[1]
Mao, Q. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J., 2005, 7, E118-E133.
[2]
Taipalensuu, J.; Tornblon, H.; Lindberg, G.; Einarsson, C.; Sjoqvist, F.; Melhus, H.; Garberg, P.; Sjostrom, B.; Lundgren, B.; Artursson, P. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial CaCo-2 cell monolayers. J. Pharmacol. Exp. Ther., 2001, 299, 164-170.
[3]
Jonker, J.W.; Smit, J.W.; Brinkhuis, R.F.; Maliepaard, M.; Beijnen, J.H.; Schellens, J.H.; Schinkel, A.H. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl. Cancer Inst., 2000, 92, 1651-1656.
[4]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96, 67-202.
[5]
Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145, 187-196.
[6]
Chen, Y.H.; Yang, Z.S.; Wen, C.C.; Chang, Y.S.; Wang, B.C.; Hsiao, C.A.; Shih, T.L. Evaluation of the structure-activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem., 2012, 134, 717-724.
[7]
Gresa‐Arribas, N.; Serratosa, J.; Saura, J.; Solà, C. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti‐inflammatory and neuroprotective effects. J. Neurochem., 2010, 115, 526-536.
[8]
Yamamoto, Y. Effects of dietary chrysin supplementation on blood pressure and oxidative status of rats fed a high-fat high-sucrose diet. Food Sci. Technol. Res., 2014, 20, 295-300.
[9]
Samarghandian, S.; Azimin-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in streptozotocin-induced diabetic rat. Can. J. Physiol. Pharmacol., 2016, 94, 388-393.
[10]
Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci., 2010, 11, 2188-2199.
[11]
Zhang, S.; Yang, X.; Morris, M.E. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol., 2004, 65, 1208-1216.
[12]
Zhang, S.; Wang, X.; Sagawa, K.; Morris, M.E. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab. Dispos., 2005, 33, 341-348.
[13]
Walle, T.; Otake, Y.; Brubaker, J.A.; Walle, U.K.; Halushka, P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol., 2001, 51, 143-146.
[14]
Zhou, L.; Zhang, P.; Yang, G.; Lin, R.; Wang, W.; Liu, T.; Zhang, L.; Zhang, J. solubility of chrysin in ethanol and water mixtures. J. Chem. Eng. Data, 2014, 59, 2215-2220.
[15]
Kwon, Y.E.; Kim, H.M.; Park, S.Y.; Jung, S.H. Enhancement of solubility and antioxidant activity of some flavonoids based on the inclusion complexation with sulfobutylether β-cyclodextrin. Bull. Korean Chem. Soc., 2010, 31, 3035-3037.
[16]
Sassa-Deepaeng, T.; Pikulkaew, S.; Okonogi, S. Development of chrysin loaded poloxamer micelles and toxicity evaluation in fish embryos. Drug Discov. Ther., 2016, 10, 150-155.
[17]
Castro, G.T.; Ferretti, F.H.; Blanco, S.E. Determination of the overlapping pK(a) values of chrysin using UV-vis spectroscopy and ab initio methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62, 657-665.
[18]
Nguyen, M.N.U.; Vo, T.V.; Tran, P.H.L.; Tran, T.T.D. Zein-based solid dispersion for potential application in targeted delivery. J. Pharm. Investig., 2017, 47, 357-364.
[19]
Singh, J.; Walia, M.; Harikumar, S. Solubility enhancement by solid dispersion method: A review. J. Durg Deliv. Sci. Technol., 2013, 3, 148-155.
[20]
Yamashita, S.; Fukunishi, A.; Higashino, H.; Kataoka, M.; Wada, K. Design of supersaturable formulation of telmisartan with pH modifier: In vitro study on dissolution and precipitation. J. Pharm. Investig., 2017, 47, 163-171.
[21]
Vo, C.L.N.; Park, C.; Lee, B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2013, 85, 799-813.
[22]
Liu, X.; Feng, X.; Williams, III , R.O.; Zhang, F. Characterization of amorphous solid dispersions. J. Pharm. Investig., 2018, 48, 19-41.
[23]
Ziaee, A.; Albadarin, A.B.; Padrela, L.; Faucher, A.; O’Reilly, E.; Walker, G. Spray drying ternary amorphous solid dispersions of ibuprofen - An investigation into critical formulation and processing parameters. Eur. J. Pharm. Biopharm., 2017, 120, 43-51.
[24]
Hwang, I.; Kang, C-Y.; Park, J-B. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J. Pharm. Investig., 2017, 47, 123-132.
[25]
Prasad, D.; Chauhan, H.; Atef, E. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects. J. Pharm. Sci., 2014, 103, 3511-3523.
[26]
Seo, S.W.; Han, H.K.; Chun, M.K.; Choi, H.K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int. J. Pharm., 2012, 424, 18-25.
[27]
Karata, A.; Yuksel, N.; Baykara, T. Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco, 2005, 60, 777-782.
[28]
Yang, L.; Shao, Y.; Han, H.K. Improved pH-dependent drug release and oral exposure of telmisartan, a poorly soluble drug through the formation of drug-aminoclay complex. Int. J. Pharm., 2014, 471, 258-263.
[29]
Edwards, D.A.; Luthy, R.G.; Liu, Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol., 1991, 25, 127-133.
[30]
Jafvert, C.T.; Van Hoof, P.L.; Heath, J.K. Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Res., 1994, 28, 1009-1017.
[31]
Yamagata, T.; Kusuhara, H.; Morishita, M.; Takayama, K.; Benameur, H.; Sugiyama, Y. Effect of excipients on breast cancer resistance protein substrate uptake activity. J. Control. Release, 2007, 124, 1-5.
[32]
Datta, K.K.R. Achari, A.; Eswaramoorthy, M. Aminoclay: A functional layered material with multifaceted applications. J. Mater. Chem. A., 2013, 1, 6707-6718.
[33]
Kim, I.S.; Park, J-S.; Kim, K-W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem., 2001, 16, 1419-1428.
[34]
Chadha, R.; Bhalla, Y.; Nandan, A.; Chadha, K.; Karan, M. Chrysin cocrystals: Characterization and evaluation. J. Pharm. Biomed. Anal., 2017, 134, 361-371.
[35]
Platzer, P.; Schaden, S.; Thalhammer, T.; Hamilton, G.; Rosenberg, B.; Silgoner, I.; Jager, W. Biotransformation of topotecan in the isolated perfused rat liver: Identification of three novel metabolites. Anticancer Res., 1998, 18, 2695-2700.
[36]
Kruijtzer, C.M.F.; Beijnen, J.H.; Rosing, H.; ten Bokkel Huinink, W.W.; Schot, M.; Jewell, R.C.; Paul, E.M.; Schellens, J.H.M. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-Glycoprotein inhibitor GF120918. J. Clin. Oncol., 2002, 20, 2943-2950.