[1]
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 539(7628): 180-6.
[2]
Possin K. Visual spatial cognition in neurodegenerative disease. Neurocase 2010; 16(6): 466-87.
[3]
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70: 87-94.
[4]
Pilato F, Profice P, Ranieri F, et al. Synaptic plasticity in neurodegenerative diseases evaluated and modulated by in vivo neurophysiological techniques. Mol Neurobiol 2012; 46(3): 563-71.
[5]
Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener 2009; 4(1): 20.
[8]
Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s disease. The Lancet 2016; 388(10043): 505-17.
[9]
Geda YE, Schneider LS, Gitlin LN, et al. Neuropsychiatric symptoms in Alzheimer’s disease: Past progress and anticipation of the future. Alzheimers Dement 2013; 9(5): 602-8.
[10]
Ma J, Brewer Jr H.B., Potter H. Alzheimer Aβ neurotoxicity: Promotion by antichymotrypsin, ApoE4; Inhibition by Aβ-related peptides. Neurobiol Aging 1996; 17(5): 773-80.
[11]
Vetrivel KS, Thinakaran G. Membrane rafts in Alzheimer's disease beta-amyloid production BBA - Mole Cell Biol Lip 2010; 1801(8): 860-7.
[12]
Thompson J, Harris J, Sollom A, et al. Longitudinal evaluation of neuropsychiatric symptoms in huntington’s disease. J Neuropsychiatry Clin Neurosci 2012; 24(1): 53-60.
[13]
Fitzsimmons S, Jones L, Holmans P. Factors influencing the presence of behavioural symptoms in huntington's disease. J Neurol Neurosur Psychiatry 2015; 86(9): e3.29-e3.
[14]
Steffan J. SUMO modification of huntingtin and huntington’s disease pathology. Science 2004; 304(5667): 100-4.
[15]
Pidgeon C, Rickards H. The pathophysiology and pharmacological treatment of huntington disease. Behav Neurol 2013; 26(4): 245-53.
[16]
Ross C, Shoulson I. Huntington disease: Pathogenesis, biomarkers, and approaches to experimental therapeutics. Parkinsonism Relat Disord 2009; 15: S135-8.
[17]
LaFerla F. Calcium dyshomeostasis and intracellular signalling in alzheimer’s disease. Nat Rev Neurosci 2002; 3(11): 862-72.
[18]
Baumgartel K, Mansuy I. Neural functions of calcineurin in synaptic plasticity and memory. Learn Mem 2012; 19(9): 375-84.
[21]
Wang J, Chen Q, Wang X, et al. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J Biol Chem 2012; 288(5): 3070-84.
[22]
Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 2011; 14(7): 1275-88.
[23]
Lunn JS, Sakowski SA, Hur J, Feldman EL. Stem cell technology for neurodegenerative diseases. Ann Neurol 2011; 70(3): 353-61.
[24]
O’Connor D, Boulis N. Gene therapy for neurodegenerative diseases. Trends Mol Med 2015; 21(8): 504-12.
[25]
Dantuma E, Merchant S, Sugaya K. Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res Ther 2010; 1(5): 37.
[26]
Zhongling Feng, Gang Zhao, Lei Yu Neural stem cells and Alzheimer’s Disease: Challenges and hope. Am J Alzheimer’s Disease Dement 2008; 24(1): 52-7.
[27]
Winkler J. Human neural stem cells improve cognitive function of aged brain. Neuroreport 2001; 12(6): A33.
[28]
Kim J, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454(7204): 646-50.
[29]
Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 2008; 26(10): 2467-74.
[30]
Imamura K, Inoue H. Research on neurodegenerative diseases using induced pluripotent stem cells. Psychogeriatrics 2012; 12(2): 115-9.
[31]
Murrell W, Wetzig A, Donnellan M, et al. Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s Disease. Stem Cells 2008; 26(8): 2183-92.
[32]
Nanou A, Azzouz M. Gene therapy for neurodegenerative diseases based on lentiviral vectors. Prog Brain Res 2009; 175: 187-200.
[33]
Matsuzaki Y, Oue M, Hirai H. Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter. J Neurosci Methods 2014; 223: 133-43.
[34]
Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur J Pharmacol 2006; 545(1): 51-64.
[35]
Maiti P. Dietary curcumin: A potent natural polyphenol for neurodegenerative diseases therapy MOJ Anatomy Physiol 2015; 1(5).
