[1]
José Pedro De La Cruz, M.D.; José Antonio González‐Correa, M.D.; Guerrero, A.; Felipe Sánchez de la Cuesta, M.D. Pharmacological approach to diabetic retinopathy. Diabetes Metab. Res. Rev., 2004, 20(2), 91-113.
[2]
Kobrin Klein, B.E. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol., 2007, 14(4), 179-183.
[3]
Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; Haffner, S.; Hamman, R.F.; Ikram, M.K.; Kayama, T.; Klein, B.E.; Klein, R.; Krishnaiah, S.; Mayurasakorn, K.; O’Hare, J.P.; Orchard, T.J.; Porta, M.; Rema, M.; Roy, M.S.; Sharma, T.; Shaw, J.; Taylor, H.; Tielsch, J.M.; Varma, R.; Wang, J.J.; Wang, N.; West, S.; Xu, L.; Yasuda, M.; Zhang, X.; Mitchell, P.; Wong, T.Y. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 2012, 35(3), 556-564.
[5]
Hautala, N.; Hannula, V.; Palosaari, T.; Ebeling, T.; Falck, A. Prevalence of diabetic retinopathy in young adults with type 1 diabetes since childhood: The Oulu cohort study of diabetic retinopathy. Acta Ophthalmol., 2014, 92(8), 749-752.
[6]
Dedov, I.; Maslova, O.; Suntsov, Y.; Bolotskaia, L.; Milenkaia, T.; Besmertnaia, L. Prevalence of diabetic retinopathy and cataract in adult patients with type 1 and type 2 diabetes in Russia. Rev. Diabet. Stud., 2009, 6(2), 124-129.
[7]
Roy, M.S.; Klein, R.; O’Colmain, B.J.; Klein, B.E.; Moss, S.E.; Kempen, J.H. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch. Ophthalmol., 2004, 122(4), 546-551.
[8]
Kempen, J.H.; O’Colmain, B.J.; Leske, M.C.; Haffner, S.M.; Klein, R.; Moss, S.E.; Taylor, H.R.; Hamman, R.F. Eye Diseases Prevalence Research Group The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol., 2004, 122(4), 552-563.
[9]
Zhang, X.; Saaddine, J.B.; Chou, C.F.; Cotch, M.F.; Cheng, Y.J.; Geiss, L.S.; Albright, A.L.; Klein, B.E.; Klein, R. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA, 2010, 304(6), 649-656.
[10]
Kung, K.; Chow, K.M.; Hui, E.M.; Leung, M.; Leung, S.Y.; Szeto, C.C.; Lam, A.; Li, P.K. Prevalence of complications among Chinese diabetic patients in urban primary care clinics: A cross-sectional study. BMC Fam. Pract., 2014, 15, 8.
[11]
Jee, D.; Lee, W.K.; Kang, S. Prevalence and risk factors for diabetic retinopathy: The Korea National Health and Nutrition Examination Survey 2008-2011. Invest. Ophthalmol. Vis. Sci., 2013, 54(10), 6827-6833.
[12]
Raman, R.; Rani, P.K.; Reddi Rachepalle, S.; Gnanamoorthy, P.; Uthra, S.; Kumaramanickavel, G.; Sharma, T. Prevalence of diabetic retinopathy in India: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetics study report 2. Ophthalmology, 2009, 116(2), 311-318.
[13]
Liu, L.; Wu, X.; Liu, L.; Geng, J.; Yuan, Z.; Shan, Z.; Chen, L. Prevalence of diabetic retinopathy in mainland China: a meta-analysis. PLoS One, 2012, 7(9), e45264.
[14]
Wang, F.H.; Liang, Y.B.; Zhang, F.; Wang, J.J.; Wei, W.B.; Tao, Q.S.; Sun, L.P.; Friedman, D.S.; Wang, N.L.; Wong, T.Y. Prevalence of diabetic retinopathy in rural China: The Handan Eye Study. Ophthalmology, 2009, 116(3), 461-467.
[15]
Raman, R.; Ganesan, S.; Pal, S.S.; Kulothungan, V.; Sharma, T. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ Open Diabetes Res. Care, 2014, 2(1), e000005.
[16]
Rema, M.; Premkumar, S.; Anitha, B.; Deepa, R.; Pradeepa, R.; Mohan, V. Prevalence of diabetic retinopathy in urban India: The Chennai Urban Rural Epidemiology Study (CURES) eye study. Invest. Ophthalmol. Vis. Sci., 2005, 46(7), 2328-2333.
[17]
Dandona, L.; Dandona, R.; Naduvilath, T.J.; McCarty, C.A.; Rao, G.N. Population based assessment of diabetic retinopathy in an urban population in southern India. Br. J. Ophthalmol., 1999, 83, 937-940.
[18]
Narendran, V.; John, R.K.; Raghuram, A.; Ravindran, R.D.; Nirmalan, P.K.; Thulasiraj, R.D. Diabetic retinopathy among self reported diabetics in southern India: A population based assessment. Br. J. Ophthalmol., 2002, 86, 1014-1018.
