[1]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[2]
Hancock, R.E.W.; Speert, D.P. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist. Updat., 2000, 3(4), 247-255.
[3]
Livermore, D.M. Radiolabelling of penicillin-binding proteins(PBPs) in intact Pseudomonas aeruginosa cells: Consequences of β-lactamase activity by pbp-5. J. Antimicrob. Chemother., 1987, 19(6), 733-742.
[4]
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, 67(4), 593-656.
[5]
Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis., 2002, 34(5), 634-640.
[6]
Strateva, T.; Yordanov, D. Pseudomonas aeruginosa - A phenomenon of bacterial resistance. J. Med. Microbiol., 2009, 58(9), 1133-1148.
[7]
Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev., 2009, 22(4), 582-610.
[8]
Lee, J-Y.; Na, I.Y.; Park, Y.K.; Ko, K.S. Genomic variations between colistin-susceptible and -resistant Pseudomonas aeruginosa clinical isolates and their effects on colistin resistance. J. Antimicrob. Chemother., 2014, 69(5), 1248-1256.
[9]
Olaitan, A.O.; Morand, S.; Rolain, J-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol., 2014, 5(NOV), 643.
[10]
El Amin, N.; Giske, C.G.; Jalal, S.; Keijser, B.; Kronvall, G.; Wretlind, B. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: Alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS, 2005, 113(3), 187-196.
[11]
Li, X-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev., 2015, 28(2), 337-418.
[12]
Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents, 2015, 45(6), 568-585.
[13]
Empel, J.; Filczak, K.; Mrówka, A.; Hryniewicz, W.; Livermore, D.M.; Gniadkowski, M. Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum β-lactamase in Warsaw, Poland: Further evidence for an international clonal complex. J. Clin. Microbiol., 2007, 45(9), 2829-2834.
[14]
Poole, K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2005, 49(2), 479-487.
[15]
Kos, V.N.; Déraspe, M.; McLaughlin, R.E.; Whiteaker, J.D.; Roy, P.H.; Alm, R.A.; Corbeil, J.; Gardner, H. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob. Agents Chemother., 2015, 59(1), 427-436.
[16]
Wolter, D.J.; Hanson, N.D.; Lister, P.D. AmpC and OprD are not involved in the mechanism of imipenem hypersusceptibility among Pseudomonas aeruginosa isolates overexpressing the mexCD-oprJ efflux pump. Antimicrob. Agents Chemother., 2005, 49(11), 4763-4766.
[17]
Henriques Normark, B.; Normark, S. Evolution and spread of antibiotic resistance. J. Intern. Med., 2002, 252(2), 91-106.
[18]
Trafny, E.A. Powstawanie biofilmu Pseudomonas aeruginosa i jego znaczenie w patogenezie zakazen przewleklych. Postepy Mikrobiol., 2000, 39(1), 55-71.
[19]
Wolcott, R.; Costerton, J.W.; Raoult, D.; Cutler, S.J. The polymicrobial nature of biofilm infection. Clin. Microbiol. Infect., 2013, 19(2), 107-112.
[20]
Kipnis, E.; Sawa, T.; Wiener-Kronish, J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Medecine et Maladies Infectieuses., 2006, 78-91.
[21]
Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis., 1998, 4(4), 551-560.
[22]
Lee, V.T.; Smith, R.S.; Tümmler, B.; Lory, S. Activities of Pseudomonas aeruginosa effectors secreted by the type III secretion system in vitro and during infection. Infect. Immun., 2005, 73(3), 1695-1705.
[23]
Visca, P.; Imperi, F.; Lamont, I.L. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol., 2007, 15(1), 22-30.
[24]
Bixler, G.D.; Bhushan, B. Biofouling: Lessons from nature. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2012, 370(1967), 2381-2417.
[25]
Roberts, A.E.L.; Kragh, K.N.; Bjarnsholt, T.; Diggle, S.P. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J. Mol. Biol., 2015, 427(23), 3646-3661.
[26]
Bjarnsholt, T.; Jensen, P.Ø.; Fiandaca, M.J.; Pedersen, J.; Hansen, C.R.; Andersen, C.B.; Pressler, T.; Givskov, M.; Høiby, N. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol., 2009, 44(6), 547-558.
