Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Synthesis and Biological Activity of 2-Amino- and 2-aryl (Heteryl) Substituted 1,3-Benzothiazin-4-ones

Author(s): Emiliya V. Nosova*, Galina N. Lipunova, Valery N. Charushin and Oleg N. Chupakhin

Volume 19, Issue 12, 2019

Page: [999 - 1014] Pages: 16

DOI: 10.2174/1389557518666181015151801

Price: $65

Abstract

Tuberculosis (TB) takes the second place among the reasons for mortality from infectious diseases. For this reason, the problem of tuberculosis treatment requires urgent attention all over the world. Some 2-amino substituted 1,3-benzothiazin-4-ones (2-amino-1,3-BTZs) represent a promising new class of antitubercular agents. Other 1,3-benzothiazin-4-one derivatives, mostly 2-aryl and 2- (pyridin-2-yl) ones, are attractive due to their ability to suppress oxidative stress-induced cardiomyocyte apoptosis. This review covers the synthetic approaches to 2-amino- and 2-aryl(heteryl) substituted 1,3-benzothiazin-4-ones (1,3-BTZs). A brief overview of structure-activity relationships is presented.

Keywords: Antitubercular agent, 1, 3-Benzothiazin-4-one, Cyclocondensation, 2-Mercaptobenzoic acid, 2-Halogenobenzoyl isothiocyanate, apoprosis.