[19]
Gadkari, S.S.; Maskati, Q.B.; Nayak, B.K. Prevalence of diabetic retinopathy in India: The all India ophthalmological society diabetic retinopathy eye screening study 2014. Indian J. Ophthalmol., 2016, 64(1), 38.
[20]
Klein, R.; Knudtson, M.D.; Lee, K.E.; Gangnon, R.; Klein, B.E. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology, 2008, 115(11), 1859-1868.
[21]
Broe, R.; Rasmussen, M.L.; Frydkjaer-Olsen, U.; Olsen, B.S.; Mortensen, H.B.; Peto, T.; Grauslund, J. The 16-year incidence, progression and regression of diabetic retinopathy in a young population-based Danish cohort with type 1 diabetes mellitus: The Danish cohort of pediatric diabetes 1987 (DCPD1987). Acta Diabetol., 2014, 51(3), 413-420.
[22]
Thomas, R.L.; Dunstan, F.; Luzio, S.D.; Chowdury, R.S.; Hale, S.L.; North, R.V.; Gibbins, R.L.; Owens, D.R. Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the diabetic retinopathy screening service for wales: Retrospective analysis. BMJ, 2012, 344, e874.
[23]
Jones, C.D.; Greenwood, R.H.; Misra, A.; Bachmann, M.O. Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England. Diabetes Care, 2012, 35(3), 592-596.
[24]
Salinero-Fort, M.A.; San Andres-Rebollo, F.J.; de Burgos-Lunar, C.; Arrieta-Blanco, F.J.; Gomez-Campelo, P. Four-year incidence of diabetic retinopathy in a Spanish cohort: the MADIABETES study. PLoS One, 2013, 8(10), e76417.
[25]
Xu, J.; Xu, L.; Wang, Y.X.; You, Q.S.; Jonas, J.B.; Wei, W.B. Ten-year cumulative incidence of diabetic retinopathy. The Beijing Eye Study 2001/2011. PLoS One, 2014, 9(10), e111320.
[26]
Sahajpal, N.S.; Chaubey, A.; Goel, R.K.; Jain, S.K. Diabetic retinopathy. How far are we from personalized medicine. Fut Med. Chem., 2018, 10(19), 2249-2252.
[27]
Romero-Aroca, P.; Baget-Bernaldiz, M.; Fernandez-Ballart, J.; Plana-Gil, N. Soler- Lluis, N.; Mendez-Marin, I.; Bautista-Perez, A. Ten-year incidence of diabetic retinopathy and macular edema. Risk factors in a sample of people with type 1 diabetes. Diabetes Res. Clin. Pract., 2011, 94(1), 126-132.
[28]
Olsen, B.S.; Sjolie, A.K.; Hougaard, P.; Johannesen, J.; Marinelli, K.; Jacobsen, B.B.; Mortensen, H.B. Danish Study Group of Diabetes in Childhood. The significance of the prepubertal diabetes duration for the development of retinopathy and nephropathy in patients with type 1 diabetes. J. Diabetes Complications, 2004, 18(3), 160-164.
[29]
Donaghue, K.C.; Fairchild, J.M.; Craig, M.E.; Chan, A.K.; Hing, S.; Cutler, L.R.; Howard, N.J.; Silink, M. Do all prepubertal years of diabetes duration contribute equally to diabetes complications? Diabetes Care, 2003, 26(4), 1224-1229.
[30]
Harjutsalo, V.; Maric, C.; Forsblom, C.; Thorn, L.; Waden, J.; Groop, P.H. Sex-related differences in the long-term risk of microvascular complications by age at onset of type 1 diabetes. Diabetologia, 2011, 54(8), 1992-1999.
[31]
Egan, A.M.; McVicker, L.; Heerey, A.; Carmody, L.; Harney, F.; Dunne, F.P. Diabetic retinopathy in pregnancy: A population-based study of women with pregestational diabetes. In: J. Diabetes Res; , 2015. Article ID 310239, 7 pages.
[32]
Mohamed, Q.; Gillies, M.C.; Wong, T.Y. Management of diabetic retinopathy: A systematic review. JAMA, 2007, 298(8), 902-916.
[33]
Diabetes Control and Complications Trial Research Group. Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[34]
ADVANCE Collaborative Group Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; Hamet, P.; Harrap, S.; Heller, S.; Liu, L.; Mancia, G.; Mogensen, C.E.; Pan, C.; Poulter, N.; Rodgers, A.; Williams, B.; Bompoint, S.; de Galan, B.E.; Joshi, R.; Travert, F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., 2008, 358(24), 2560-2572.
[35]
Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, Jr , D.C.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; Grimm, R.H. Jr, Probstfield, J.L.; Simons-Morton, D.G.; Friedewald, W.T. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med., 2008, 358(24), 2545-2559.
[36]
Stratton, I.M.; Kohner, E.M.; Aldington, S.J.; Turner, R.C.; Holman, R.R.; Manley, S.E.; Matthews, D.R. UKPDS 50: Risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia, 2001, 44(2), 156-163.
[37]
Tudor, S.M.; Hamman, R.F.; Baron, A.; Johnson, D.W.; Shetterly, S.M. Incidence and progression of diabetic retinopathy in Hispanics and non-Hispanic whites with type 2 diabetes. San Luis Valley Diabetes Study, Colorado. Diabetes Care, 1998, 21(1), 53-61.