[36]
Bacchus W, Aubel D, Fussenegger M. Biomedically relevant circuit-design strategies in mammalian synthetic biology. Mol Syst Biol 2014; 9(1): 691.
[37]
Ye H, Fussenegger M. Synthetic therapeutic gene circuits in mammalian cells. FEBS Lett 2014; 588(15): 2537-44.
[38]
Pham E, Mills E, Truong K. A synthetic photoactivated protein to generate local or global Ca2+ signals. Cell Chem Biol 2011; 18: 880-90.
[39]
Siuti P, Yazbek J, Lu T. Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 2013; 31(5): 448-52.
[40]
Grunberg R, Serrano L. Strategies for protein synthetic biology. Nucleic Acids Res 2010; 38(8): 2663-75.
[41]
Grunberg R, Ferrar T, van der Sloot A, Constante M, Serrano L. Building blocks for protein interaction devices. Nucleic Acids Res 2010; 38(8): 2645-62.
[42]
Yu K, Liu C, Kim B, Lee D. Synthetic fusion protein design and applications. Biotechnol Adv 2014; 33: 155-64.
[43]
Wu X, Sereno A, Huang F, et al. Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies. MAbs 2015; 7(2): 364-76.
[44]
Cheng T, Roffler S. Membrane-tethered proteins for basic research, imaging, and therapy. Med Res Rev 2008; 28(6): 885-928.
[45]
Zhao X, Wang Y, Chen L, Aihara K. Protein domain annotation with predicted domain-domain interaction networks. Protein Pept Lett 2008; 15(5): 456-62.
[46]
Moad H, Pioszak A. Selective CGRP and adrenomedullin peptide binding by tethered RAMP-calcitonin receptor-like receptor extracellular domain fusion proteins. Protein Sci 2013; 22(12): 1775-85.
[47]
Schwerk C, Prasad J, Degenhardt K, et al. ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol Cell Biol 2003; 23(8): 2981-90.
[48]
Huang K. Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int J Biochem Cell Biol 2001; 33(4): 315-24.
[49]
Mills E, Pham E, Truong K. Structure based design of a Ca2+-sensitive RhoA protein that controls cell morphology. Cell Ca 2010; 48: 195-201.
[50]
Howard P, Chia M, Del Rizzo S, Liu F, Pawson T. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc Natl Acad Sci USA 2003; 100(20): 11267-72.
[51]
Strickland D, Moffat K, Sosnick T. Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci USA 2008; 105(31): 10709-14.
[52]
Bashor C, Helman N, Yan S, Lim W. using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 2008; 319(5869): 1539-43.
[53]
Khalil A, Collins J. Synthetic biology: Applications come of age. Nat Rev Genet 2010; 11(5): 367-79.
[54]
Trowbridge I. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Dev Biol 1993; 9(1): 129-61.
[55]
Bledi Y. PROCEED: A proteomic method for analysing plasma membrane proteins in living mammalian cells. Brief Funct Genomics Proteomics 2003; 2(3): 254-65.
[56]
Bonifacino J, Traub L. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003; 72(1): 395-447.
[57]
Hegde R, Kang S. The concept of translocational regulation. J Cell Biol 2008; 182(2): 225-32.
[58]
Mellman I, Nelson W. Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 2008; 9(11): 833-45.
[59]
Martoglio B, Dobberstein B. Signal sequences: More than just greasy peptides. Trends Cell Biol 1998; 8(10): 410-5.
[60]
Hegde R, Bernstein H. The surprising complexity of signal sequences. Trends Biochem Sci 2006; 31(10): 563-71.
[61]
Bonifacino J, Lippincott-Schwartz J. Opinion: Coat proteins: Shaping membrane transport. Nat Rev Mol Cell Biol 2003; 4(5): 409-14.
[62]
Nikolovski N, Shliaha P, Gatto L, Dupree P, Lilley K. Label-free protein quantification for plant golgi protein localization and abundance. Plant Physiol 2014; 166(2): 1033-43.
[63]
Chang M, Mallet W, Mostov K, Brodsky F. Adaptor self-aggregation, adaptor-receptor recognition and binding of alpha-adaptin subunits to the plasma membrane contribute to recruitment of adaptor (AP2) components of clathrin-coated pits. EMBO J 1993; 12(5): 2169-80.
[64]
Nagaraj S, Wong SS, Truong K. Parts-based assembly of synthetic transmembrane proteins in mammalian cells. ACS Synth Biol 2012; 4(1): 111-7.
