[1]
Goldberg, E.P.; Hadba, A.R.; Almond, B.A.; Marotta, J.S. Intratumoral cancer chemotherapy and immunotherapy: Opportunities for nonsystemic preoperative drug delivery. J. Pharm. Pharmacol., 2002, 54(2), 159-180.
[2]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[3]
Marino, P.; Preatoni, A.; Cantoni, A. Randomized trials of radiotherapy alone versus combined chemotherapy and radiotherapy in stages IIIa and IIIb nonsmall cell lung cancer. A meta‐analysis. Cancer, 1995, 76(4), 593-601.
[4]
Gulley, J.L.; Arlen, P.M.; Bastian, A.; Morin, S.; Marte, J.; Beetham, P.; Tsang, K-Y.; Yokokawa, J.; Hodge, J.W.; Ménard, C. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin. Cancer Res., 2005, 11(9), 3353-3362.
[5]
Derer, A.; Frey, B.; Fietkau, R.; Gaipl, U.S. Immune-modulating properties of ionizing radiation: Rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol. Immunother., 2016, 65(7), 779-786.
[6]
Golden, E.; Pellicciotta, I.; Demaria, S.; Barcellos-Hoff, M.H.; Formenti, S. The convergence of radiation and immunogenic cell death signaling pathways. Front. Oncology., 2012, 2(88)
[7]
Hekim, N.; Cetin, Z.; Nikitaki, Z.; Cort, A.; Saygili, E.I. Radiation triggering immune response and inflammation. Cancer Lett., 2015, 368(2), 156-163.
[8]
Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. JNCI., 2013, 105(4), 256-265.
[9]
Schaue, D.; Micewicz, E.D.; Ratikan, J.A.; Xie, M.W.; Cheng, G.; McBride, W.H. Radiation & inflammation. Semin. Radiat. Oncol., 2015, 25(1), 4-10.
[10]
Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5, 9.
[11]
Yahyapour, R.; Shabeeb, D.; Cheki, M.; Musa, A.E.; Farhood, B.; Rezaeyan, A.; Amini, P.; Fallah, H.; Najafi, M. Radiation protection and mitigation by natural antioxidants and flavonoids; Implications to radiotherapy and radiation disasters. Curr. Mol. Pharmacol., 2018, 11(4), 285-304.
[12]
Brizel, D.M.; Overgaard, J. Does amifostine have a role in chemoradiation treatment? Lancet Oncol., 2003, 4(6), 378-381.
[13]
Rades, D.; Fehlauer, F.; Bajrovic, A.; Mahlmann, B.; Richter, E.; Alberti, W. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother. Oncol., 2004, 70(3), 261-264.
[14]
Wasserman, T.H.; Brizel, D.M. The role of amifostine as a radioprotector. Oncology (Williston Park), 2001, 15(10), 1349-1354. discussion 1357-1360.
[15]
Amini, P.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Cheki, M.; Farhood, B.; Yahyapour, R.; Shirazi, A.; Goushbolagh, N.A.; Najafi, M. Mechanisms for radioprotection by melatonin; Can it be used as a radiation countermeasure? Curr. Mol. Pharmacol., 2018.
[16]
Davis, T.W.; Hunter, N.; Trifan, O.C.; Milas, L.; Masferrer, J.L. COX-2 inhibitors as radiosensitizing agents for cancer therapy. Am. J. Clin. Oncol., 2003, 26(4), S58-S61.
[17]
Alonso-Gonzalez, C.; Gonzalez, A.; Martinez-Campa, C.; Menendez-Menendez, J.; Gomez-Arozamena, J.; Garcia-Vidal, A.; Cos, S. Melatonin enhancement of the radiosensitivity of human breast cancer cells is associated with the modulation of proteins involved in estrogen biosynthesis. Cancer Lett., 2016, 370(1), 145-152.
[18]
Kolivand, S.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Najafi, M.; Nouruzi, F.; Shabeeb, D.; Musa, A.E. Evaluating the radioprotective effect of curcumin on rat’s heart tissues. Curr. Radiopharm., 2018.