[38]
Kajiwara, A.; Miyagawa, H.; Saruwatari, J.; Kita, A.; Sakata, M.; Kawata, Y.; Oniki, K.; Yoshida, A.; Jinnouchi, H. Nakagawa, Ket al. Gender differences in the incidence and progression of diabetic retinopathy among Japanese patients with type 2 diabetes mellitus: A clinic-based retrospective longitudinal study. Diabetes Res. Clin. Pract., 2014, 103(3), e7-e10.
[39]
Romero-Aroca, P.; Baget-Bernaldiz, M.; Fernandez-Ballart, J.; Plana-Gil, N.; Soler-Lluis, N.; Mendez-Marin, I.; Bautista-Perez, A. Ten-year incidence of diabetic retinopathy and macular edema. Risk factors in a sample of people with type 1 diabetes. Diabetes Res. Clin. Pract., 2011, 94(1), 126-132.
[40]
Jin, P.; Peng, J.; Zou, H.; Wang, W.; Fu, J.; Shen, B.; Bai, X.; Xu, X.; Zhang, X. The 5-year onset and regression of diabetic retinopathy in Chinese type 2 diabetes patients. PLoS One, 2014, 9(11), e113359.
[41]
[No authors listed] Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ, 1998, 317(7160), 703-713. Erratum in BMJ, 1999, 318(7175), 29.
[42]
Chaturvedi, N.; Porta, M.; Klein, R.; Orchard, T.; Fuller, J.; Parving, H.H.; Bilous, R.; Sjølie, A.K. DIRECT Programme Study Group. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT- Protect 1) of retinopathy in type 1 diabetes: Randomised, placebo-controlled trials. Lancet, 2008, 372(9647), 1394-1402.
[43]
Sjolie, A.K.; Klein, R.; Porta, M.; Orchard, T.; Fuller, J.; Parving, H.H.; Bilous, R.; Chaturvedi, N. DIRECT Programme Study Group Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): A randomised placebo-controlled trial. Lancet, 2008, 372(9647), 1385-1393.
[44]
Cheung, N.; Wong, T.Y. Obesity and eye diseases. Surv. Ophthalmol., 2007, 52(2), 180-195.
[45]
Ding, J.; Wong, T.Y. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep., 2012, 12(4), 346-354.
[46]
Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient. J. Diabetes Res., 2007, 2007, 61038.
[47]
Gabbay, K.H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med., 1973, 288(16), 831-836.
[48]
Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol., 2002, 50, 325-392.
[49]
Gabbay, K.H. Purification and immunological identification of bovine retinal aldose reductase. Isr. J. Med. Sci., 1972, 8(8), 1626.
[50]
Travis, S.F.; Morrison, A.D.; Clements, R.S.; Winegrad, Jr , A.I.; Oski, F.A. The role of the polyol pathway in methaemoglobin reduction in human red cells. Br. J. Haematol., 1974, 27(4), 597-605.
[51]
LeRoith, D.; Taylor, S.I.; Olefsky, J.M. Diabetes mellitus: A fundamental and clinical text. LeRoith, D.; Taylor, S.I; Olefsky, J.M., Ed.; Lippincott Williams & Wilkins, 2004.
[52]
Dagher, Z.; Park, Y.S.; Asnaghi, V.; Hoehn, T.; Gerhardinger, C.; Lorenzi, M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes, 2004, 53(9), 2404-2411.
[53]
Winges, A.; Garcia, T.B.; Preger, P.; Wiedemann, P.; Kohen, L.; Bringmann, A.; Hollborn, M. Osmotic expression of aldose reductase in retinal pigment epithelial cells: Involvement of NFAT5. Graefes Arch. Clin. Exp. Ophthalmol., 2016, 254(12), 2387-2400.
[54]
[No authors listed] A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Arch. Ophthalmol., 1990, 108, 1234-1244.
[55]
Puppala, M.; Ponder, J.; Suryanarayana, P.; Reddy, G.B.; Petrash, J.M.; LaBarbera, D.V. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One, 2012, 7(4), e31399.
[56]
Chang, K.C.; Snow, A.; LaBarbera, D.V.; Petrash, J.M. Aldose reductase inhibition alleviates hyperglycemic effects on human retinal pigment epithelial cells. Chem. Biol. Interact., 2015, 234, 254-260.
[57]
Senthilkumari, S.; Sharmila, R.; Chidambaranathan, G.; Vanniarajan, A. Epalrestat, an aldose reductase inhibitor prevents glucose-induced toxicity in human retinal pigment epithelial cells in vitro. J. Ocul. Pharmacol. Ther., 2017, 33(1), 34-41.
[58]
Obrosova, I.G.; Minchenko, A.G.; Vasupuram, R.; White, L.; Abatan, O.I.; Kumagai, A.K.; Frank, R.N.; Stevens, M.J. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes, 2003, 52(3), 864-871.
[59]
Oates, P.; Beebe, D.; Ellery, C.; Coutcher, J. Normalization of oxidative stress marker GSSG/GSH in diabetic rat nerve requires stronger aldose reductase inhibition than normalization of sorbitol or fructose. Diabetic . Med., 2006, 23, 107.