Graphical Abstract

[1]
(a)Hong, X.; Harmata, M. Recent progress in the chemistry of 2,1- benzothiazines. In Progress in Heterocyclic Chemistry, Chapter 1, Gribble G.W., Joule J.A., Eds; Pergamon Press: New York, , 2008; 19, pp. 1-43.
(b)Badshah, S.L.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules, 2016, 21, 1054-1073.
[2]
(a)Chetty, S.; Ramesh, M.; Singh-Pillay, A.; Soliman, M.E.S. recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett., 2017, 27, 370-386.
(b)Makarov, V.; Manina, G.; Mikusova, K.; Möellmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.; Milano, A.P.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324, 801-804.
(c)Makarov, V.; Ryabova, O.B.; Yuschenko, A.; Urlyapova, N.; Daubova, A.; Zipfel, P.F.; Moellmann, U.J. Synthesis and antileprosy activity of some dialkyldithiocarbamates. Antumicrob. Chemother, 2006, 57, 1134-1138.
(d)Makarov, V.; Cole, S.; Moellmann, U. New benzothiazinone derivatives and their use as antibacterial agents., Patent EP2029583, March 04,. 2009.
(e)Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A.R.; Deprez, B.; Willand, N. Tuberculosis: The drug development pipeline at a glance. Eur. J. Med. Chem., 2012, 51, 1-16.
(f)Poce, C.; Cocozza, M.; Consalvi, S.; Biava, M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur. J. Med. Chem., 2014, 86, 335-351.
(g)Joshi, S.D.; Kumar, D.; Dixit, S.R.; Joshi, A.S.; Aminabhavi, T.M. Drug resistance of antitubercular agents at the genetic level in mycobacterium species: A road map to drug development for counteracting the resistance. Mini Rev. Org. Chem., 2016, 13, 262-280.
[3]
Chitre, T.S.; Bothara, K.G. Pyrimidinedione: Pharmacophore optimization of selective thymidine monophosphate kinase inhibitors using group QSAR studies as potential antitubercular agents. J. Chem. Pharm. Res., 2011, 3, 479-488.
[4]
(a)Tiwari, R.; Mollmann, U.; Cho, S.; Franzblau, S.G.; Miller, P.A.; Miller, M.J. Design and syntheses of anti-tuberculosis agents inspired by BTZ043 using a scaffold simplification strategy. ACS Med. Chem. Lett., 2014, 5, 587-591.
(b)Batt, S.M.; Izquierdo, M.C.; Pichel, J.C.; Stubbs, C.J.; Peral, L.V.G.D.; Pérez-Herrán, E.; Dhar, N.; Mouzon, B.; Rees, M.; Hutchinson, J.P.; Young, R.J.; McKinney, J.D.; Aguirre, D.B.; Ballell, L.; Besra, G.S.; Argyrou, A. Whole cell target engagement identifies novel inhibitors of mycobacterium tuberculosis decaprenyl-phosphoryl-β-D-ribose oxidase. ACS Infect. Dis., 2015, 1, 615-626.
(c)Majewski, M.W.; Watson, K.D.; Cho, S.; Miller, P.A.; Franzblau, S.G.; Miller, M. Syntheses and biological evaluations of highly functionalized hydroxamate containing and N-methylthio monobactams as anti-tuberculosis and β-lactamase inhibitory agents. J. Med. Chem. Commun, 2016, 7, 141-147.
(d)Udwadia, Z.F.; Amale, R.A.; Ajbani, K.K.; Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis., 2011, 54, 579-581.
(e)Umesiri, F.E.; Sanki, A.K.; Boucau, J.; Ronning, D.R.; Sucbeck, S.J. Recent advances toward the inhibition of mAG and LAM synthesis in mycobacterium tuberculosis. Med. Res. Rev., 2010, 30, 290-326.
(f)Rivers, E.C.; Mancera, R.L. New anti-tuberculosis drugs with novel mechanisms of action. Curr. Med. Chem., 2008, 15, 1956-1967.
(g)Tripathi, R.P.; Bisht, S.S.; Ajay, A.; Sharma, A.; Misra, M.; Gupt, M.P. Developments in chemical approaches to treat tuberculosis in the last decade. Curr. Med. Chem., 2012, 19, 488-517.
(h)Rawat, B.; Rawat, D.S. Antituberculosis drug research: A critical overview. Med. Res. Rev., 2013, 33, 693-764.