[19]
Gandhi, S.J.; Minn, A.J.; Vonderheide, R.H.; Wherry, E.J.; Hahn, S.M.; Maity, A. Awakening the immune system with radiation: Optimal dose and fractionation. Cancer Lett., 2015, 368(2), 185-190.
[20]
Kaur, P.; Asea, A. Radiation-induced effects and the immune system in cancer. Front. Oncol., 2012, 2, 191.
[21]
Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3), 401-414.
[22]
Veiko, N.N. Oxidized extracellular DNA as a stress signal in human cells. Oxid. Med. Cell. Longev., 2013, 2013
[23]
Chen, W.; Frank, M.E.; Jin, W.; Wahl, S.M. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity, 2001, 14(6), 715-725.
[24]
Li, P-X.; Wong, J.; Ayed, A.; Ngo, D.; Brade, A.M.; Arrowsmith, C.; Austin, R.C.; Klamut, H.J. Placental TGF-β is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J. Biol. Chemist., 2000, 275(26), 20127-20135.
[25]
Haberman, Y.; Tickle, T.L.; Dexheimer, P.J.; Kim, M.O.; Tang, D.; Karns, R.; Baldassano, R.N.; Noe, J.D.; Rosh, J.; Markowitz, J.; Heyman, M.B.; Griffiths, A.M.; Crandall, W.V.; Mack, D.R.; Baker, S.S.; Huttenhower, C.; Keljo, D.J.; Hyams, J.S.; Kugathasan, S.; Walters, T.D.; Aronow, B.; Xavier, R.J.; Gevers, D.; Denson, L.A. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J. Clin. Invest., 2014, 124(8), 3617-3633.
[26]
Zhao, W.; Spitz, D.R.; Oberley, L.W.; Robbins, M.E. Redox modulation of the pro-fibrogenic mediator plasminogen activator inhibitor-1 following ionizing radiation. Cancer Res., 2001, 61(14), 5537-5543.
[27]
Spitz, D.R.; Azzam, E.I.; Li, J.J.; Gius, D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev., 2004, 23(3-4), 311-322.
[28]
Azzam, E.I.; Jay-Gerin, J-P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer lett., 2012, 327(1-2), 48-60.
[29]
Leach, J.K.; Van Tuyle, G.; Lin, P-S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res., 2001, 61(10), 3894-3901.
[30]
Robbins, M.; Zhao, W. Chronic oxidative stress and radiation‐induced late normal tissue injury: A review. International journal of radiation biology., 2004, 80(4), 251-259.
[31]
Rada, B. Leto, T.L. In: Trends in Innate Immunity; ; Karger Publishers, 2008; 15, pp. 164-187.
[32]
Lee, I-T.; Yang, C-M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem. Pharmacol., 2012, 84(5), 581-590.
[33]
Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase–derived ROS. Antioxid. Redox Signal., 2009, 11(6), 1289-1299.
[34]
Archer, S.L.; Reeve, H.L.; Michelakis, E.; Puttagunta, L.; Waite, R.; Nelson, D.P.; Dinauer, M.C.; Weir, E.K. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. PNAS, 1999, 96(14), 7944-7949.
[35]
Chabrashvili, T.; Tojo, A.; Onozato, M.L.; Kitiyakara, C.; Quinn, M.T.; Fujita, T.; Welch, W.J.; Wilcox, C.S. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension, 2002, 39(2), 269-274.
[36]
Dupuy, C.; Ohayon, R.; Valent, A.; Noel-Hudson, M.S.; Deme, D.; Virion, A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J. Biol. Chem., 1999, 274(52), 37265-37269.
[37]
Martyn, K.D.; Frederick, L.M.; von Loehneysen, K.; Dinauer, M.C.; Knaus, U.G. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell. Signal., 2006, 18(1), 69-82.
[38]
Ogier-Denis, E.; Mkaddem, S.B.; Vandewalle, A. In. Seminars immunopathol., 2008, 30, 291-300.
[39]
Martinez, J.; Malireddi, R.S.; Lu, Q.; Cunha, L.D.; Pelletier, S.; Gingras, S.; Orchard, R.; Guan, J-L.; Tan, H.; Peng, J. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol., 2015, 17(7), 893-906.