[60]
Lassegue, B.; Clempus, R.E. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 285(2), 277-297.
[61]
Gonzalez, R.G.; Miglior, S.; Von Saltza, I.; Buckley, L.; Neuringer, J.; Cheng, H.M. 31P NMR studies of the diabetic lens. Magn. Reson. Med., 1988, 6(4), 435-444.
[62]
Marshall, S.; Bacote, V.; Traxinger, R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem., 1991, 266, 4706-4712.
[63]
Marshall, S.; Garvey, W.T.; Traxinger, R.R. New insights into the metabolic regulation of insulin action and insulin resistance: Role of glucose and amino acids. FASEB J., 1991, 5, 3031-3036.
[64]
Ok, T.; Yamazaki, K.; Kuromitsu, J.; Okada, M.; Tamak, I. cDNA cloning and mapping of a novel subtype of glutamine: Fructose- 6-phosphate-amidotransferase (GFAT2) in humans and mouse. Genomics, 1999, 57, 227-234.
[65]
Daniels, M.C.; Ciaraldi, T.P.; Nikoulina, S.; Henry, R.R.; McClain, D.A. Glutamine: Fructose-6-phosphate amidotransferase activity in cultured human skeletal muscle cells: Relationship to glucose disposal rate in control and non-insulin-dependent diabetes mellitus subjects and regulation by glucose and insulin. J. Clin. Invest., 1996, 97(5), 1235-1241.
[66]
Ziyadeh, F.N.; Sharma, K.; Ericksen, M.; Wolf, G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of trans- forming growth factor-beta. J. Clin. Invest., 1994, 93, 536-542.
[67]
Sharma, K.; Ziadeh, F.N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-b as a key mediator. Diabetes, 1995, 44, 1139-1146.
[68]
Kolm, V.; Sauer, U.; Olgemoller, B.; Schleicher, E.D. High glucose- induced TGF-b1 regulates mesangial production of heparan sulfate proteoglycan. Am. J. Physiol., 1996, 270, 812-821.
[69]
Rocco, M.V.; Chen, Y.; Goldfarb, S.; Ziyadeh, F.N. Elevated glucose stimulates TGF-beta gene expression and bioactivity in proximal tubule. Kidney Int., 1992, 41, 107-114.
[70]
Kolm-Litty, V.; Sauer, U.; Nerlich, A.; Lehmann, R.; Schleicher, E.D. High glucose-induced transforming growth factor b1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest., 1998, 101, 160-169.
[71]
Tsin, A.T.; Betts-Obregon, B.S.; Mortiz, R.; LeBaron, R. Novel mechanism which promotes diabetic complications in renal and ocular systems. Invest. Ophthalmol. Vis. Sci., 2017, 58(8), 4036.
[72]
Nakamura, M.; Barber, A.J.; Antonetti, D.A.; LaNoue, K.F.; Robinson, K.A.; Buse, M.G.; Gardner, T.W. Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J. Biol. Chem., 2001, 276(47), 43748-43755.
[73]
Safi, S.Z.; Qvist, R.; Kumar, S.; Batumalaie, K.; Ismail, I.S. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. BioMed Res. Int., 2014, 2014, 801269.
[74]
Gurel, Z.; Sheibani, N. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification: A new pathway to decode pathogenesis of diabetic retinopathy. Clin. Sci. , 2018, 132(2), 185-198.
[75]
Stitt, A.W. AGEs and diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2010, 51(10), 4867-4874.
[76]
Thorpe, S.R.; Baynes, J.W. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids, 2003, 25, 275-281.
[77]
Lal, S.; Szwergold, B.S.; Taylor, A.H.; Randall, W.C.; Kappler, F.; Wells-Knecht, K.; Baynes, J.W.; Brown, T.R. Metabolism of fructose-3- phosphate in the diabetic rat lens. Arch. Biochem. Biophys., 1995, 318, 191-199.
[78]
Zong, H.; Ward, M.; Stitt, A.W. AGEs, RAGE, and diabetic retinopathy. Curr. Diab. Rep., 2011, 11(4), 244-252.
[79]
Sugiyama, S.; Miyata, T.; Ueda, Y.; Tanaka, H.; Maeda, K.; Kawashima, S.; Van Ypersele de Strihou, C.; Kurokawa, K. Plasma levels of pentosidine in diabetic patients: An advanced glycation end product. J. Am. Soc. Nephrol., 1998, 9, 1681-1688.
[80]
Yamaguchi, M.; Nakamura, N.; Nakano, K.; Kitagawa, Y.; Shigeta, H.; Hasegawa, G.; Ienaga, K.; Nakamura, K.; Nakazawa, Y.; Fukui, I.; Obayashi, H.; Kondo, M. Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic pa- tients with or without retinopathy. Diabet. Med., 1998, 15, 458-462.
[81]
Fosmark, D.S.; Torjesen, P.A.; Kilhovd, B.K.; Berg, T.J.; Sandvik, L.; Hanssen, K.F.; Agardh, C.D.; Agardh, E. Increased serum levels of the specific advanced glycation end product methylg- lyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabol Clin. Exp., 2006, 55, 232-236.
