[1]
Thomas N, Heinz OP. Scale-Space Signatures for the detection of clustered microcalcifiations in Digital Mammograms. IEEE Trans Med Imaging 1999; 18(9): 774-86.
[2]
Moti Melloul. Segmentation of microcalcification in X-ray mammogram
using entropy thresholding. PhD dissertation, The Hebrew
University of Jerusalem 2001.
[3]
Naga RM, Rangaraj MR, Leo JE. Detection of breast masses in mammograms by density slicing and texture flow-field analysis. IEEE Trans Med Imaging 2001; 20(12): 1225-7.
[4]
San KL, Pau CC. Chein-I, et al. Classification of clustered microcalcifications using a shape cognitron neural network. Neu Net 2003; 16: 121-32.
[5]
Ferrari RJ, Rangayyan RM, Desautels JEL, Desautels RA. Borges, Frère AF. Automatic identification of the pectoral muscle in mammograms. IEEE Trans Med Imaging 2004; 23(2): 232-45.
[6]
Sze MK, Ramachandran C, Yianni A, Mary TR. Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Trans Med Imaging 2004; 23(2): 1129-40.
[7]
Kinoshita SK, Azevedo-Marques PM, Pereira RR Jr, Rodrigues JA, Rangayyan RM. Radon-domain detection of the nipple and the pectoral muscle in mammograms. J Digit Imaging 2008; 21(1): 37-49.
[8]
Lei W, Miao-liang Z, Li-ping D, Xin Y. Automatic pectoral muscle
boundary detection in mammograms based on markov chain and
active contour model. J Zheji Univ-Sci C (Comput & Electron)
2010; 11(2):111-8.
[9]
Mario M, Mislav G. Robust automatic breast and pectoral muscle segmentation from scanned mammograms. Signal Processing 2013; 93(10): 2817-27.
[10]
Karthikeyan G, Rajendra A, Kuang CC, Lim CM, Thomas A. Pectoral muscle segmentation: A review. Comput Methods Programs Biomed 2013; 110: 48-57.
[11]
Ferrari RJ, Rangayyan RM, Desautels JEL, Frère AF. Segmentation of mammograms: Identification of the skin-air boundary, pectoral muscle, and fibro-glandular disc. In: Proceeding of 5th international workshop digital mammography 2000. Canada. 573-9.
[12]
Kamila C, Justyna W. Automatic breast-line and pectoral muscle segmentation. Sched Inform 2012; 20: 195-209.
[13]
Raba D, Oliver A, Mart J, Peracaula M, Espunya J. Breast segmentation with pectoral muscle suppression on digital mammograms. 2005; IbPRIA 2005; 2: 471-8.
[14]
Marti R, Oliver A, Raba D, et al. Breast skin-line segmentation using contour growing. Marti J (Eds) Berlin, Heidelberg: Springer 2007; pp. 564-71.
[15]
Wirth MA, Stapinski A. Segmentation of the breast region in mammograms using active contours. In: Proceedings of SPIE-the international society for optical engineering 2006.
[16]
Chen CL, Chung YT, Jui L, Chun YY, Shyr SY. A pectoral muscle segmentation algorithm for digital mammograms using Otsu thresholding and multiple regression analysis. Comput Math Appl 2012; 64: 1100-7.
[17]
Molinara M, Marrocco C, Tortorella F. Automatic segmentation of the pectoral muscle in mediolateral oblique mammograms. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems. 2013; IEEE Xplore: 506-9.
[18]
Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 1981; 24(6): 381-95.
[19]
Yanfeng L, Houjin C, Yongyi Y, Yanga N. Pectoral muscle segmentation in mammograms based on homogenous texture and intensity deviation. Patt Recogn 2013; 46(3): 681-91.
[20]
Arnau O, Xavier L, Albert T, Joan M. One shot segmentation of breast, pectoral muscle, and background in digitized mammograms. In: Proceedings of the IEEE international conference on image processing 2014; pp. 27-30.
[21]
Tzikopoulos SD, Mavroforakis ME, Georgiou HV, Dimitropoulos N, Theodoridis S. A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Comput Methods Programs Biomed 2011; 102(1): 47-63.
[22]
Wirth M, Nikitenko D, Lyon D. Segmentation of the breast region in mammograms using a rule-based fuzzy reasoning algorithm. J Graph Vision Image Process 2005; 5(2): 45-54.
[23]
Li L, Qian L, Wei L. Pectoral muscle detection in mammograms using local statistical features. J Digit Imaging 2014; 27(5): 633-41.
[24]
Zhou C, Wei J, Chan HP, et al. Computerized image analysis: Texture-field orientation method for pectoral muscle identification on MLO-view mammograms. Med Phys 2010; 37: 2289-99.
[25]
Ma F, Bajger M, Slavotinek JP, Bottema MJ. Two graph theory based methods for identifying the pectoral muscle in mammograms. Patt Recogn 2007; 40: 2592-602.
[26]
Iglesias JE, Karssemeijer N. Robust initial detection of landmarks in film-screen mammograms using multiple FFDM atlases. IEEE Trans Med Imaging 2009; 28: 1815-24.
[27]
Nashid A, Mohammed JI. Pectoral muscle elimination on mammogram using K-means clustering approach. Inter J Comp Vis Sig Process 2014; 4(1): 11-21.
[28]
Hartigan JA, Wong MA. A K-means clustering algorithm. JSTOR 1979; 28(1): 100-8.
[29]
Chen Z, Zwiggelaar R. Segmentation of the breast region with pectoral muscle removal in mammograms. MIUA 2010; pp. 71-6.
[30]
Mustra M, Bozek J, Grgic M. Breast border extraction and pectoral muscle detection using wavelet decomposition. In: IEEE EUROCON. IEEE 2009: St.-Petersburg, Russia; pp. 1426-33.
[31]
Liu L, Wang J, Wang T. Breast and pectoral muscle contours detection based on goodness of fit measure. In: IEEE 15th international conference on bioinformatics and bio-medical engineering. IEEE Press 2011: Wuhan, China; pp. 1-4.
[32]
Bose RSC, Tangaval T, Daniel DAP. Automatic mammogram image breast region extraction and removal of pectoral muscle. Int J Sci Eng Res 2013; 4(5): 229-35.
[33]
Sreedevi S, Elizabeth S. A novel approach for removal of pectoral muscles in digital mammogram. Procedia Comput Sci 2015; 46: 1724-31.
[34]
Chia HW, Chih YG, Pai JH. Identification and segmentation of obscure pectoral muscle in mediolateral oblique mammograms. Br J Radiol 2016; 89: 1-8.
[35]
Vikhe PS, Thool VR. Intensity based automatic boundary identification of pectoral muscle in mammograms. Procedia Comput Sci 2016; 79: 262-9.
[36]
Marijeta S, Ana G, Milan M, Irini R, Branimir R. Breast region segmentation and pectoral muscle removal in mammograms. Telf J 2016; 8(1): 50-5.
[37]
Huang SC, Cheng FC, Chiu YS. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 2013; 22(3): 1032-41.
[38]
Woong BY, Ji EO, Eun YC, Hak HK, Soo YL, Kwang GK. Automatic detection of pectoral muscle region for computer-aided diagnosis using Mia’s mammograms. BioMed Res Int 2016; 2016: 1-6.
[39]
Kwok SM, Chandrasekhar R, Attikiouzel Y. Automatic pectoral muscle segmentation on mammograms by straight line estimation and cliff detection. In: Proceedings of the 7th Australian and New Zealand Intelligent Information Systems Conference (ANZIIS ’01) 2001. IEEE: Perth, Western Australia; pp. 67-72.
[40]
Saeid AT, Yonghuai L, Brandon M, Ghassan H. Geometry-based pectoral muscle segmentation from MLO mammogram views. IEEE Trans Biomed Eng 2017; 64(11): 2662-71.
[41]
Xia R, Liu W, Zhao J, Bian H, Xing F. Robust Algorithm for Detecting the Maximum Inscribed Circle. In: 10th IEEE international conference on computer-aided design and computer graphics 2007. IEEE: Beijing, China; pp. 230-3.
[42]
Andrik R, Philip JM, Bryan WS, John W. Fully automated breast boundary and pectoral muscle segmentation in mammograms. Artif Intell Med 2017; 79: 28-41.