[40]
Infanger, D.W.; Sharma, R.V.; Davisson, R.L. NADPH oxidases of the brain: Distribution, regulation, and function. Antioxid. Redox Signal., 2006, 8(9-10), 1583-1596.
[41]
Bedard, K.; Krause, K-H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313.
[42]
Rokutan, K.; Kawahara, T.; Kuwano, Y.; Tominaga, K.; Nishida, K.; Teshima-Kondo, S. In. Seminars in immunopathology., 2008, 30, 315-327.
[43]
Rokutan, K.; Kawahara, T.; Kuwano, Y.; Tominaga, K.; Sekiyama, A.; Teshima-Kondo, S. NADPH oxidases in the gastrointestinal tract: a potential role of Nox1 in innate immune response and carcinogenesis. Antioxid. Redox Signal., 2006, 8(9-10), 1573-1582.
[44]
Meitzler, J.L.; Antony, S.; Wu, Y.; Juhasz, A.; Liu, H.; Jiang, G.; Lu, J.; Roy, K.; Doroshow, J.H. NADPH Oxidases: A Perspective on Reactive Oxygen Species Production in Tumor Biology. Antioxid. Redox Signal., 2014, 20(17), 2873-2889.
[45]
Krause, K.H. Tissue distribution and putative physiological function of NOX family NADPH oxidases. Japanese . J. Infect. Dis., 2004, 57(5), S28-S29.
[46]
Donkó, Á.; Péterfi, Z.; Sum, A.; Leto, T.; Geiszt, M. Dual oxidases. Philosophical Transactions of the Royal Society of London B: Biological Sciences., 2005, 360(1464), 2301-2308.
[47]
Trinchieri, G. Cancer and inflammation: An old intuition with rapidly evolving new concepts. Annu. Rev. Immunol., 2012, 30, 677-706.
[48]
Shacter, E.; Weitzman, S.A. Chronic inflammation and cancer. Oncology, 2002, 16(2), 217-226. 229; discussion 230-212.
[49]
Thun, M.J.; Henley, S.J.; Gansler, T. Inflammation and cancer: An epidemiological perspective. Novartis Found. Symp., 2004, 256, 6-21.
[50]
Shivappa, N.; Hebert, J.R.; Rosato, V.; Garavello, W.; Serraino, D.; La Vecchia, C. Inflammatory potential of diet and risk of oral and pharyngeal cancer in a large case-control study from Italy. Int. J. Cancer, 2017, 141(3), 471-479.
[51]
Yahyapour, R.; Motevaseli, E.; Rezaeyan, A.; Abdollahi, H.; Farhood, B.; Cheki, M.; Najafi, M.; Villa, V. Mechanisms of radiation bystander and non-targeted effects: Implications to radiation carcinogenesis and radiotherapy. Curr. Radiopharm., 2018, 11(1), 34-45.
[52]
Rhee, S.G.; Chang, T-S.; Bae, Y.S.; Lee, S-R.; Kang, S.W. Cellular regulation by hydrogen peroxide. Journal of the American Society of Nephrology., 2003, 14(Suppl. 3), S211-S215.
[53]
Fan, C.Y.; Katsuyama, M.; Yabe-Nishimura, C. PKCδ mediates up-regulation of NOX1, a catalytic subunit of NADPH oxidase, via transactivation of the EGF receptor: Possible involvement of PKCδ in vascular hypertrophy. Biochem. J., 2005, 390(3), 761-767.
[54]
Fan, C.; Katsuyama, M.; Nishinaka, T.; Yabe-Nishimura, C. Transactivation of the EGF receptor and a PI3 kinase–ATF‐1 pathway is involved in the upregulation of NOX1, a catalytic subunit of NADPH oxidase. FEBS letters., 2005, 579(5), 1301-1305.
[55]
Bae, Y.S.; Kang, S.W.; Seo, M.S.; Baines, I.C.; Tekle, E.; Chock, P.B.; Rhee, S.G. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem., 1997, 272(1), 217-221.