[82]
Ono, Y.; Aoki, S.; Ohnishi, K.; Yasuda, T.; Kawano, K.; Tsukada, Y. Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res. Clin. Pract., 1998, 41, 131-137.
[83]
Stitt, A.W. Advanced glycation: An important pathological event in diabetic and age related ocular disease. Br. J. Ophthalmol., 2001, 85, 746-753.
[84]
Zhang, X.; Lai, Y.; McCance, D.R.; Uchida, K.; McDonald, D.M.; Gardiner, T.A.; Stitt, A.W.; Curtis, T.M. Evaluation of N (epsilon)-(3- formyl-3,4-dehydropiperidino)lysine as a novel biomarker for the severity of diabetic retinopathy. Diabetologia, 2008, 51, 1723-1730.
[85]
Gardiner, T.A.; Anderson, H.R.; Stitt, A.W. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J. Pathol., 2003, 201, 328-333.
[86]
Hammes, H.P.; Alt, A.; Niwa, T.; Clausen, J.T.; Bretzel, R.G.; Brownlee, M.; Schleicher, E.D. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia, 1999, 42, 728-736.
[87]
Murata, T.; Nagai, R.; Ishibashi, T.; Inomuta, H.; Ikeda, K.; Horiuchi, S. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia, 1997, 40, 764-769.
[88]
Schalkwijk, C.G.; Ligtvoet, N.; Twaalfhoven, H.; Jager, A.; Blaauwgeers, H.G.; Schlingemann, R.O.; Tarnow, L.; Parving, H.H.; Stehouwer, C.D.; van Hinsbergh, V.W. Amadori albumin in type 1 diabetic patients: Correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes, 1999, 48, 2446-2453.
[89]
Stitt, A.W.; Li, Y.M.; Gardiner, T.A.; Bucala, R.; Archer, D.B.; Vlassara, H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am. J. Pathol., 1997, 150, 523-531.
[90]
Hammes, H.P.; Brownlee, M.; Edelstein, D.; Saleck, M.; Martin, S.; Federlin, K. Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia, 1994, 37, 32-35.
[91]
Mohamed, A.K.; Bierhaus, A.; Schiekofer, S.; Tritschler, H.; Ziegler, R.; Nawroth, P.P. The role of oxidative stress and NF-κB activation in late diabetic complications. BioFactors, 1999, 10, 157-167.
[92]
Kowluru, R.A. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci., 2005, 76, 1051-1060.
[93]
Cowell, R.M.; Russell, J.W. Nitrosative injury and antioxidant therapy in the management of diabetic neuropathy. J. Investig. Med., 2004, 52, 33-44.
[94]
Barile, G.R.; Pachydaki, S.I.; Tari, S.R.; Lee, S.E.; Donmoyer, C.M.; Ma, W.; Rong, L.L.; Buciarelli, L.G.; Wendt, T.; Hörig, H.; Hudson, B.I. The RAGE axis in early diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2005, 46, 2916-2924.
[95]
Zong, H.; Ward, M.; Madden, A.; Yong, P.H.; Limb, G.A.; Curtis, T.M.; Stitt, A.W. Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia, 2010, 53, 2656-2666.
[96]
Donato, R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol., 2001, 33, 637-668.
[97]
Ren, X.Y.; Li, Y.N.; Qi, J.S.; Niu, T. Peroxynitrite-induced protein nitra- tion contributes to liver mitochondrial damage in diabetic rats. J. Diabetes Complications, 2008, 22, 357-364.
[98]
Vasan, S.; Foiles, P.; Founds, H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch. Biochem. Biophys., 2003, 419, 89-96.
[99]
Hammes, H.P.; Martin, S.; Federlin, K.; Geisen, K.; Brownlee, M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Natl. Acad. Sci. USA, 1991, 88, 11555-11558.
[100]
Kern, T.S.; Engerman, R.L. Pharmacological inhibition of diabetic retinopathy: Aminoguanidine and aspirin. Diabetes, 2001, 50, 1636-1642.
[101]
Agardh, E.; Hultberg, B.; Agardh, C. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. Curr. Eye Res., 2000, 21, 543-549.
[102]
Bolton, W.K.; Cattran, D.C.; Williams, M.E.; Adler, S.G.; Appel, G.B.; Cartwright, K.; Foiles, P.G.; Freedman, B.I.; Raskin, P.; Ratner, R.E.; Spinowitz, B.S.; Whittier, F.C.; Wuerth, J.P. ACTION I Investigator Group. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol., 2004, 24, 32-40.
[103]
Kuhla, B.; Luth, H.J.; Haferburg, D.; Boeck, K.; Arendt, T.; Munch, G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2005, 1043, 211-216.
[104]
Miller, A.G.; Smith, D.G.; Bhat, M.; Nagaraj, R.H. Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J. Biol. Chem., 2006, 281, 11864-11871.
[105]
Stitt, A.; Gardiner, T.A.; Alderson, N.L.; Canning, P.; Frizzell, N.; Duffy, N.; Boyle, C.; Januszewski, A.S.; Chachich, M.; Baynes, J.W.; Thorpe, S.R. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes, 2002, 51, 2826-2832.
