Review Article

Nanomedicine for Gene Delivery for the Treatment of Cardiovascular Diseases

Author(s): Cen Yan, Xiao-Jiang Quan and Ying-Mei Feng*

Volume 19, Issue 1, 2019

Page: [20 - 30] Pages: 11

DOI: 10.2174/1566523218666181003125308

Abstract

Background: Myocardial infarction (MI) is the most severe ischemic heart disease and directly leads to heart failure till death. Target molecules have been identified in the event of MI including increasing angiogenesis, promoting cardiomyocyte survival, improving heart function and restraining inflammation and myocyte activation and subsequent fibrosis. All of which are substantial in cardiomyocyte protection and preservation of cardiac function.

Methodology: To modulate target molecule expression, virus and non-virus-mediated gene transfer have been investigated. Despite successful in animal models of MI, virus-mediated gene transfer is hampered by poor targeting efficiency, low packaging capacity for large DNA sequences, immunogenicity induced by virus and random integration into the human genome.

Discussion: Nanoparticles could be synthesized and equipped on purpose for large-scale production. They are relatively small in size and do not incorporate into the genome. They could carry DNA and drug within the same transfer. All of these properties make them an alternative strategy for gene transfer. In the review, we first introduce the pathological progression of MI. After concise discussion on the current status of virus-mediated gene therapy in treating MI, we overview the history and development of nanoparticle-based gene delivery system. We point out the limitations and future perspective in the field of nanoparticle vehicle.

Conclusion: Ultimately, we hope that this review could help to better understand how far we are with nanoparticle-facilitated gene transfer strategy and what obstacles we need to solve for utilization of nanomedicine in the treatment of MI.

Keywords: Myocardial infarction, cardiomyocytes, angiogenesis, inflammation, gene transfer, nanoparticles.