[56]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[57]
Martinez-Outschoorn, U.E.; Balliet, R.M.; Rivadeneira, D.; Chiavarina, B.; Pavlides, S.; Wang, C.; Whitaker-Menezes, D.; Daumer, K.; Lin, Z.; Witkiewicz, A. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 2010, 9(16), 3276-3296.
[58]
Chiera, F.; Meccia, E.; Degan, P.; Aquilina, G.; Pietraforte, D.; Minetti, M.; Lambeth, D.; Bignami, M. Overexpression of human NOX1 complex induces genome instability in mammalian cells. Free Radic. Biol. Med., 2008, 44(3), 332-342.
[59]
Puca, R.; Nardinocchi, L.; Starace, G.; Rechavi, G.; Sacchi, A.; Givol, D.; D’Orazi, G. Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Radic. Biol. Med., 2010, 48(10), 1338-1346.
[60]
MacFie, T.S.; Poulsom, R.; Parker, A.; Warnes, G.; Boitsova, T.; Nijhuis, A.; Suraweera, N.; Poehlmann, A.; Szary, J.; Feakins, R.; Jeffery, R.; Harper, R.W.; Jubb, A.M.; Lindsay, J.O.; Silver, A. DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. Inflamm. Bowel Dis., 2014, 20(3), 514-524.
[61]
Davies, G.R.; Simmonds, N.J.; Stevens, T.R.; Grandison, A.; Blake, D.R.; Rampton, D.S. Mucosal reactive oxygen metabolite production in duodenal ulcer disease. Gut, 1992, 33(11), 1467-1472.
[62]
Roy, K.; Wu, Y.; Meitzler, J.L.; Juhasz, A.; Liu, H.; Jiang, G.; Lu, J.; Antony, S.; Doroshow, J.H. NADPH oxidases and cancer. Clin. Sci. (Lond.), 2015, 128(12), 863-875.
[63]
Han, M.; Zhang, T.; Yang, L.; Wang, Z.; Ruan, J.; Chang, X. Association between NADPH oxidase (NOX) and lung cancer: A systematic review and meta-analysis. J. Thorac. Dis., 2016, 8(7), 1704-1711.
[64]
Suh, Y.A.; Arnold, R.S.; Lassegue, B.; Shi, J.; Xu, X.; Sorescu, D.; Chung, A.B.; Griendling, K.K.; Lambeth, J.D. Cell transformation by the superoxide-generating oxidase Mox1. Nature, 1999, 401(6748), 79-82.
[65]
Naughton, R.; Quiney, C.; Turner, S.D.; Cotter, T.G. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia, 2009, 23(8), 1432-1440.
[66]
Graham, K.A.; Kulawiec, M.; Owens, K.M.; Li, X.; Desouki, M.M.; Chandra, D.; Singh, K.K. NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol. Ther., 2010, 10(3), 223-231.
[67]
Yahyapour, R.; Motevaseli, E.; Rezaeyan, A.; Abdollahi, H.; Farhood, B.; Cheki, M.; Rezapoor, S.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Villa, V. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: Molecular mechanisms and implications in radiation therapeutics. Clin. Transl. Oncol., 2018, 20(8), 975-988.
[68]
Najafi, M.; Motevaseli, E.; Shirazi, A.; Geraily, G.; Rezaeyan, A.; Norouzi, F.; Rezapoor, S.; Abdollahi, H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: Clinical implications. Int. J. Radiat. Biol., 2018, 94(4), 335-356.
[69]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Intercellular communications-redox interactions in radiation toxicity; Potential targets for radiation mitigation. J. Cell Commun. Signal., 2018.
[70]
Dikalov, S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med., 2011, 51(7), 1289-1301.
[71]
Daiber, A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim. Biophys. Acta, 2010, 1797(6-7), 897-906.
[72]
Daiber, A.; Di Lisa, F.; Oelze, M.; Kroller-Schon, S.; Steven, S.; Schulz, E.; Munzel, T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol., 2017, 174(12), 1670-1689.