[106]
Rahbar, S. Novel inhibitors of glycation and AGE formation. Cell Biochem. Biophys., 2007, 48, 147-157.
[107]
Bhatwadekar, A.; Glenn, J.V.; Figarola, J.L.; Scott, S.; Gardiner, T.A.; Rahbar, S.; Stitt, A.W. A new advanced glycation inhibitor, LR-90, prevents experimental diabetic reti- nopathy in rats. Br. J. Ophthalmol., 2008, 92, 545-547.
[108]
Sun, L.; Huang, T.; Xu, W.; Sun, J.; Lv, Y.; Wang, Y. Advanced glycation end products promote VEGF expression and thus choroidal neovascularization via Cyr61-PI3K/AKT signaling pathway. Sci. Rep., 2017, 7(1), 14925.
[109]
Thompson, K.; Chen, J.; Luo, Q.; Xiao, Y.; Cummins, T.R.; Bhatwadekar, A.D. Advanced glycation end (AGE) product modification of laminin downregulates Kir4. 1 in retinal Müller cells. PLoS One, 2018, 13(2), e0193280.
[110]
Kan, S.; Wu, J.; Sun, C.; Hao, J.; Wu, Z. Correlation between RAGE gene promoter methylation and diabetic retinal inflammation. Exp. Ther. Med., 2018, 15(1), 242-246.
[111]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-3.
[112]
Kowluru, R.A.; Kowluru, A.; Veluthakal, R.; Mohammad, G.; Syed, I.; Santos, J.M.; Mishra, M. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia, 2014, 57(5), 1047-1056.
[113]
Kowluru, A.; Kowluru, R.A. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem. Pharmacol., 2014, 88(3), 275-283.
[114]
Narayanan, S.P.; Rojas, M.; Suwanpradid, J.; Toque, H.A.; Caldwell, R.W. Caldwell, R.B. Arginase in retinopathy. Prog. Retin. Eye Res., 2013, 36, 260-280.
[115]
Haskins, K.; Bradley, B.; Powers, K.; Fadok, V.; Flores, S.; Ling, X.; Pugazhenthi, S.; Reusch, J.; Kench, J. Oxidative stress in type 1 diabetes. Ann. N. Y. Acad. Sci., 2003, 1005, 43-54.
[116]
Baynes, J.W.; Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes, 1999, 48, 1-9.
[117]
Kowluru, R.A.; Mishra, M. Oxidative stress, mitochondrial damage and diabetic retinopathy. BBA- Mol. Basis. Dis., 2015, 1852(11), 2474-2483.
[118]
Kowluru, R.A.; Tang, J.; Kern, T.S. Abnormalities of retinal metabolism in diabetes and experimental galactosemia: VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes, 2001, 50(8), 1938-1942.
[119]
Candas, D.; Li, J.J. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid. Redox Signal., 2014, 20(10), 1599-1617.
[120]
Kowluru, R.A.; Chan, P.S. Oxidative stress and diabetic retinopathy. Exp. Diabetes Res., 2007, 2007, 43603.
[121]
Haskins, K.; Bradley, B.; Powers, K.; Fadok, V.; Flores, S.; Ling, X.; Pugazhenthi, S.; Reusch, J.; Kench, J. Oxidative stress in type 1 diabetes. Ann. N. Y. Acad. Sci., 2003, 1005, 43-54.
[122]
Kowluru, R.A.; Abbas, S.N. Diabetes-induced mitochondrial dysfunction in the retina. Invest. Ophthalmol. Vis. Sci., 2003, 44, 5327-5323.
[123]
Du, Y.; Miller, C.M.; Kern, T.S. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic. Biol. Med., 2003, 5, 1491-1499.
[124]
Cui, Y.; Xu, X.; Bi, H.; Zhu, Q.; Wu, J.; Xia, X.; Ren, Q.; Ho, P.C. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp. Eye Res., 2006, 83, 807-816.
[125]
Ellis, E.A.; Guberski, D.L.; Somogyi-Mann, M.; Grant, M.B. Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/WOR diabetic rat. Free Radic. Biol. Med., 2000, 28, 91-101.
[126]
Yokoi, M.; Yamagishi, S.I.; Takeuchi, M.; Ohgami, K.; Okamoto, T.; Saito, W.; Muramatsu, M.; Imaizumi, T.; Ohno, S. Elevations of AGE and vascular endothelial growth factor with decreased total antioxidant status in the vitreous fluid of diabetic patients with retinopathy. Br. J. Ophthalmol., 2005, 89, 673-675.
[127]
Mancino, R.; Di Pierro, D.; Varesi, C.; Cerulli, A.; Feraco, A.; Cedrone, C.; Pinazo-Duran, M.D.; Coletta, M.; Nucci, C. Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol. Vis., 2011, 17, 1298.
[128]
Izuta, H.; Matsunaga, N.; Shimazawa, M.; Sugiyama, T.; Ikeda, T.; Hara, H. Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress, and VEGF in the vitreous body. Mol. Vis., 2010, 16, 130.
[129]
Handelman, G.J.; Dratz, E.A.; Reay, C.C.; Van Kuijk, J.G. Carotenoids in the human macula and whole retina. Invest. Ophthalmol. Vis. Sci., 1988, 29, 850-855.