Graphical Abstract

[1]
Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of cardiovascular diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
[2]
Leonard A, Rahman A, Fazal F. Importins alpha and beta signaling mediates endothelial cell inflammation and barrier disruption. Cell Signal 2018; 44: 103-17.
[3]
Lin F, Pei L, Zhang Q, et al. Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation. J Cell Physiol 2018; 233(10): 6683-92.
[4]
Karki P, Birukov KG. Lipid mediators in the regulation of endothelial barriers. Tissue Barriers 2018; 6(1): e1385573.
[5]
Qin M1, Luo Y, Lu S, et al. Ginsenoside F1 ameliorates endothelial cell inflammatory injury and prevents atherosclerosis in mice through A20-Mediated suppression of NF-kB signaling. Front Pharmacol 2017; 8: 953.
[6]
Pankratz F, Hohnloser C, Bemtgen X, et al. MicroRNA-100 Suppresses chronic vascular inflammation by stimulation of endothelial autophagy. Circ Res 2018; 122(3): 417-32.
[7]
Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular diseases: Involvement of Nrf2 Antioxidant Redox Signaling in macrophage foam cells formation. Int J Mol Sci 2017; 18(11): e2336.
[8]
Halper J. Basic components of vascular connective tissue and extracellular matrix. Adv Pharmacol 2018; 81: 95-127.
[9]
Xiao H, Li H, Wang JJ, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult. Eur Heart J 2018; 39(1): 60-9.
[10]
Rühle KH, Domanski U, Franke KJ, Nilius G. Studies of leakage measurements of automatic CPAP-devices. Pneumologie 2007; 61(4): 213-8.
[11]
Kobayashi K, Maeda K, Takefuji M, et al. Dynamics of angiogenesis in ischemic areas of the infarcted heart. Sci Rep 2017; 7(1): 7156.
[12]
Nash AD, Baca M, Wright C, Scotney PD. The biology of vascular endothelial growth factor-B (VEGF-B). Pulm Pharmacol Ther 2006; 19(1): 61-9.
[13]
Huusko J, Merentie M, Dijkstra MH, et al. The effects of VEGF-R1 and VEGF-R2 ligands on angiogenic responses and left ventricular function in mice. Cardiovasc Res 2010; 86(1): 122-30.
[14]
Li G-H, Luo B, Yan-xia LV, et al. Dual effects of VEGF-B on activating cardiomyocytes and cardiac stem cells to protect the heart against short- and long-term ischemia-reperfusion injury. J Transl Med 2016; 14(1): 116.
[15]
Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 2010; 24(5): 1467-78.
[16]
Huusko J, Lottonen L, Merentie M, et al. AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol Ther 2012; 20(12): 2212-21.
[17]
Chen XG, Lv YX, Zhao D, et al. Vascular endothelial growth factor-C protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. Mol Cell Biochem 2016; 413(1-2): 9-23.
[18]
Zhao T, Zhao W, Meng W, Liu C, Chen Y, Sun Y. Vascular endothelial growth factor-C: Its unrevealed role in fibrogenesis. Am J Physiol Heart Circ Physiol 2014; 306(6): H789-96.
[19]
Boardman NT, Aronsen JM, Louch WE, et al. Impaired left ventricular mechanical and energetic function in mice after cardiomyocyte-specific excision of Serca2. Am J Physiol Heart Circ Physiol 2014; 306(7): H1018-24.
[20]
Kawase Y, Ly HQ, Prunier F, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51(11): 1112-9.
[21]
Isman F1, Kucur M, Tanriverdi T, et al. Serum hyaluronidase levels in patients with aneurysmal subarachnoid haemorrhage. Singapore Med J 2008; 49(5): 405-9.
[22]
Zhao XY, Hu SJ, Li J, et al. rAAV-asPLB transfer attenuates abnormal sarcoplasmic reticulum Ca2+ -ATPase activity and cardiac dysfunction in rats with myocardial infarction. Eur J Heart Fail 2008; 10(1): 47-54.
[23]
Kho C, Lee A, Jeong D, et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 2011; 477(7366): 601-5.
[24]
Wang WE, Li L, Xia X, et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 2017; 136(9): 834-48.
[25]
Younce CW, Niu J, Ayala J, et al. Exendin-4 improves cardiac function in mice overexpressing monocyte chemoattractant protein-1 in cardiomyocytes. J Mol Cell Cardiol 2014; 76: 172-6.
[26]
Yao T, Lu W, Zhu J, et al. Role of CD11b+Gr-1+ myeloid cells in AGEs-induced myocardial injury in a mice model of acute myocardial infarction. Int J Clin Exp Pathol 2015; 8(3): 3238-49.
[27]
Veltman D, Laeremans T, Passante E, Huber HJ. Signal transduction analysis of the NLRP3-inflammasome pathway after cellular damage and its paracrine regulation. J Theor Biol 2017; 415: 125-36.
[28]
Su SA, Yang D, Zhu W, et al. Interleukin-17A mediates cardiomyocyte apoptosis through Stat3-iNOS pathway. Biochim Biophys Acta 2016; 1863(11): 2784-94.
[29]