[73]
Weyemi, U.; Redon, C.E.; Aziz, T.; Choudhuri, R.; Maeda, D.; Parekh, P.R.; Bonner, M.Y.; Arbiser, J.L.; Bonner, W.M. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat. Res., 2015, 183(3), 262-270.
[74]
Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med., 2010, 48(2), 348-356.
[75]
Pazhanisamy, S.K.; Li, H.; Wang, Y.; Batinic-Haberle, I.; Zhou, D. NADPH oxidase inhibition attenuates total body irradiation-induced haematopoietic genomic instability. Mutagenesis, 2011, 26(3), 431-435.
[76]
Chang, J.; Feng, W.; Wang, Y.; Luo, Y.; Allen, A.R.; Koturbash, I.; Turner, J.; Stewart, B.; Raber, J.; Hauer-Jensen, M.; Zhou, D.; Shao, L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat. Res., 2015, 183(2), 240-248.
[77]
Choi, K.M.; Kang, C.M.; Cho, E.S.; Kang, S.M.; Lee, S.B.; Um, H.D. Ionizing radiation-induced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. Oncol. Rep., 2007, 17(5), 1183-1188.
[78]
Zhang, H.; Wang, Y-a.; Meng, A.; Yan, H.; Wang, X.; Niu, J.; Li, J.; Wang, H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. J. Radiat. Res., 2013, 54(4), 630-636.
[79]
Li, D.; Tian, Z.; Tang, W.; Zhang, J.; Lu, L.; Sun, Z.; Zhou, Z.; Fan, F. The Protective effects of 5-methoxytryptamine-α-lipoic acid on ionizing radiation-induced hematopoietic injury. Int. J. Mol. Sci., 2016, 17(6), 935.
[80]
Long, W.; Zhang, G.; Dong, Y.; Li, D. Dark tea extract mitigates hematopoietic radiation injury with antioxidative activity. J. Radiat. Res., 2018, 59(4), 387-394.
[81]
Zhang, H.; Zhai, Z.; Wang, Y.; Zhang, J.; Wu, H.; Wang, Y.; Li, C.; Li, D.; Lu, L.; Wang, X.; Chang, J.; Hou, Q.; Ju, Z.; Zhou, D.; Meng, A. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2013, 54, 40-50.
[82]
Xu, G.; Wu, H.; Zhang, J.; Li, D.; Wang, Y.; Wang, Y.; Zhang, H.; Lu, L.; Li, C.; Huang, S.; Xing, Y.; Zhou, D.; Meng, A. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2015, 87, 15-25.
[83]
Ameziane-El-Hassani, R.; Talbot, M.; de Souza Dos Santos, M.C.; Al Ghuzlan, A.; Hartl, D.; Bidart, J-M.; De Deken, X.; Miot, F.; Diallo, I.; de Vathaire, F.; Schlumberger, M.; Dupuy, C. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. PNAS, 2015, 112(16), 5051-5056.
[84]
Tateishi, Y.; Sasabe, E.; Ueta, E.; Yamamoto, T. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation. Biochem. Biophys. Res. Commun., 2008, 366(2), 301-307.
[85]
Wang, Y.; Liu, Q.; Zhao, W.; Zhou, X.; Miao, G.; Sun, C.; Zhang, H. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation-Induced Cell Death. Dose Res., 2017, 15(1), 1559325817699697.
[86]
Sun, C.; Wang, Z.; Liu, Y.; Liu, Y.; Li, H.; Di, C.; Wu, Z.; Gan, L.; Zhang, H. Carbon ion beams induce hepatoma cell death by NADPH oxidase-mediated mitochondrial damage. J. Cell. Physiol., 2014, 229(1), 100-107.
[87]
Yamaguchi, M.; Kashiwakura, I. Role of Reactive Oxygen Species in the Radiation Response of Human Hematopoietic Stem/Progenitor Cells. Plos One, 2013, 8(7), e70503.
[88]
Cali, B.; Ceolin, S.; Ceriani, F.; Bortolozzi, M.; Agnellini, A.H.; Zorzi, V.; Predonzani, A.; Bronte, V.; Molon, B.; Mammano, F. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget, 2015, 6(12), 10161-10174.