(i)Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388-404.
(j)Branco, F.S.C.; Pinto, A.C.; Boechat, N. An update on the chemistry and medicinal chemistry of novel antimycobacterial compounds. Curr. Top. Med. Chem., 2013, 13, 2808-2847.
[5]
(a)Kimura, H.; Sato, Y.; Tajima, Y.; Suzuki, H.; Yukitake, H.; Imaeda, T.; Kajino, M.; Oki, H.; Takizawa, M.; Tanida, S. BTZO-1, a cardioprotective agent, reveals that macrophage migration inhibitory factor regulates ARE-mediated gene expression. Chem. Biol., 2010, 17, 1282-1294.
(b)Kajino, M.; Imaeda, T. 1,3- Benzothiazinone derivative and use thereof. Patent EP1897880, March 12 2008.
(c)Kajino, M.; Kawada, A.; Nakayama, Y.; Kimura, H.; Twaraishi, T. 1,3-Benzothiazinone derivative and use thereof. Patent EP1424336, June 02 2004.
[6]
Li, S.; Hong, H.; Zhu, N.; Han, L.; Lu, J. Review about the synthesis of 1,3-benzothiazinone derivatives. Chin. J. Org. Chem.,, 2016, 36, 2024-2038.
[7]
(a)Sherif, S.M.; Mohareb, R.M.; Elgemeic, G.E.H.; Singh, R.P. Nitriles in heterocyclic synthesis: 1-cyanoformanilide as precursor for a variety of heterocyclic ring systems. Heterocycles, 1988, 27, 1579-1585.
Kretov, A.E.; Momsenko, A.P.; Levin, Y.A. Synthesis of dihydro-1,3-thiazine derivatives; Khim. Geterotsikl Soedin, 1973, pp. 644-650.
[8]
Shestakov, A.S.; Gusakova, N.V.; Shikhaliev, K.S.; Timoshkina, A.G. Cyanamides in the synthesis of 1,3-thiazole and 1,3-thiazine derivatives. Russ. J. Org. Chem., 2007, 43, 1825-1829.
[9]
Shestakov, A.S.; Prezent, M.A.; Zlatoustovskaya, E.O.; Shikhaliev, K.S.; Falaleev, A.V.; Sidorenko, O.E. Alkylation of 1,3-benzothiazin-4-one 2-oxo-, 2-arylimino-, and 2-thioxo derivatives. Chem. Het. Comp, 2015, 51, 370-376.
[10]
Korzhavina, O.B.; Ryabukhin, Y.I.; Garnovskii, A.D.; Shavel, I.I. Synthesis of 4-oxo-1,3-benzothiazines and their salts; Khimiya Geterotsiklicheskikh Soedinenii, 1985, pp. 562-563.
bKajino, M.; Kawada, A.; Nakayama, Y.; Kimura, H. 1,3-Benzothiazinone derivative and use thereof. Patent WO 2003020719, March 13 2003.
[11]
aGe, Z.; Li, R.; Cheng, T. An efficient synthesis of formylmethyl piperidine-1-carbodithioate diethyl acetal and analogs. Synth. Commun., 1999, 29, 3191-3196.
bMakarov, V.; Cole, S.T.; Moellmann, U. New benzothiazinone derivatives and their use as antibacterial agents. Patent WO 2007134625, November 29 2007.
cMoellmann, U.; Makarov, V.A.; Cole, S.T. New antimicrobial compounds, their synthesis and their use for treatment of mammalian infections.Patent WO 2009010163, January 22 2009.
dMoellmann, U.; Makarov, V.A.; Cole, S.T. New antimicrobial compounds, their synthesis and their use for treatment of mammalian infection. Patent EP2020406, February 04 2009.
[12]
aMakarov, V.A. Process for the preparation of 2-aminosubstituted 1,3-benzothiazine-4-ones. Patent WO 2011132070, October 27, 2011.
bCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Novel anti-tuberculosis agents.Patent WO 2012085654, June 06, 2012.
[13]
aGao, C.; Ye, T.H.; Wang, N.Y.; Zeng, X.X.; Zhang, L.D.; Xiong, Y.; You, X.Y.; Xia, Y.; Xu, Y.; Peng, C.T.; Zuo, W.Q.; Wei, Y.; Yu, L.T. Synthesis and structure-activity relationships evaluation of benzothiazinone derivatives as potential anti-tubercular agents. Bioorg. Med. Chem. Lett., 2013, 23, 4919-4922.
bPeng, C.T.; Gao, C.; Wang, N.Y.; You, X.Y.; Zhang, L.D.; Zhu, Y.X.; Xv, Y.; Zuo, W.Q.; Ran, K.; Deng, H.X.; Lei, Q.; Xiao, K.J.; Yu, L.T. Synthesis and tuberculostatic activity of fluorine-containing derivatives of quinolone, quinazolinone, and benzothiazinone. Bioorg. Med. Chem. Lett., 2015, 25, 1373-1376.