[44]
Camilus KS, Govindan VK, Sathidevi PS. Pectoral muscle identification in mammograms. J Appl Med Clin Phys 2011; 12: 215-30.
[45]
Peng S, Jing Z, Andrik R, Hui W. A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms. Comput Biol Med 2018; 96: 178-88.
[46]
Lancaster P, Salkauskas K. Curve and Surface Fitting: An Introduction. Academic press 1986.
[47]
Chen Z, Zwiggelaar R. A combined method for automatic identification of the breast boundary in mammograms. In: 5th international conference on Biomedical Engineering and Informatics (BMEI) 2012. IEEE: Chongqing, China; pp. 121-5.
[48]
Maitra IK, Nag S, Bandyopadhyay SK. Technique for preprocessing of digital mammogram. Comput Methods Programs Biomed 2012; 107(2): 175-88.
[49]
Sapate SG, Talbar SN. Pectoral muscle extraction using modified k-means algorithm for digital mammograms. J Med Phys 2016; •••: 19-54.
[50]
Alain T, Christian D, Pierre G, Didier W. Correspondences between microcalcification projections on two mammographic views acquired with digital systems. Comput Med Imaging Graph 2005; 29: 543-53.
[51]
Liyang W, Yongyi Y, Robert M. Nishikawa, Yulei J. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging 2005; 24(3): 371-80.
[52]
Fauci F, Raso G, Magro R, et al. A massive lesion detection algorithm in mammography. Phys Med 2005; 21(1): 21-30.
[53]
Marius GL, Kostas M, Ruth E, Michael B. A biologically inspired algorithm for microcalcification cluster detection. Med Image Anal 2006; 10: 850-62.
[54]
Joseph AC, David SW. Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Inform 2006; 2: 59-77.
[55]
Stelios H, Taxiarchis B, Maria R. Automatic detection of clustered microcalcifications in digital mammograms using mathematical morphology and neural networks. Signal Processing 2007; 87: 1559-68.
[56]
Lisa EC, Tracy VG, Ryan KR. Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials 2014; 35: 2312-21.
[57]
Harry S, Zhili C, Erika RED, Reyer Z. Modelling mammographic microcalcification clusters using persistent mereotopology. Pattern Recognit Lett 2014; 47: 157-63.
[58]
Henrot P, Leroux A, Barlier C, Génin P. Breast microcalcifications: The lesions in anatomical pathology. Diagn Interv Imaging 2014; 95: 141-52.
[59]
Sheshachalam A, Chakravarthy AR. The cancer awareness assessment project: A small-scale survey across people with different levels of education in Mysore, India. Ind J Can 2015; 52: 153-5.
[60]
David K, Zsuzsanna V, Heike H. A micro CT study in patients with breast microcalcifications using a mathematical algorithm to assess 3D structure. PLoS One 2017; 1-2.
[61]
Garima V, Maria LL, Alessandro P, et al. Microcalcification morphological descriptors and parenchyma fractal dimension hierarchically interact in breast cancer: A diagnostic perspective. Comput Biol Med 2018; 9: 1-6.
[62]
Athanasios D, Aris G, Sofoklis S, et al. A unique case of total metastatic lobular breast carcinoma, originating from diffused Microcalcifications, presented in a postmenopausal woman, without clinical manifestations. Int J Surg Case Rep 2018; 44: 85-9.
[63]
Sheshadri HS, Kandaswamy A. Detection of breast cancer tumor based on morphological watershed algorithm. GVIP 2005; pp. 17-21.
[64]
Sheshadri HS, Kandaswamy A. Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. J Comp Med Imaging Graph 2005; 31: 46-8.
[65]
Sheshadri HS, Kandaswamy A. Breast tissue classification using statistical feature extraction of mammogram. Med Imaging Infor Sci 2006; 23(3): 105-7.
[66]
Sheshadri HS, Kandaswamy A. Application of watershed algorithms to mammogram image analysis. IETE Tech Rev 2006; 23: 173-8.
[67]
Sheshadri HS, Kandaswamy A. Computer aided decision system for early detection of breast cancer. Indian J Med Res 2006; 124(2): 149-54.