[89]
Chai, Y.; Calaf, G.M.; Zhou, H.; Ghandhi, S.A.; Elliston, C.D.; Wen, G.; Nohmi, T.; Amundson, S.A.; Hei, T.K. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice. Br. J. Cancer, 2013, 108(1), 91-98.
[90]
Little, J.; Azzam, E.; De Toledo, S.; Nagasawa, H. Bystander effects: Intercellular transmission of radiation damage signals. Radiat.Protect Dos., 2002, 99(1-4), 159-162.
[91]
Liu, S.; Jin, S.; Liu, X-D. Radiation-induced bystander effect in immune response. Biomed. Environ. Sci., 2004, 17(1), 40-46.
[92]
Narayanan, P.K.; Goodwin, E.H.; Lehnert, B.E. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res., 1997, 57(18), 3963-3971.
[93]
Azzam, E.I.; De Toledo, S.M.; Spitz, D.R.; Little, J.B. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Cancer Res., 2002, 62(19), 5436-5442.
[94]
Sergeeva, V.A.; Ershova, E.S.; Veiko, N.N.; Malinovskaya, E.M.; Kalyanov, A.A.; Kameneva, L.V.; Stukalov, S.V.; Dolgikh, O.A.; Konkova, M.S.; Ermakov, A.V.; Veiko, V.P.; Izhevskaya, V.L.; Kutsev, S.I.; Kostyuk, S.V. Low-dose ionizing radiation affects mesenchymal stem cells via extracellular oxidized cell-free DNA: A possible mediator of bystander Effect and adaptive response. Oxid. Med. Cell. Longev., 2017, 2017, 9515809.
[95]
Temme, J.; Bauer, G. Low-dose gamma irradiation enhances superoxide anion production by nonirradiated cells through TGF-beta1-dependent bystander signaling. Radiat. Res., 2013, 179(4), 422-432.
[96]
Morgan, W.F.; Sowa, M.B. Non-targeted bystander effects induced by ionizing radiation. Mutat. Res., 2007, 616(1-2), 159-164.
[97]
Cheki, M.; Yahyapour, R.; Farhood, B.; Rezaeyan, A.; Shabeeb, D.; Amini, P.; Rezapoor, S.; Najafi, M. COX-2 in Radiotherapy: A Potential Target for Radioprotection and Radiosensitization. Curr. Mol. Pharmacol., 2018, 11(3), 173-183.
[98]
Yahyapour, R.; Salajegheh, A.; Safari, A.; Amini, P.; Rezaeyan, A.; Amraee, A.; Najafi, M. Radiation-induced non-targeted effect and carcinogenesis; implications in clinical radiotherapy. J. Biomed. Phys. Eng., 8(4)2018, , 435-446.
[99]
Hamada, N.; Maeda, M.; Otsuka, K.; Tomita, M. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects. Curr. Mol. Pharmacol., 2011, 4(2), 79-95.
[100]
Jiang, Y.; Chen, X.; Tian, W.; Yin, X.; Wang, J.; Yang, H. The role of TGF-β1–miR-21–ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br. J. Cancer, 2014, 111(4), 772-780.
[101]
Szatmári, T.; Kis, D.; Bogdándi, E.N.; Benedek, A.; Bright, S.; Bowler, D.; Persa, E.; Kis, E.; Balogh, A.; Naszályi, L.N.; Kadhim, M.; Sáfrány, G.; Lumniczky, K. Extracellular vesicles mediate radiation-induced systemic bystander signals in the bone marrow and spleen. Front. Immunol., 2017, 8(347)
[102]
Cagin, Y.F.; Parlakpinar, H.; Polat, A.; Vardi, N.; Atayan, Y.; Erdogan, M.A.; Ekici, K.; Yildiz, A.; Sarihan, M.E.; Aladag, H. The protective effects of apocynin on ionizing radiation-induced intestinal damage in rats. Drug Dev. Ind. Pharm., 2016, 42(2), 317-324.
[103]
Su, L.; Wang, Z.; Huang, F.; Lan, R.; Chen, X.; Han, D.; Zhang, L.; Zhang, W.; Hong, J. 18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-κB pathways. Environ. Toxicol. Pharmacol., 2018, 60, 82-90.
