas in the synthesis of fluorine-containing azaheterocycles. Russ. J. Org. Chem., 2008, 44, 741-749.
eNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Sidorova, L.P.; Charushin, V.N. Fluorine-containing heterocycles: XVI. Reactions of tetrafluorobenzoyl isothiocyanate with hydrazines and their derivatives. Russ. J. Org. Chem., 2007, 43, 68-76.
bNosova, E.V.; Lipunova, G.N.; Kravchenko, M.A.; Laeva, A.A.; Charushin, V.N. Synthesis and tuberculostatic activity of fluorine-containing derivatives of quinolone, quinazolinone, and benzothiazinone. Pharm. Chem. J., 2008, 42, 169-174.
bFodor, L.; Bernath, G.; Sinkkonen, J.; Pihlaja, K. Synthesis and structural characterisation of 4H-1,3-benzothiazine derivatives. J. Heterocycl. Chem., 2002, 39, 927-931.
bCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Benzothiazinone derivatives as anti-tuberculosis agents.Patent WO2013038259, March 21, 2014.
c Yu, L.; Wei, Y. Benzothiazinethione derivatives and their preparative methods and uses. Patent EP2719691, April 16, 2014.
bMakarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; Van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6, 372-383.
bManina, G.; Bellinzoni, M.; Pasca, M.R.; Neres, J.; Milano, A.; Ribeiro, A.L.; Buroni, S.; Skovierova, H.; Dianiskova, P.; Mikusova, K.; Marak, J.; Makarov, V.; Giganti, D.; Haouz, A.; Lucarelli, A.; Degiacomi, G.; Plazza, A.; Chiarelli, L.R.; De Rossi, E.; Salina, E.; Cole, S.T.; Alzari, P.M.; Riccardi, G. Biological and structural characterisation oft he Micobacterium smegmatis nitroreductase NfnB, and ist role in benzothiazinone resistance. Mol. Microbiol., 2010, 77, 1172-1185.
cTrefzer, C.; Skovierova, H.; Buroni, S.; Bobovska, A.; Nenci, S.; Molteni, E.; Pojer, F.; Pasca, M.R.; Makarov, V.; Cole, S.T.; Riccardi, G.; Mikusova, K.; Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc., 2012, 134, 912-915.
dTiwari, R.; Moraski, G.C.; Krchnak, V.; Miller, P.A.; Colon-Martinez, M.; Herrero, E.; Oliver, A.G.; Miller, M.J. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents. J. Am. Chem. Soc., 2013, 135, 3539-3549.
eXu, Z.; Peng, W.; Wan, K.; Luo, C.; Zeng, H.; Zhang, P.; Liu, Z.; Zhang, Y.; Wang, X. In vitro interactions between R207910 and second-line anti-TB drugs or BTZ043 against Mycobacterium tuberculosis by microplate alamar blue assay. Int. J. Clin. Exp. Med., 2016, 9, 6336-6341.