[65]
Yoneya T, Nishida R. TCP: A tool for designing chimera proteins based on the tertiary structure information. BMC Bioinformatics 2009; 10(1): 9.
[66]
Schott WJ, Galla M, Godinho T, Baum C, Schambach A. Viral and non-viral approaches for transient delivery of mrna and proteins. Curr Gene Ther 2011; 11(5): 382-98.
[67]
Lu Y, Yang J, Sega E. Issues related to targeted delivery of proteins and peptides. AAPS J 2006; 8(3): E466-78.
[68]
Bolhassani A, Jafarzade B, Mardani G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 2017; 87: 50-63.
[69]
Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M. Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem Soc Rev 2016; 45(17): 4690-707.
[70]
Sellers D, Bergen J, Johnson R, et al. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration. Proc Natl Acad Sci USA 2016; 113(9): 2514-9.
[71]
Kwon E, Skalak M, Lo Bu R, Bhatia S. Neuron-targeted nanoparticle for siRNA delivery to traumatic brain injuries. ACS Nano 2016; 10(8): 7926-33.
[72]
Clapham D. Calcium Signaling. Cell 2007; 131(6): 1047-58.
[73]
Pham E, Mills E, Truong K. A synthetic photoactivated protein to generate local or global Ca2+ signals. Chem Biol 2011; 18(7): 880-90.
[74]
Mills E, Pham E, Truong K. Structure based design of a Ca2+-sensitive RhoA protein that controls cell morphology. Cell Calcium 2010; 48(4): 195-201.
[75]
Faehling M. Essential role of calcium in vascular endothelial growth factor A-induced signaling: mechanism of the antiangiogenic effect of carboxyamidotriazole. FASEB J 2002; 16(13): 1805-7.
[76]
Zhang Z, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106(7): 829-38.
[77]
Klemm J, Schreiber S, Crabtree G. Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 1998; 16(1): 569-92.
[78]
Dawson A, Lea E, Irvine R. Kinetic model of the inositol trisphosphate receptor that shows both steady-state and quantal patterns of Ca2+ release from intracellular stores. Biochem J 2003; 370: 621.
[79]
Ji X, Tordova M, O’Donnell R, et al. Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a slass π glutathione s-transferase. Biochem 1997; 36(32): 9690-702.
[80]
Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012; 13(9): 566-78.
[81]
Qudrat A, Mosabbir A, Truong K. Engineered proteins program mammalian cells to target inflammatory disease sites. Cell Chem Biol 2017; 24(6): 703-11.
[82]
Qudrat A, Truong K. Autonomous cell migration to CSF1 sources via a synthetic protein-based system. ACS Synth Biol 2017; 6(8): 1563-71.
[83]
Mosabbir A, Qudrat A, Truong K. Engineered cell migration to lesions linked to autoimmune disease. Biotechnol Bioeng 2018; 115(4): 1028-36.
[84]
Qudrat A, Wong J, Truong K. Engineering mammalian cells to seek senescence associated secretory phenotypes. J Cell Sci 2017; 130(18): 3116-23.
[85]
Qudrat A, Truong K. Antibody-based fusion proteins allow Ca2+ rewiring to most extracellular ligands. ACS Synth Biol 2018; 7(2): 531-9.
[86]
Mills E, Truong K. Ca2+-mediated synthetic biosystems offer protein design versatility, signal specificity and pathway rewiring. Cell Chem Biol 2011; 18: 1611-9.
[87]
Zimmer M. Green Fluorescent Protein (GFP): Applications, structure, and related photophysical behavior. Chem Rev 2002; 102(3): 759-82.
[88]
Hoffman R. Strategies for in vivo imaging using fluorescent proteins. J Cell Biochem 2017; 118(9): 2571-80.
[89]
Yang K, Sun K, Srinivasan KN, et al. Immune responses to T-cell epitopes of sars cov-n protein are enhanced by n immunization with a chimera of lysosome-associated membrane protein. Gene Ther 2009; 16(11): 1353-62.
[90]
Azab Belal M. Dash R, et al Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3-CTV). J Cell Physiol 2014; 229(1): 34-43.
[91]
Dantuma N, Menéndez-Benito V, Verhoef L. The ubiquitin/proteasome system in neurodegenerative disease. Eur Neuropsychopharmacol 2006; 16: S183.