[27]
Kirisits, M.J.; Prost, L.; Starkey, M.; Parsek, M.R. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol., 2005, 71(8), 4809-4821.
[28]
Drenkard, E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect., 2003, 5(13), 1213-1219.
[29]
Gillis, R.J.; White, K.G.; Choi, K-H.; Wagner, V.E.; Schweizer, H.P.; Iglewski, B.H. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2005, 49(9), 3858-3867.
[30]
Prakash, B.; Veeregowda, B.M.; Krishnappa, G. Biofilms: A survival strategy of bacteria. Curr. Sci., 2003, 85(9), 1299-1307.
[31]
Spoering, A.L.; Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol., 2001, 183(23), 6746-6751.
[32]
Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2014, 6(1), 26-41.
[33]
Alhazmi, A. Pseudomonas aeruginosa - Pathogenesis and Pathogenic Mechanisms. Int. J. Biol., 2015, 7(2)
[34]
Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol., 2017, 7(39)
[35]
Sauer, K.; Camper, A.K.; Ehrlich, G.D.; Costerton, J.W.; Davies, D.G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol., 2002, 184(4), 1140-1154.
[36]
Adamo, R.; Sokol, S.; Soong, G.; Gomez, M.I.; Prince, A. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am. J. Respir. Cell Mol. Biol., 2004, 30(5), 627-634.
[37]
Arora, S.K.; Ritchings, B.W.; Almira, E.C.; Lory, S.; Ramphal, R. The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect. Immun., 1998, 66(3), 1000-1007.
[38]
Mattick, J.S. Type IV pili and twitching motility. Annu. Rev. Microbiol., 2002, 56(1), 289-314.
[39]
Semmler, A.B.T.; Whitchurch, C.B.; Mattick, J.S. A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology, 1999, 145(10), 2863-2873.
[40]
Rocchetta, H.L.; Burrows, L.L.; Lam, J.S. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev., 1999, 63(3), 523-553.
[41]
Makin, S.A.; Beveridge, T.J. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology, 1996, 142(2), 299-307.
[42]
Hall, S.; McDermott, C.; Anoopkumar-Dukie, S.; McFarland, A.J.; Forbes, A.; Perkins, A.V.; Davey, A.K.; Chess-Williams, R.; Kiefel, M.J.; Arora, D.; Grant, G.D. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins (Basel), 2016, 8(8), 1-14.
[43]
Schalk, I.J.; Guillon, L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: Implications for metal homeostasis. Environ. Microbiol., 2013, 15(6), 1661-1673.
[44]
Musk, D.J.; Banko, D.A.; Hergenrother, P.J. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol., 2005, 12(7), 789-796.
[45]
Lee, V.T.; Schneewind, O. Protein secretion and the pathogenesis of bacterial infections. Genes Dev., 2001, 15(14), 1725-1752.
[46]
Korotkov, K.V.; Sandkvist, M.; Hol, W.G.J. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol., 2012, 10(5), 336-351.
[47]
Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol., 2010, 8(9), 623-633.
[48]
Jain, S.; Ohman, D.E. Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect. Immun., 2005, 73(10), 6429-6436.
[49]
Mikkelsen, H.; Sivaneson, M.; Filloux, A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol., 2011, 13(7), 1666-1681.
[50]
Xu, K.D.; Stewart, P.S.; Xia, F.; Huang, C.T.; McFeters, G.A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol., 1998, 64(10), 4035-4039.
[51]
Zhang, L.; Hinz, A.J.; Nadeau, J.P.; Mah, T.F. Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J. Bacteriol., 2011, 193(19), 5510-5513.
[52]
Alkawash, M.A.; Soothill, J.S.; Schiller, N.L. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS, 2006, 114(2), 131-138.
[53]
Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol., 2016, 17(7), 451-459.
[54]
Smith, D.; Španěl, P.; Gilchrist, F.J.; Lenney, W. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection. J. Breath Res., 2013, 7(4)044001
[55]
Gilchrist, F.J.; Sims, H.; Alcock, A.; Belcher, J.; Jones, A.M.; Smith, D.; Španĕl, P.; Webb, A.K.; Lenney, W. Quantification of hydrogen cyanide and 2-aminoacetophenone in the headspace of Pseudomonas aeruginosa cultured under biofilm and planktonic conditions. Anal. Methods, 2012, 4(11), 3661.