Jarrah AA, Schwarskopf M, Wang ER, et al. SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis 2018; 23(1): 79-91.
[30]
Opstad TB, Seljeflot I, Bøhmer E, Arnesen H, Halvorsen S. MMP-9 and its regulators TIMP-1 and EMMPRIN in patients with acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology 2018; 139(1): 17-24.
[31]
Mongue-Din H, Patel AS, Looi YH, et al. NADPH Oxidase-4 driven cardiac macrophage polarization protects against myocardial infarction-induced remodeling. JACC Basic Transl Sci 2017; 2(6): 688-98.
[32]
Di Maggio S, Milano G, De Marchis F, et al. Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochim Biophys Acta 2017; 1863(11): 2693-704.
[33]
Su SA, Yang D, Wu Y, et al. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-beta/Smad3 signaling. Circ Res 2017; 121(6): 617-27.
[34]
Lother A, Moser M, Bode C, Feldman RD, Hein L. Mineralocorticoids in the heart and vasculature: New insights for old hormones. Annu Rev Pharmacol Toxicol 2015; 55: 289-312.
[35]
Caprio, M., B.G. Newfell, la Sala A, et al. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ Res 2008; 102(11): 1359-67.
[36]
Fung J, Stewart JE, Barbeau H. The combined effects of clonidine and cyproheptadine with interactive training on the modulation of locomotion in spinal cord injured subjects. J Neurol Sci 1990; 100(1-2): 85-93.
[37]
Martínez-Martínez E, Buonafine M, Boukhalfa I, et al. Aldosterone Target NGAL (Neutrophil Gelatinase-Associated Lipocalin) is involved in cardiac remodeling after myocardial infarction through nfkappab pathway. Hypertension 2017; 70(6): 1148-56.
[38]
Gueret A, Harouki N, Favre J, et al. Vascular smooth muscle mineralocorticoid receptor contributes to coronary and left ventricular dysfunction after myocardial infarction. Hypertension 2016; 67(4): 717-23.
[39]
Tsai CF, Yang SF, Chu HJ, Ueng KC. Cross-talk between mineralocorticoid receptor/angiotensin II type 1 receptor and mitogen-activated protein kinase pathways underlies aldosterone-induced atrial fibrotic responses in HL-1 cardiomyocytes. Int J Cardiol 2013; 169(1): 17-28.
[40]
Zhao J, Lever AM. Lentivirus-mediated gene expression. Methods Mol Biol 2007; 366: 343-55.
[41]
Hammoudi N, Ishikawa K, Hajjar RJ. Adeno-associated virus-mediated gene therapy in cardiovascular disease. Curr Opin Cardiol 2015; 30(3): 228-34.
[42]
Castañeda-Lopez ME, Garza-Veloz I, Lopez-Hernandez Y, Barbosa-Cisneros OY, Martinez-Fierro ML. Anti-inflammatory effects of modified adenoviral vectors for gene therapy: A view through animal models tested. Immunol Invest 2016; 45(5): 450-70.
[43]
Poletti V, Mavilio F. Interactions between retroviruses and the Host Cell Genome. Mol Ther Methods Clin Dev 2018; 8: 31-41.
[44]
Fu H, Tan J, Yin Q. Effects of recombinant adeno-associated virus-mediated CD151 gene transfer on the expression of rat vascular endothelial growth factor in ischemic myocardium. Exp Ther Med 2015; 9(1): 187-90.
[45]
Guerrero M, Athota K, Moy J, et al. Vascular endothelial growth factor-165 gene therapy promotes cardiomyogenesis in reperfused myocardial infarction. J Interv Cardiol 2008; 21(3): 242-51.
[46]
Deuse T, Peter C, Fedak PW, et al. Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 2009; 120(11)(Suppl.): S247-54.
[47]
Olea FD, De Lorenzi A, Cortés C, et al. Combined VEGF gene transfer and erythropoietin in ovine reperfused myocardial infarction. Int J Cardiol 2013; 165(2): 291-8.
[48]
Vera Janavel GL, De Lorenzi A, Cortés C, et al. Effect of vascular endothelial growth factor gene transfer on infarct size, left ventricular function and myocardial perfusion in sheep after 2 months of coronary artery occlusion. J Gene Med 2012; 14(4): 279-87.
[49]
Mathison M, Gersch RP, Nasser A, et al. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc 2012; 1(6): e005652.
[50]
Rengo G, Zincarelli C, Femminella GD, et al. Myocardial beta(2)-adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 2012; 166(8): 2348-61.
[51]
Hao X, Månsson-Broberg A, Gustafsson T, et al. Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem Biophys Res Commun 2004; 315(4): 1058-63.
[52]
Korf-Klingebiel M, Kempf T, Schlüter KD, et al. Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation 2011; 123(5): 504-14.
[53]
Smith RS, Agata J, Xia CF, Chao L, Chao J. Human endothelial nitric oxide synthase gene delivery protects against cardiac remodeling and reduces oxidative stress after myocardial infarction. Life Sci 2005; 76(21): 2457-71.
[54]
Chen LL, Yin H, Huang J. Inhibition of TGF-beta1 signaling by eNOS gene transfer improves ventricular remodeling after myocardial infarction through angiogenesis and reduction of apoptosis. Cardiovasc Pathol 2007; 16(4): 221-30.
[55]
Chen LL1, Zhu TB, Yin H, et al. Inhibition of MAPK signaling by eNOS gene transfer improves ventricular remodeling after myocardial infarction through reduction of inflammation. Mol Biol Rep 2010; 37(7): 3067-72.
[56]
Qin W, Chen X, Liu P. Inhibition of TGF-beta1 by eNOS gene transfer provides cardiac protection after myocardial infarction. J Biomed Res 2010; 24(2): 145-52.
[57]
Tang J, Wang J, Yang J, Kong X. Adenovirus-mediated stromal cell-derived- factor-1alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+ stem cells and anti-apoptosis. Interact Cardiovasc Thorac Surg 2008; 7(5): 767-70.
[58]
Tang J, Wang J, Song H, et al. Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Mol Biol Rep 2010; 37(4): 1957-69.
[59]
Ahmet I, Sawa Y, Yamaguchi T, Matsuda H. Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart. Ann Thorac Surg 2003; 75(4): 1283-7.
[60]
Jayasankar V, Woo YJ, Bish LT, et al. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 2003; 108(Suppl. 1): II230-6.
[61]
Chen XH, Minatoguchi S, Kosai K, et al. In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia-reperfusion injury through its multiple actions. J Card Fail 2007; 13(10): 874-83.
[62]
Gordts SC, Van Craeyveld E, Muthuramu I, Singh N, Jacobs F, De Geest B. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function. PLoS One 2012; 7(10): e46849.
[63]
Niwano K, Arai M, Koitabashi N, et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther 2008; 16(6): 1026-32.
[64]
Fargnoli AS, Katz MG, Yarnall C, et al. Cardiac surgical delivery of the sarcoplasmic reticulum calcium ATPase rescues myocytes in ischemic heart failure. Ann Thorac Surg 2013; 96(2): 586-95.
[65]
Lai NC, Gao MH, Giamouridis D, et al. Intravenous AAV8 Encoding Urocortin-2 increases function of the failing heart in mice. Hum Gene Ther 2015; 26(6): 347-56.
[66]
Tilemann L, Lee A, Ishikawa K, et al. SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure. Sci Transl Med 2013; 5(211): 211ra159.
[67]
Fish KM, Ladage D, Kawase Y, et al. AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling. Circ Heart Fail 2013; 6(2): 310-7.
[68]
Ishikawa K, Fish K, Aguero J, et al. Stem cell factor gene transfer improves cardiac function after myocardial infarction in swine. Circ Heart Fail 2015; 8(1): 167-74.
[69]
Greener ID, Sasano T, Wan X, et al. Connexin43 gene transfer reduces ventricular tachycardia susceptibility after myocardial infarction. J Am Coll Cardiol 2012; 60(12): 1103-10.
[70]
Raake PW, Schlegel P, Ksienzyk J, et al. AAV6.betaARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J 2013; 34(19): 1437-47.
[71]
Swain JD, Fargnoli AS, Katz MG, et al. MCARD-mediated gene transfer of GRK2 inhibitor in ovine model of acute myocardial infarction. J Cardiovasc Transl Res 2013; 6(2): 253-62.
[72]
Mathison M, Singh VP, Chiuchiolo MJ, et al. In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: Implications for clinical myocardial regeneration. J Thorac Cardiovasc Surg 2017; 153(2): 329-39 e3.
[73]
Ma H, Wang L, Liu J, Qian L. Direct Cardiac Reprogramming as a novel therapeutic strategy for treatment of myocardial infarction. Methods Mol Biol 2017; 1521: 69-88.
[74]
Miyamoto K, Akiyama M, Tamura F, et al. Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell 2018; 22(1): 91-103 e5.
[75]
Knuth CA, Kiernan CH, Palomares CV, et al. Isolating paediatric mesenchymal stem cells with enhanced expansion and differentiation capabilities. Tissue Eng Part C Methods 2018; 24(6): 313-21.
[76]
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res Ther 2018; 9(1): 63.
[77]
Yang Q, Jia L, Li X, et al. Long noncoding RNAs: New players in the osteogenic differentiation of bone marrow- and adipose-derived mesenchymal stem cells. Stem Cell Rev 2018; 14(3): 297-308.
[78]
Luger D, Lipinski MJ, Westman PC, et al. Intravenously delivered mesenchymal stem cells: Systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ Res 2017; 120(10): 1598-613.
[79]
Houtgraaf JH, de Jong R, Kazemi K, et al. Intracoronary infusion of allogeneic mesenchymal precursor cells directly after experimental acute myocardial infarction reduces infarct size, abrogates adverse remodeling, and improves cardiac function. Circ Res 2013; 113(2): 153-66.
[80]