[14]
aNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Charushin, V.N. Fluorine-containing heterocycles: XV. Reactions of polyfluorobenzoyl isothiocyanates with aminoazines and aminoazoles. Russ. J. Org. Chem., 2006, 42, 1544-1550.
bNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Charushin, V.N. Polyfluorobenzoyl chlorides and isothiocyanates in reactions with CH-reactive benzimidazoles. Russ. Chem. Bull., 2005, 54, 733-737.
cNosova, E.V.; Laeva, A.A.; Trashakhova, T.V.; Golovchenko, A.V.; Lipunova, G.N.; Slepukhin, P.A.; Charushin, V.N. Fluorine-containing heterocycles: XVIII. Monofluoro derivatives of quinazolines and 1,3-benzothiazin-4-ones. Russ. J. Org. Chem., 2009, 45, 904-912.
dLipunova, G.N.; Nosova, E.V.; Laeva, A.A.; Trashakhova, T.V.; Slepukhin, P.A.; Charushin, V.N. Fluorine-containing heterocycles: XVII. (Tetrafluorobenzoyl)-thioureas in the synthesis of fluorine-containing azaheterocycles. Russ. J. Org. Chem., 2008, 44, 741-749.
eNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Sidorova, L.P.; Charushin, V.N. Fluorine-containing heterocycles: XVI. Reactions of tetrafluorobenzoyl isothiocyanate with hydrazines and their derivatives. Russ. J. Org. Chem., 2007, 43, 68-76.
[15]
Lipunova, G.N.; Nosova, E.V.; Mokrushina, G.A.; Ogloblina, E.G.; Aleksandrov, G.G.; Charushin, V.N. Fluorocontaining Heterocycles: IX. Derivatives of imidazo[2,1-b] [1,3] benzothiazine. Russ. J. Org. Chem., 2003, 39, 248-256.
[16]
aLaeva, A.A.; Nosova, E.V.; Lipunova, G.N.; Charushin, V.N. Fluoroarenes in the synthesis of benzoannulated nitrogen-containing heterocycles. Russ. Chem. Bull., 2009, 57, 947-984.
bNosova, E.V.; Lipunova, G.N.; Kravchenko, M.A.; Laeva, A.A.; Charushin, V.N. Synthesis and tuberculostatic activity of fluorine-containing derivatives of quinolone, quinazolinone, and benzothiazinone. Pharm. Chem. J., 2008, 42, 169-174.
[17]
Dolbier, W.R.; Burkholder, J.C.; Abboud, K.A.; Loehle, D. Synthesis of new tetrafluorobenzo heteroaromatic compounds. J. Org. Chem., 1994, 59, 7688-7694.
[18]
Simche, G.; Wenzelburger, J. Reaktionen mit halogenwasser-stoffaddukten der nitrile, VI synthese von derivaten der 1.3-benzothiazionone-(4) und des 1.3-benzoselenazinons-(4). Chem. Ber., 1970, 103, 413-425.
[19]
aSzabo, J.; Bani-Akoto, E.; Dombi, G.; Gunther, G.; Bernath, G.; Fodor, L. Ring-closure reaction of N-arylthiomethylaroylamides to 1,3-benzothiazines. J. Heterocycl. Chem., 1992, 29, 1321-1324.
bFodor, L.; Bernath, G.; Sinkkonen, J.; Pihlaja, K. Synthesis and structural characterisation of 4H-1,3-benzothiazine derivatives. J. Heterocycl. Chem., 2002, 39, 927-931.
[20]
Tiwari, R.; Miller, P.A.; Cho, S.; Franzblau, S.G.; Miller, M.J. Syntheses and antituberculosis activity of 1,3-benzothiazinone sulfoxide and sulfone derived from BTZ043. ACS Med. Chem. Lett., 2015, 6, 128-133.
[21]
Makarov, V.; Neres, J.; Hartkoorn, R.C.; Ryabova, O.B.; Kazakova, E.; Šarkan, M.; Huszár, S.; Piton, J.; Kolly, G.S.; Vocat, A.; Conroy, T.M.; Mikušová, K.; Cole, S.T. The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59, 4446-4452.
[22]
Tiwari, R.; Miller, P.A.; Chiarelli, L.R.; Mori, G.; Sarkan, M.; Centarova, I.; Cho, S.; Mikusova, K.; Franzblau, S.G.; Oliver, A.G.; Miller, M.J. Design, syntheses, and anti-TB activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Med. Chem. Lett., 2016, 7, 266-270.
[23]
aCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Benzothiazinone compounds and their use as anti-tuberculosis agents. Patent EP2468746, June 27, 2012.
bCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Benzothiazinone derivatives as anti-tuberculosis agents.Patent WO2013038259, March 21, 2014.
c Yu, L.; Wei, Y. Benzothiazinethione derivatives and their preparative methods and uses. Patent EP2719691, April 16, 2014.
[24]
Pasca, M.R.; Degiacomi, G.; Ribeiro, A.L.; Zara, F.; De Mori, P.; Heym, B.; Mirrione, M.; Brerra, R.; Pagani, L.; Pucillo, L.; Troupioti, P.; Makarov, V.; Cole, S.T.; Riccardi, G. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob. Agents Chemother., 2010, 54, 1616-1618.
[25]
Majewski, M.W.; Tiwari, R.; Miller, P.A.; Cho, S.; Franzblau, S.G.; Miller, M.J. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg. Med. Chem. Lett., 2016, 26, 2068-2071.
[26]
Karoli, T.; Becker, B.; Zuegg, J.; Moelmann, U.; Ramu, S.; Huang, J.X.; Cooper, M.A. Identification of antitubercular benzothiazinone compounds by ligand-based design. J. Med. Chem., 2012, 55, 7940-7944.
[27]
Mikusova, K.; Makarov, V.; Neres, J. DprE1 - from the discovery to the promising tuberculosis drug target. Curr. Pharm. Des., 2014, 20, 4379-4403.
[28]
aMakarov, V.; Cole, S. -piperazin-1-yl-4h-1,3-benzothiazin-4- one derivatives and their use for the treatment of mammalian infections. Patent US 2013245007, September 19 2013.
bMakarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; Van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6, 372-383.
[29]
Glover, S.; Alderwick, L.J.; Mishra, A.K.; Krumbach, K.; Marienhagen, J.; Eggeling, L.; Bhatt, A.; Besra, G.S. J. Biol. Chem., 2014, 289, 6177-6187.
[30]
Vera-Cabrera, L.; Campos-Rivera, M.P.; Gonzalez-Martinez, N.A.; Ocampo-Candiani, J.; Cole, S.T. In vitro activities of the new antitubercular agents PA-824 and BTZ043 against Nocardia brasiliensis. Antimicrob. Agents Chemother., 2012, 56, 3984-3985.
[31]
aTrefzer, C.; Rengifo-Gonzalez, M.; Hinner, M.J.; Schneider, P.; Makarov, V.; Cole, S.T.; Johnsson, K. Benzothiazinones: Prodrugs that covalently modify the decaprenylphosphoryl-β-D-ribose 2′-epimerase dpre1 of mycobacterium tuberculosis. J. Am. Chem. Soc., 2010, 132, 13663-13665.
bManina, G.; Bellinzoni, M.; Pasca, M.R.; Neres, J.; Milano, A.; Ribeiro, A.L.; Buroni, S.; Skovierova, H.; Dianiskova, P.; Mikusova, K.; Marak, J.; Makarov, V.; Giganti, D.; Haouz, A.; Lucarelli, A.; Degiacomi, G.; Plazza, A.; Chiarelli, L.R.; De Rossi, E.; Salina, E.; Cole, S.T.; Alzari, P.M.; Riccardi, G. Biological and structural characterisation oft he Micobacterium smegmatis nitroreductase NfnB, and ist role in benzothiazinone resistance. Mol. Microbiol., 2010, 77, 1172-1185.
cTrefzer, C.; Skovierova, H.; Buroni, S.; Bobovska, A.; Nenci, S.; Molteni, E.; Pojer, F.; Pasca, M.R.; Makarov, V.; Cole, S.T.; Riccardi, G.; Mikusova, K.; Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc., 2012, 134, 912-915.
dTiwari, R.; Moraski, G.C.; Krchnak, V.; Miller, P.A.; Colon-Martinez, M.; Herrero, E.; Oliver, A.G.; Miller, M.J. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents. J. Am. Chem. Soc., 2013, 135, 3539-3549.
eXu, Z.; Peng, W.; Wan, K.; Luo, C.; Zeng, H.; Zhang, P.; Liu, Z.; Zhang, Y.; Wang, X. In vitro interactions between R207910 and second-line anti-TB drugs or BTZ043 against Mycobacterium tuberculosis by microplate alamar blue assay. Int. J. Clin. Exp. Med., 2016, 9, 6336-6341.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy