[1]
Monien BH, Apostolova LG, Bitan G. Early diagnostics and therapeutics for Alzheimer’s disease-how early can we get there? Expert Rev Neurother 2006; 6(9): 1293-306.
[2]
Zhang J, Gao Y, Gao Y, Munsell BC, Shen D. Detecting Anatomical Landmarks for Fast Alzheimer’s Disease Diagnosis. IEEE Trans Med Imaging 2016; 35(12): 2524-33.
[3]
Daniela E. Depression in Alzheimer’s disease: Biomarkers and
Treatment. PhD dissertation. Stockholm: Karolinska Institutet
2015; 7-81.
[4]
Liu S, Cai W, Wen L, et al. Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer’s disease characterization. Comput Med Imaging Graph 2014; 38(6): 436-44.
[5]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[6]
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: A look to the future 1. Radiology 2003; 226(2): 315-36.
[7]
Frisoni GB, Boccardi M, Barkhof F, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 2017; 16(8): 661-76.
[8]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): 1-23.
[9]
Ray S, Britschgi M, Herbert C, et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 2007; 13(11): 1359-62.
[10]
Kulkami S, Verma B, Sharma P, Selvaraj H. Content based image retrieval using a neuro-fuzzy technique. In: IJCNN’99 International Joint Conference on Neural Networks Proceedings (Cat No99CH36339): IEEE 1999; pp. 4304-8.
[11]
Qayyum A, Anwar SM, Awais M, Majid M. Medical image retrieval using deep convolutional neural network. Neurocomputing 2017; 266(C): 8-20.
[12]
Long X, Chen L, Jiang C, Zhang L. Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLoS One 2017; 12(3): 1-19.
[13]
Li Q, Wu X, Xu L, Chen K, Yao L. Classification of Alzheimer’s disease, mild cognitive impairment, and cognitively unimpaired individuals using multi-feature kernel discriminant dictionary learning. Front Comput Neurosci 2018; 11: 1-14.
[14]
Liu J, Wang J, Hu B, Wu FX, Pan Y. Alzheimer’s disease classification based on individual hierarchical networks constructed with 3-D texture features. IEEE Trans Nanobioscience 2017; 16(6): 428-37.
[15]
Ward BD. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state. Neurology 2011; 259(1): 213-21.
[16]
Zhang L, Wang L, Lin W. Semisupervised biased maximum margin analysis for interactive image retrieval. IEEE Trans Image Process 2012; 21(4): 2294-308.
[17]
Ishii K, Kawachi T, Sasaki H, et al. Voxel-based morphometric comparison between early-and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of Z score images. AJNR Am J Neuroradiol 2005; 26(2): 333-40.
[18]
Wang X, Ding X, Liu C. Gabor filters-based feature extraction for character recognition. Pattern Recognit 2005; 38(3): 369-79.
[19]
Zhang B, Pham TD. Phenotype recognition with combined features and random subspace classifier ensemble. BMC Bioinformatics 2011; 12: 1-13.
[20]
Tangaro S, Amoroso N, Brescia M, et al. feature selection based on machine learning in MRIs for hippocampal segmentation. Comput Math Methods Med 2015; 2015: 1-10.
[21]
Coupé P, Eskildsen SF, Manjón JV, Fonov V, Collins DL. Simultaneous segmentation and grading of hippocampus for patient classification with Alzheimer’s disease. Lect Notes Comput Sci 2011; 6893: 149-57.
[22]
Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 2011; 54(2): 940-54.
[23]
Romero JE, Coupé P, Manjón JV. Non-local MRI library-based super-resolution: Application to Hippocampus subfield segmentation. In: International workshop on patch-based techniques in medical imaging: Athens, Greece 2016; pp.68-75.
[24]
Yamasaki T, Muranaka H, Kaseda Y, Mimori Y, Tobimatsu S. Understanding the pathophysiology of Alzheimer’s disease and mild cognitive impairment: A mini review on fMRI and eRP studies. Neurol Res Int 2012; 2012: 1-10.
[25]
Zhao L, Tang J, Yu X, Li Y, Mi S, Zhang C. Content-based remote sensing image retrieval using image multi-feature combination and SVM-based relevance feedback.In: Qian Z, Cao L, Su W, Wang T, Yang H, eds Lecture notes in electrical engineering Berlin, Heidelberg: Springer Berlin Heidelberg 2012; pp. 761-7.
[26]
Xiao Z, Ding Y, Lan T, Zhang C, Luo C, Qin Z. Brain MR image classification for Alzheimer’s disease diagnosis based on multifeature fusion. Comput Math Methods Med 2017; 201: 1-13.
[27]
Das SR, Mechanic-Hamilton D, Korczykowski M, et al. Structure specific analysis of the hippocampus in temporal lobe epilepsy. Hippocampus 2009; 19(6): 517-25.
[28]
Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern B Cybern 1973; 3(6): 610-21.
[29]
Kim T-Y, Cho N-H, Jeong G-B, Bengtsson E, Choi H-K. 3D texture analysis in renal cell carcinoma tissue image grading. Comput Math Methods Med 2014; 2014: 1-12.
[30]
Raheja JL, Kumar S, Chaudhary A. Fabric defect detection based on GLCM and Gabor filter: A comparison. Optik 2013; 124(23): 6469-74.
[31]
Gabor D. Theory of communication. Part 1: The analysis of information. J Inst Electr Eng 1946; 93(26): 429-41.
[32]
Dunn D, Higgins WE, Wakeley J. Texture segmentation using 2-D Gabor elementary functions. IEEE Trans Pattern Anal Mach Intell 1994; 16(2): 130-49.
[33]
Jain AK, Ratha NK, Lakshmanan S. Object detection using Gabor filters. Pattern Recognit 1997; 30(2): 295-309.
[34]
Al-Rawi M, Yang J. Using Gabor filter for the illumination invariant recognition of color texture. Math Comput Simul 2008; 77(5-6): 550-5.
[35]
Appana DK, Islam R, Khan SA, Kim JM. A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems. Inf Sci 2017; 418: 91-101.
[36]
Zhang J, Yu C, Jiang G, Liu W, Tong L. 3D texture analysis on MRI images of Alzheimer’s disease. Brain Imaging Behav 2012; 6(1): 61-9.
[37]
Sahiner B, Chan HP, Petrick N, Helvie MA, Hadjiiski LM. Improvement of mammographic mass characterization using spiculation measures and morphological features. Med Phys 2001; 28(7): 1455-65.
[38]
Desautels JEL, Rangayyan R, Mudigonda NR. Gradient and texture analysis for the classification of mammographic masses. IEEE Trans Med Imaging 2000; 19(10): 1032-43.
[39]
Brynolfsson P, Nilsson D, Torheim T, et al. Haralick texture features from Apparent Diffusion Coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci Rep 2017; 7(1): 1-11.
[40]
Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM. Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis. Med Phys 1998; 25(4): 516-26.
[41]
Mu T, Nandi AK, Rangayyan RM. Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernel-based classifiers. J Digit Imaging 2008; 21(2): 153-69.
[42]
Mu T, Nandi AK, Rangayyan RM. Classification of breast masses via nonlinear transformation of features based on a kernel matrix. Med Biol Eng Comput 2007; 45(8): 769-80.
[43]
Nandi RJ, Nandi AK, Rangayyan RM, Scutt D. Classification of breast masses in mammograms using genetic programming and feature selection. Med Biol Eng Comput 2006; 44(8): 683-94.
[44]
Metz CE. Basic principles of ROC analysis. Semin Nucl Med 1978; 8(4): 283-98.