Moon HH, Joo MK, Mok H, et al. MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials 2014; 35(5): 1744-54.
[81]
Hoshino A, Fujioka K, Oku T, et al. Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 2004; 48(12): 985-94.
[82]
Wang GD, Tan YZ, Wang HJ, Zhou P. Autophagy promotes degradation of polyethyleneimine-alginate nanoparticles in endothelial progenitor cells. Int J Nanomedicine 2017; 12: 6661-75.
[83]
Zhuo H, Zheng B, Liu J, et al. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes. J Exp Clin Cancer Res 2018; 37(1): 42.
[84]
Hashemi MM, Holden BS, Taylor MF, et al. Antibacterial and antifungal activities of poloxamer micelles containing ceragenin CSA-131 on ciliated tissues. Molecules 2018; 23(3): pii: E596.
[85]
Zhang J, Yang C, Pan S, et al. Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine-docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both in vitro and in vivo. Drug Deliv 2018; 25(1): 723-37.
[86]
Zhang L, Chen F, Zheng J, Wang H, Qin X, Pan W. Chitosan-based liposomal thermogels for the controlled delivery of pingyangmycin: Design, optimization and in vitro and in vivo studies. Drug Deliv 2018; 25(1): 690-702.
[87]
Li H, Teng Y, Xu X, Liu J. Enhanced rapamycin delivery to hemangiomas by lipid polymer nanoparticles coupled with anti-VEGFR antibody. Int J Mol Med 2018; 41(6): 3586-96.
[88]
Liu Y, Sui Y, Liu C, et al. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr Polym 2018; 188: 27-36.
[89]
Ginot F, Decaux JF, Cognet M, et al. Transfection of hepatic genes into adult rat hepatocytes in primary culture and their tissue-specific expression. Eur J Biochem 1989; 180(2): 289-94.
[90]
Lu M, Liu Y, Huang YC, Huang CJ, Tsai WB. Fabrication of photo-crosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr Polym 2018; 181: 668-74.
[91]
Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 2018; 70: 48-56.
[92]
Caminade AM, Majoral JP. Which dendrimer to attain the desired properties? focus on phosphorhydrazone dendrimers. Molecules 2018; 23(3): pii: E622.
[93]
Boussema, F., A.J. Gross, F. Hmida, et al. Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens Bioelectron 2018; 109: 20-6.
[94]
Miao Z, Gao Z, Chen R, Yu X, Su Z, Wei G. Surface-bioengineered gold nanoparticles for biomedical applications. Curr Med Chem 2018; 25(16): 1920-44.
[95]
Niu Z, Samaridou E, Jaumain E, et al. PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral peptide delivery strategy. J Control Release 2018; 276: 125-39.
[96]
Zhang Z, Mascheri N, Dharmakumar R, Li D. Cellular magnetic resonance imaging: Potential for use in assessing aspects of cardiovascular disease. Cytotherapy 2008; 10(6): 575-86.
[97]
Ta HT, Prabhu S, Leitner E, et al. Enzymatic single-chain antibody tagging: A universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ Res 2011; 109(4): 365-73.
[98]
Chames P, Regenmortel MV, Weiss E, Baty D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br J Pharmacol 2009; 157(2): 220-33.
[99]
Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372(16): 1489-99.
[100]
Kim Y, Lobatto ME, Kawahara T, et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci USA 2014; 111(3): 1078-83.
[101]
Matoba T, Koga JI, Nakano K, Egashira K, Tsutsui H. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol 2017; 70(3): 206-11.
[102]
Mao Y, Koga JI, Tokutome M, et al. Nanoparticle-Mediated delivery of pitavastatin to monocytes/macrophages inhibits left ventricular remodeling after acute myocardial infarction by inhibiting monocyte-mediated inflammation. Int Heart J 2017; 58(4): 615-23.
[103]
Sung KM, Mosley DW, Peelle BR, Zhang S, Jacobson JM. Synthesis of monofunctionalized gold nanoparticles by fmoc solid-phase reactions. J Am Chem Soc 2004; 126(16): 5064-5.
[104]
Fu A, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP. Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc 2004; 126(35): 10832-3.
[105]
Sun W, Davis PB. Reducible DNA nanoparticles enhance in vitro gene transfer via an extracellular mechanism. J Control Release 2010; 146(1): 118-27.
[106]
Dasari BC, Cashman SM, Kumar-Singh R. Reducible PEG-POD/DNA nanoparticles for gene transfer in vitro and in vivo: Application in a mouse model of age-related macular degeneration. Mol Ther Nucleic Acids 2017; 8: 77-89.
[107]
Picola IP, Shi Q, Fernandes JC, et al. Chitosan derivatives for gene transfer: effect of phosphorylcholine and diethylaminoethyl grafts on the in vitro transfection efficiency. J Biomater Sci Polym Ed 2016; 27(16): 1611-30.
[108]