[56]
Gilchrist, F.J.; Španěl, P.; Smith, D.; Lenney, W. The in vitro identification and quantification of volatile biomarkers released by cystic fibrosis pathogens. Anal. Methods, 2015, 7(3), 818-824.
[57]
Chua, S.L.; Hultqvist, L.D.; Yuan, M.; Rybtke, M.; Nielsen, T.E.; Givskov, M.; Tolker-Nielsen, T.; Yang, L. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat. Protoc., 2015, 10(8), 1165-1180.
[58]
Lambert, P.A. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. R. Soc. Med., 2002, 95Suppl 4. (Suppl 41), 22-26.
[59]
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Olson, M.V. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000, 406(6799), 959-964.
[60]
Balasubramanian, D.; Schneper, L.; Kumari, H.; Mathee, K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res., 2013, 41(1), 1-20.
[62]
Petrova, O.E.; Schurr, J.R.; Schurr, M.J.; Sauer, K. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol. Microbiol., 2011, 81(3), 767-783.
[63]
Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem., 2000, 69, 183-215.
[64]
Willett, J.W.; Crosson, S. Atypical modes of bacterial histidine kinase signaling. Mol. Microbiol., 2017, 103(2), 197-202.
[65]
Rodrigue, A.; Quentin, Y.; Lazdunski, A.; Méjean, V.; Foglino, M. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol., 2000, 8(11), 498-504.
[66]
Vallet, I.; Olson, J.W.; Lory, S.; Lazdunski, A.; Filloux, A. The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters(cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA, 2001, 98(12), 6911-6916.
[67]
Sivaneson, M.; Mikkelsen, H.; Ventre, I.; Bordi, C.; Filloux, A. Two-component regulatory systems in Pseudomonas aeruginosa: An intricate network mediating fimbrial and efflux pump gene expression. Mol. Microbiol., 2011, 79(5), 1353-1366.
[68]
Mikkelsen, H.; Ball, G.; Giraud, C.; Filloux, A. Expression of Pseudomonas aeruginosa cupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS One, 2009, 4(6)e6018
[69]
Kulasekara, H.D.; Ventre, I.; Kulasekara, B.R.; Lazdunski, A.; Filloux, A.; Lory, S. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol., 2005, 55(2), 368-380.
[70]
Gallagher, L.A.; Manoil, C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol., 2001, 183(21), 6207-6214.
[71]
O’Toole, G.A.; Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 1998, 30(2), 295-304.
[72]
Hobbs, M.; Collie, E.S.R.; Free, P.D.; Livingston, S.P.; Mattick, J.S. PilS and PilR, a two‐component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol., 1993, 7(5), 669-682.
[73]
Whitchurch, C.B.; Alm, R.A.; Mattick, J.S. The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9839-9843.
[74]
Borlee, B.R.; Goldman, A.D.; Murakami, K.; Samudrala, R.; Wozniak, D.J.; Parsek, M.R. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol., 2010, 75(4), 827-842.
[75]
Ma, S.; Wozniak, D.J.; Ohman, D.E. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator AlgB. J. Biol. Chem., 1997, 272(29), 17952-17960.
[76]
Moscoso, J.A.; Mikkelsen, H.; Heeb, S.; Williams, P.; Filloux, A. The Pseudomonas aeruginosa sensor RetS switches Type III and Type VI secretion via c-di-GMP signalling. Environ. Microbiol., 2011, 13(12), 3128-3138.
[77]
Goodman, A.L.; Merighi, M.; Hyodo, M.; Ventre, I.; Filloux, A.; Lory, S. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev., 2009, 23(2), 249-259.
[78]
Ventre, I.; Goodman, A.L.; Vallet-Gely, I.; Vasseur, P.; Soscia, C.; Molin, S.; Bleves, S.; Lazdunski, A.; Lory, S.; Filloux, A. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl. Acad. Sci. USA, 2006, 103(1), 171-176.
[79]
Valentini, M.; Filloux, A. Biofilms and Cyclic di-GMP(c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem., 2016, 291(24), 12547-12555.