[68]
Massimo DS, Mario M, Francesco T, Mario V. Automatic classification of clustered microcalcifications by a multiple expert system. Patt Recogn 2003; 36: 1467-77.
[69]
Gholamali R, Sepehr J. Detecting microcalcification clusters in digital mammograms using combination of wavelet and neural network. In: Proceedings of the Computer Graphics, Imaging and Vision: New trends (CGIV’05) 2005. IEEE: Beijing, China; pp. 197-201.
[70]
Ryohei N, Yoshikazu U, Koji Y, Ryoji W, Kiyoshi N. Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms. IEEE Trans Biomed Eng 2006; 53(2): 273-83.
[71]
Tomasz A, Marcin K, Tadeusz JP, Erik ODS, David AY. Detection of clustered microcalcifications in small field digital mammography. Comput Methods Programs Biomed 2006; 81: 56-65.
[72]
Yonghong P, Bin Y, Jianmin J. Knowledge discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis. Artif Intell Med 2006; 37: 43-53.
[73]
Nor AAI, Shahrill S, Umi KN, Kamal ZZ, Masriah MN. The potential use of modified seed based region growing technique for automatic detection of breast microcalcifications and tumour areas. J Teknologi 2006; 44: 151-64.
[74]
Lixin S. Qi-Wang, Jie G. Microcalcification detection using combination of wavelet transform and morphology. ICSP2006 Proceedings 2006. IEEE Xplore: Beijing, China.
[75]
Arnau O, Albert T, Xavier L, et al. Automatic microcalcification and cluster detection for digital and digitized mammograms. Knowl Base Syst 2012; 28: 68-75.
[76]
Mohanalin J, Beenamol MA. New wavelet algorithm to enhance and detect microcalcifications. Signal Processing 2014; 105: 438-48.
[77]
Bria A, Karssemeijer N, Tortorella F. Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications. Med Image Anal 2014; 18: 241-52.
[78]
Dheeba J, Albert S, Tamilselvi S. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J Biomed Inform 2014; 49: 45-52.
[79]
Marcelo AD, Andre VA, Carolina MA, et al. Evaluating geodesic active contours in microcalcifications segmentation on mammograms. Comput Methods Programs Biomed 2015; 122: 304-15.
[80]
Zhili C, Harry S, Arnau O, Erika RED, Caroline B, Reyer Z. Topological modeling and classification of mammographic microcalcification clusters. IEEE Trans Biomed Eng 2015; 62(4): 1203-14.
[81]
Ioannis IA, George MS, Konstantina SN. A CADx scheme for mammography empowered with topological information from clustered microcalcifications’ atlases. IEEE J Biomed Health Inform 2015; 19: 1-8.
[82]
Ghada S, Ahmad K, Qosai K. ANN and adaboost application for automatic detection of microcalcifications in breast cancer. Egypt J Radiol Nuc Med 2016; 47: 1803-14.
[83]
Marimuthu M, Balakumaran T, Gowrishankar C. Microcalcification cluster detection using multiscale products based hessian matrix via the tsallis Thresholding Scheme. Pattern Recognit Lett 2017; 94: 127-33.
[84]
Kai H, Wei Y, Xieping G. Microcalcification diagnosis in digital mammography using extreme learning machine based on hidden markov tree model of dual-tree complex wavelet transform. Expert Syst Appl 2017; 86: 135-44.
[85]
Marcin C. Microcalcification segmentation from mammograms. A morphological approach. J Digit Imaging 2017; 30: 172-84.
[86]
Juan W, Yongyi Y. A Context-sensitive deep learning approach for microcalcification detection in mammograms. Patt Recogn 2018; 78: 12-22.
[87]
Sheshadri HS, Kandaswamy A. Computer aided diagnosis of digital mammograms. Inform Technol J 2006; 5(2): 342-6.
[88]
Sheshadri HS, Kandaswamy A. Detection of breast cancer by mammogram image segmentation. J Cancer Res Ther 2005; 1(4): 232-4.
[89]
Arun kumar MN, Sheshadri HS. Performance analysis of classifiers
in the abnormality classification on digital mammograms. In: 5th International
Conference on Digital Image Processing (ICDIP 2013).
Beijing, China.