[104]
Sakai, Y.; Yamamori, T.; Yoshikawa, Y.; Bo, T.; Suzuki, M.; Yamamoto, K.; Ago, T.; Inanami, O. NADPH oxidase 4 mediates ROS production in radiation-induced senescent cells and promotes migration of inflammatory cells. Free Radic. Res., 2018, 52(1), 92-102.
[105]
Cho, H.J.; Lee, W.H.; Hwang, O.M.H.; Sonntag, W.E.; Lee, Y.W. Role of NADPH oxidase in radiation-induced pro-oxidative and pro-inflammatory pathways in mouse brain. Int. J. Radiat. Biol., 2017, 93(11), 1257-1266.
[106]
Collins-Underwood, J.R.; Zhao, W.; Sharpe, J.G.; Robbins, M.E. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic. Biol. Med., 2008, 45(6), 929-938.
[107]
Chatterjee, A.; Kosmacek, E.A.; Oberley-Deegan, R.E. MnTE-2-PyP treatment, or NOX4 inhibition, protects against radiation-induced damage in mouse primary prostate fibroblasts by inhibiting the tgf-beta 1 signaling pathway. Radiat. Res., 2017, 187(3), 367-381.
[108]
Park, S.; Ahn, J-Y.; Lim, M-J.; Kim, M-H.; Yun, Y-S.; Jeong, G.; Song, J-Y. Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts. J. Mol. Med. (Berl.), 2010, 88(8), 807-816.
[109]
Hong, E.H.; Lee, S.J.; Kim, J.S.; Lee, K.H.; Um, H.D.; Kim, J.H.; Kim, S.J.; Kim, J.I.; Hwang, S.G. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J. Biol. Chem., 2010, 285(2), 1283-1295.
[110]
Choi, S.H.; Kim, M.; Lee, H.J.; Kim, E.H.; Kim, C.H.; Lee, Y.J. Effects of NOX1 on fibroblastic changes of endothelial cells in radiationinduced pulmonary fibrosis. Mol. Med. Rep., 2016, 13(5), 4135-4142.
[111]
Citrin, D.E.; Shankavaram, U.; Horton, J.A.; Shield, W.; Zhao, S.; Asano, H.; White, A.; Sowers, A.; Thetford, A.; Chung, E.J. Role of Type II Pneumocyte Senescence in Radiation-Induced Lung Fibrosis. JNCI., 2013, 105(19), 1474-1484.
[112]
Chen, C.; Yang, S.; Zhang, M.; Zhang, Z.; Hong, J.; Han, D.; Ma, J.; Zhang, S.B.; Okunieff, P.; Zhang, L. Triptolide mitigates radiation-induced pulmonary fibrosis via inhibition of axis of alveolar macrophages-NOXes-ROS-myofibroblasts. Cancer Biol. Ther., 2016, 17(4), 381-389.
[113]
Marengo, B.; Nitti, M.; Furfaro, A.L.; Colla, R.; Ciucis, C.D.; Marinari, U.M.; Pronzato, M.A.; Traverso, N.; Domenicotti, C. redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxid. Med. Cell Longev., 2016, 2016
[114]
Zhang, L.; Li, J.; Zong, L.; Chen, X.; Chen, K.; Jiang, Z.; Nan, L.; Li, X.; Li, W.; Shan, T.; Ma, Q.; Ma, Z. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[115]
Liou, G-Y.; Storz, P. Reactive oxygen species in cancer. Free radical research., 2010, 44(5)
[116]
Kumari, S.; Badana, A.K. G, M.M.; G, S.; Malla, R. Reactive oxygen species: A key constituent in cancer survival. Biomarker . Insights, 2018, 13, 1177271918755391.
[117]
Umansky, V.; Schirrmacher, V. Nitric oxide-induced apoptosis in tumor cells. Adv. Cancer Res., 2001, 82, 107-131.
[118]
delaTorre, A.; Schroeder, R.A.; Bartlett, S.T.; Kuo, P.C. Differential effects of nitric oxide-mediated S-nitrosylation on p50 and c-jun DNA binding. Surgery, 1998, 124(2), 137-141.