Kong F, Liu G, Zhou S, Guo J, Chen S, Wang Z. Superior transfection efficiency of phagocytic astrocytes by large chitosan/DNA nanoparticles. Int J Biol Macromol 2017; 105(Pt 2): 1473-81.
[109]
Ma PL, Lavertu M, Winnik FM, Buschmann MD. Stability and binding affinity of DNA/chitosan complexes by polyanion competition. Carbohydr Polym 2017; 176: 167-76.
[110]
Tang R, Zhai Y, Dong L. Immunization with dendritic cell-based DNA vaccine pRSC-NLDC145.gD-IL21 protects mice against herpes simplex virus keratitis. Immunotherapy 2018; 10(3): 189-200.
[111]
Huang T, Song X, Jing J, et al. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnology 2018; 16(1): 8.
[112]
Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review. Iran J Basic Med Sci 2018; 21(2): 116-23.
[113]
Asthana GS, Asthana A, Kohli DV, Vyas SP. Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting. BioMed Res Int 2014; 2014: 526391.
[114]
Nouri F, Sadeghpour H, Heidari R, Dehshahri A. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene. Int J Nanomedicine 2017; 12: 5557-69.
[115]
McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv Colloid Interface Sci 2018; 253: 1-22.
[116]
Han Y, Zhang Y, Li D, et al. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine 2014; 9: 4107-16.
[117]
Abd-Rabou AA, Bharali DJ, Mousa SA. Taribavirin and 5-Fluorouracil-Loaded Pegylated-Lipid nanoparticle synthesis, p38 docking, and antiproliferative effects on MCF-7 breast cancer. Pharm Res 2018; 35(4): 76.
[118]
Del Pozo-Rodriguez A, Solinis MA, Rodriguez-Gascon A. Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm 2016; 109: 184-93.
[119]
Sanchez-Lopez E, Espina M, Doktorovova S, Souto EB, Garcia M. L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm 2017; 110: 58-69.
[120]
Buyukkoroglu G, Senel B, Basaran E, Yenilmez E, Yazan Y. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur J Pharm Biopharm 2016; 109: 174-83.
[121]
Shen L, Li B, Qiao Y. Fe(3)O(4) Nanoparticles in targeted drug/gene delivery systems. Materials (Basel) 2018; 11(2): 324.
[122]
Wang Z, Chang Z, Lu M, et al. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials 2018; 154: 147-57.
[123]
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: Treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22(5): p 588-619.
[124]
Tang J, Baxter S, Menon A, et al. Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc Natl Acad Sci USA 2016; 113(44): E6731-40.
[125]
Li J, He YZ, Li W, Shen YZ, Li YR, Wang YF, et al. A novel polymer-lipid hybrid nanoparticle for efficient nonviral gene delivery. Acta Pharmacol Sin 2010; 31(4): 509-14.
[126]
Xing S, Zhang X, Luo L, et al. Doxorubicin/gold nanoparticles coated with liposomes for chemo-photothermal synergetic antitumor therapy. Nanotechnology 2018; 29(40): 405101.
[127]
Song H, Wang G, He B, et al. Cationic lipid-coated PEI/DNA polyplexes with improved efficiency and reduced cytotoxicity for gene delivery into mesenchymal stem cells. Int J Nanomedicine 2012; 7: 4637-48.
[128]
Navarro G, Pan J, Torchilin VP. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol Pharm 2015; 12(2): 301-13.
[129]
Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV. Engineered nanoparticles: Their properties and putative applications for therapeutic approaches utilizing stem cells for the repair of atherosclerotic disease. Curr Drug Targets 2017; 19(14): 1639-48.
[130]
Matoba T, Koga JI, Nakano K, Egashira K, Tsutsui H. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol 2017; 70(3): 206-11.
[131]
Nafee N, Gouda N. Nucleic acids-based nanotherapeutics crossing the blood brain barrier. Curr Gene Ther 2017; 17(2): 154-69.
[132]
Leiro V, Santos SD, Pego AP. Delivering siRNA with dendrimers: In vivo applications. Curr Gene Ther 2017; 17(2): 105-19.
[133]
Prabhu P, Patravale V. The upcoming field of theranostic nanomedicine: An overview. J Biomed Nanotechnol 2012; 8(6): 859-82.
[134]
Vosen S, Rieck S, Heidsieck A, et al. Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium. J Control Release 2016; 241: 164-73.
[135]
Swendeman D, Fehrenbacher AE, Ali S, et al. “Whatever I have, I have made by coming into this profession”: The intersection of resources, agency, and achievements in pathways to sex work in Kolkata, India. Arch Sex Behav 2015; 44(4): 1011-23.
[136]
Wang Y, Xu H, Ma L. Recent advances of thermally responsive nanogels for cancer therapy. Ther Deliv 2015; 6(10): 1157-69.

© 2025 Bentham Science Publishers | Privacy Policy