[130]
Bone, R.A.; Landrum, J.T.; Friedes, L.M.; Gomez, C.M.; Kilburn, M.D.; Menendez, E.; Vidal, I.; Wang, W. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res., 1997, 64, 211-218.
[131]
Bernstein, P.S.; Khachik, F.; Carvalho, L.S.; Muir, G.J.; Zhao, D.Y.; Katz, N.B. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp. Eye Res., 2001, 72(3), 215-223.
[132]
Coyne, T.; Ibiebele, T.I.; Baade, P.D.; Dobson, A.; McClintock, C.; Dunn, S.; Leonard, D.; Shaw, J. Diabetes mellitus and serum carotenoids: Findings of a population-based study in Queensland. Australia. Am. J. Clin. Nutr., 2005, 82, 685-693.
[133]
Hu, B.J.; Hu, Y.N.; Lin, S.; Ma, W.J.; Li, X.R. Application of lutein and zeaxanthin in nonproliferative diabetic retinopathy. Int. J. Ophthalmol., 2011, 4, 303.
[134]
Sahajpal, N.S.; Vig, V.; Singh, P.; Singh, R.; Jain, S. The deranged vitreous biochemistry in diabetic retinopathy: Prabable diagnostic, prognostic and therapeutic targets. Invest. Ophthalmol. Vis. Sci., 2017, 58(8), 5211.
[135]
Cutler, R.G. Oxidative stress profiling: Part I. Its potential importance in the optimization of human health. Ann. N. Y. Acad. Sci., 2005, 1055(1), 93-135.
[136]
Finkel, T. Intracellular redox regulation by the family of small GTPases. Antioxid. Redox Signal., 2006, 8(9-10), 1857-1863.
[137]
Kowluru, R.A.; Kowluru, A.; Chakrabarti, S.; Khan, Z. Potential contributory role of H-Ras, a small G-protein, in the development of retinopathy in diabetic rats. Diabetes, 2004, 53(3), 775-783.
[138]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414, 813-820.
[139]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[140]
Kanwar, M.; Chan, P.S.; Kern, T.S.; Kowluru, R.A. Oxidative damage in the retinal mitochondria of diabetic mice: Possible protection by superoxide dismutase. Invest. Ophthalmol. Vis. Sci., 2007, 48(8), 3805-3811.
[141]
Kowluru, R.A.; Atasi, L.; Ho, Y.S. Role of mitochon- drial superoxide dismutase in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2006, 47(4), 1594-1599.
[142]
Kowluru, R.A.; Abbas, S.N. Diabetes-induced mitochondrial dysfunction in the retina. Invest. Ophthalmol. Vis. Sci., 2003, 44(12), 5327-5334.
[143]
Kowluru, R.A.; Abbas, S.N.; Odenbach, S. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J. Diabetes Complications, 2004, 18(5), 282-288.
[144]
Kowluru, R.A.; Koppolu, P.; Chakrabarti, S.; Chen, S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic. Res., 2003, 37(11), 1169-1180.
[145]
Kowluru, R.A.; Koppolu, P. Diabetes-induced activation of caspase-3 in retina: Effect of antioxidant therapy. Free Radic. Res., 2002, 36(9), 993-999.
[146]
Du, X.; Stockklauser-Farber, K.; Rosen, P. Generation of reactive oxygen intermediates, activation of NF-κB, and induction of apoptosis in human endothelial cells by glucose: Role of nitric oxide synthase? Free Radic. Res., 1999, 27, 752-763.
[147]
Romeo, G.; Liu, W.H.; Asnaghi, V.; Kern, T.S.M.; Lorenzi, M. Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes, 2002, 51(7), 2241-2248.
[148]
Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Am. J. Physiol. Cell Physiol., 1996, 271, 1424-1437.
[149]
Behar-Cohen, F.F.; Heydolph, S.; Faure, V.; Droy-Lefaix, M.T.; Courtois, Y.; Goureau, O. Peroxynitrite cytotoxicity on bovine retinal pigmented epithelial cells in culture. Biochem. Biophys. Res. Commun., 1996, 226, 842-849.
[150]
Radi, R.; Cassina, A.; Hodara, R.; Quijano, C.; Castro, L. Peroxynitrite reactions and formation in mitochondria. Free Radic. Res., 2002, 33, 1451-1464.
[151]
Kowluru, R.A.; Tang, J.; Kern, T.S. Abnormalities of retinal metabolism in diabetes and experimental galactosemia: VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes, 2001, 50(8), 1938-1942.
[152]
El-Asrar, A.M.; Desmet, S.; Meersschaert, A.; Dralands, L.; Missotten, L.; Geboes, K. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am. J. Ophthalmol., 2001, 132(4), 551-556.
[153]
Kowluru, R.A.; Engerman, R.L.; Case, G.L.; Kern, T.S. Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int., 2001, 38(5), 385-390.
[154]
Zheng, L.; Du, Y.; Miller, C.; Gubitosi-Klug, R.A.; Kern, T.S.; Ball, S.; Berkowitz, B.A. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia, 2007, 50(9), 1987-1996.