[119]
Yamamoto, Y.; Gaynor, R.B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J. Clin. Invest., 2001, 107(2), 135-142.
[120]
Bonavida, B. In: Nitric Oxide (Donor/Induced) in Chemosensitizing; Bonavida, B., Ed.; Academic Press, 2017; pp. 15-34.
[121]
Wolff, S. The adaptive response in radiobiology: Evolving insights and implications. Environ. Health Perspect., 1998, 106(Suppl. 1), 277-283.
[122]
Zhao, X.; Cui, J.W.; Hu, J.H.; Gao, S.J.; Liu, X.L. Effects of low-dose radiation on adaptive response in colon cancer stem cells. Clin. Transl. Oncol., 2017, 19(7), 907-914.
[123]
Semenza, G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 2010, 29(5), 625-634.
[124]
Eales, K.L.; Hollinshead, K.E.R.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis, 2016, 5, e190.
[125]
Zhang, C.; Lan, T.; Hou, J.; Li, J.; Fang, R.; Yang, Z.; Zhang, M.; Liu, J.; Liu, B. NOX4 promotes non-small cell lung cancer cell proliferation and metastasis through positive feedback regulation of PI3K/Akt signaling. Oncotarget, 2014, 5(12), 4392-4405.
[126]
You, X.; Ma, M.; Hou, G.; Hu, Y.; Shi, X. Gene expression and prognosis of NOX family members in gastric cancer. OncoTargets Ther., 2018, 11, 3065-3074.
[127]
Lu, J.P.; Monardo, L.; Bryskin, I.; Hou, Z.F.; Trachtenberg, J.; Wilson, B.C.; Pinthus, J.H. Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase. Prostate Cancer Prostatic Dis., 2010, 13(1), 39-46.
[128]
Hsieh, C.H.; Wu, C.P.; Lee, H.T.; Liang, J.A.; Yu, C.Y.; Lin, Y.J. NADPH oxidase subunit 4 mediates cycling hypoxia-promoted radiation resistance in glioblastoma multiforme. Free Radic. Biol. Med., 2012, 53(4), 649-658.
[129]
Hsieh, C.H.; Lee, C.H.; Liang, J.A.; Yu, C.Y.; Shyu, W.C. Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity. Oncol. Rep., 2010, 24(6), 1629-1636.
[130]
Pei, H.; Zhang, J.; Nie, J.; Ding, N.; Hu, W.; Hua, J.; Hirayama, R.; Furusawa, Y.; Liu, C.; Li, B.; Hei, T.K.; Zhou, G. RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation. Cell Cycle, 2017, 16(1), 113-122.
[131]
Ludwig, K.; Belle, J.L.; Sperry, J.; Vlashi, E.; Pajonk, F.; Kornblum, H. RBIO-06. NADPH oxidase (NOX) promotes radiation resistance through oxidation of pten in glioblastoma. Neuro. Oncol., 2017, 19((suppl_6)), vi218.
[132]
Wu, Q.; Allouch, A.; Paoletti, A.; Leteur, C.; Mirjolet, C.; Martins, I.; Voisin, L.; Law, F.; Dakhli, H.; Mintet, E.; Thoreau, M.; Muradova, Z.; Gauthier, M.; Caron, O.; Milliat, F.; Ojcius, D.M.; Rosselli, F.; Solary, E.; Modjtahedi, N.; Deutsch, E.; Perfettini, J.L. NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death Differ., 2017, 24(9), 1632-1644.
[133]
Nguyen, D.M.; Parekh, P.R.; Chang, E.T.; Sharma, N.K.; Carrier, F. Contribution of Dual Oxidase 2 (DUOX2) to Hyper-Radiosensitivity in Human Gastric Cancer Cells. Radiat. Res., 2015, 184(2), 151-160.
[134]
Sun, Y.; St Clair, D.K.; Xu, Y.; Crooks, P.A.; St Clair, W.H. A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells. Cancer Res., 2010, 70(7), 2880-2890.