[155]
Kern, T.S.; Miller, C.M.; Du, Y.; Zheng, L.; Mohr, S.; Ball, S.L.; Kim, M.; Jamison, J.A.; Bingaman, D.P. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes, 2007, 56(2), 373-379.
[156]
Le, L.M.; Poulaki, V.; Koizumi, K.; Fauser, S.; Kirchhof, B.; Joussen, A.M. Reduced histopathological alterations in long-term diabetic TNF-R deficient mice. Invest. Ophthalmol. Vis. Sci., 2003, 44(13), 3894.
[157]
Bry, M.; Kivelä, R.; Leppänen, V.M.; Alitalo, K. Vascular endothelial growth factor-B in physiology and disease. Physiol. Rev., 2014, 94(3), 779-794.
[158]
Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; Nguyen, H.V. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med., 1994, 331(22), 1480-1487.
[159]
Simó, R.; Sundstrom, J.M.; Antonetti, D.A. Ocular anti-VEGF therapy for diabetic retinopathy: The role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care, 2014, 37(4), 893-899.
[160]
Adamis, A.P.; Miller, J.W.; Bernal, M.T.; D’Amico, D.J.; Folkman, J.; Yeo, T.K.; Yeo, K.T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol., 1994, 118, 445-450.
[161]
Malecaze, F.; Clamens, S.; Simorre-Pinatel, V.; Mathis, A.; Chollet, P.; Favard, C.; Bayard, F.; Plouet, J. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch. Ophthalmol., 1994, 112, 1476-1482.
[162]
Perrin, R.M.; Konopatskaya, O.; Qiu, Y.; Harper, S.; Bates, D.O.; Churchill, A.J. Diabetic retinopathy is associated with a switch in splicing from anti-to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia, 2005, 48(11), 2422-2427.
[163]
Grigsby, J.G.; Allen, D.M.; Ferrigno, A.S.; Vellanki, S.; Pouw, C.E.; Hejny, W.A.; Tsin, A.T.C. Autocrine and paracrine secretion of vascular endothelial growth factor in the pre-hypoxic diabetic retina. Curr. Diabetes Rev., 2017, 13(2), 161-174.
[164]
Osaadon, P.; Fagan, X.J.; Lifshitz, T.; Levy, J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye , 2014, 28(5), 510.
[165]
Semeraro, F.; Cancarini, A.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic retinopathy: Vascular and inflammatory disease. J. Diabetes Res., 2015, 2015, 582060.
[166]
Granger, D.N.; Senchenkova, E. Inflammation and the microcirculation. Chapter 6angiogenesis; San Rafael, CA: Morgan & Claypool Life Sciences, 2010.
[167]
Lingen, M.W. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch. Pathol. Lab. Med., 2001, 125, 67-71.
[168]
Naldini, A.; Carraro, F. Role of inflammatory mediators in angiogenesis. Curr. Drug Targets Inflamm. Allergy, 2005, 4, 3-8.
[169]
Tsai, T.; Kuehn, S.; Tsiampalis, N.; Vu, M.K.; Kakkassery, V.; Stute, G.; Dick, H.B.; Joachim, S.C. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS One, 2018, 13(3), e0194603.
[170]
Yu, Y.; Zhang, J.; Zhu, R.; Zhao, R.; Chen, J.; Jin, J.; Tian, Y.; Su, S.B. The profile of angiogenic factors in vitreous humor of the patients with proliferative diabetic retinopathy. Curr. Mol. Med., 2017, 17(4), 280-286.
[171]
El-Asrar, A.M.; Ahmed, M.; Ahmad, A.; Alam, K.; Bittoun, E.; Siddiquei, M.M.; Mohammad, G.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Association of 150‐kDa oxygen‐regulated protein with vascular endothelial growth factor in proliferative diabetic retinopathy. Acta Ophthalmol., 2017. [Epub ahead of print].
[172]
Yoshida, S.; Kobayashi, Y.; Nakao, S.; Sassa, Y.; Hisatomi, T.; Ikeda, Y.; Oshima, Y.; Kono, T.; Ishibashi, T.; Sonoda, K.H. Differential association of elevated inflammatory cytokines with postoperative fibrous proliferation and neovascularization after unsuccessful vitrectomy in eyes with proliferative diabetic retinopathy. Clin. Ophthalmol., 2017, 11, 1697.
[173]
Kimura, K.; Orita, T.; Kobayashi, Y.; Matsuyama, S.; Fujimoto, K.; Yamauchi, K. Concentration of acute phase factors in vitreous fluid in diabetic macular edema. Jpn. J. Ophthalmol., 2017, 61(6), 479-483.
[174]
El-Asrar, A.M.; Struyf, S.; Mohammad, G.; Gouwy, M.; Rytinx, P.; Siddiquei, M.M.; Hernández, C.; Alam, K.; Mousa, A.; De Hertogh, G.; Opdenakker, G. Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2017, 58(7), 3189-3201.
[175]
Gomaa, A.R.; Elsayed, E.T.; Moftah, R.F. MicroRNA-200b expression in the vitreous humor of patients with proliferative diabetic retinopathy. Ophthalmic Res., 2017, 58(3), 168-175.
[176]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107, 1058-1070.