[80]
Petrova, O.E.; Sauer, K. SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J. Bacteriol., 2011, 193(23), 6614-6628.
[81]
Jenal, U.; Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet., 2006, 40(1), 385-407.
[82]
Hay, I.D.; Remminghorst, U.; Rehm, B.H.A. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl. Environ. Microbiol., 2009, 75(4), 1110-1120.
[83]
Chou, S.H.; Galperin, M.Y. Diversity of cyclic di-GMP-binding proteins and mechanisms. J. Bacteriol., 2016, 198(1), 32-46.
[84]
Hengge, R. Cyclic-di-GMP reaches out into the bacterial RNA world. Sci. Signal., 2010, 3(149), pe44.
[85]
Li, Z.; Chen, J.H.; Hao, Y.; Nair, S.K. Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1. J. Biol. Chem., 2012, 287(36), 30191-30204.
[86]
Whitney, J.C.; Colvin, K.M.; Marmont, L.S.; Robinson, H.; Parsek, M.R.; Howell, P.L. Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa. J. Biol. Chem., 2012, 287(28), 23582-23593.
[87]
Romling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger. Microbiol. Mol. Biol. Rev., 2013, 77(1), 1-52.
[88]
Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol., 2009, 7(4), 263-273.
[89]
Huangyutitham, V.; Güvener, Z.T.; Harwood, C.S. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. MBio, 2013, 4(3), e00242-e13.
[90]
O’Toole, G.A. How Pseudomonas aeruginosa regulates surface behaviors at surfaces, these bacteria either form biofilms or swarm, a regulated behavior with important consequences for pathogenesis. Microbe, 2008, 3(2), 65-71.
[91]
Moscoso, J.A.; Jaeger, T.; Valentini, M.; Hui, K.; Jenal, U.; Filloux, A. The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. J. Bacteriol., 2014, 196(23), 4081-4088.
[92]
Mowat, E.; Paterson, S.; Fothergill, J.L.; Wright, E.A.; Ledson, M.J.; Walshaw, M.J.; Brockhurst, M.A.; Winstanley, C. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am. J. Respir. Crit. Care Med., 2011, 183(12), 1674-1679.
[93]
Malone, J.G.; Jaeger, T.; Spangler, C.; Ritz, D.; Spang, A.; Arrieumerlou, C.; Kaever, V.; Landmann, R.; Jenal, U. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog., 2010, 6(3)e1000804
[94]
Drenkard, E.; Ausubel, F.M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 2002, 416(6882), 740-743.
[95]
Hickman, J.W.; Tifrea, D.F.; Harwood, C.S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14422-14427.
[96]
Merighi, M.; Lee, V.T.; Hyodo, M.; Hayakawa, Y.; Lory, S. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol., 2007, 65(4), 876-895.
[97]
Baraquet, C.; Harwood, C.S. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc. Natl. Acad. Sci. USA, 2013, 110(46), 18478-18483.
[98]
Ramelot, T.A.; Yee, A.; Cort, J.R.; Semesi, A.; Arrowsmith, C.H.; Kennedy, M.A. NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins Struct. Funct. Bioinforma., 2006, 66(2), 266-271.
[99]
Chambers, J.R.; Liao, J.; Schurr, M.J.; Sauer, K. BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol. Microbiol., 2014, 92(3), 471-487.
[100]
Imada, K.; Minamino, T.; Tahara, A.; Namba, K. Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc. Natl. Acad. Sci. USA, 2007, 104(2), 485-490.
[101]
Lin, C.T.; Huang, Y.J.; Chu, P.H.; Hsu, J.L.; Huang, C.H.; Peng, H.L. Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1. Res. Microbiol., 2006, 157(2), 169-175.
[102]
Mern, D.S.; Ha, S.W.; Khodaverdi, V.; Gliese, N.; Gorisch, H. A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators. Microbiology, 2010, 156(5), 1505-1516.
[103]
Li, K.; Yang, G.; Debru, A.B.; Li, P.; Zong, L.; Li, P.; Xu, T.; Wu, W.; Jin, S.; Bao, Q. SuhB regulates the motile-sessile switch in Pseudomonas aeruginosa through the Gac/Rsm pathway and c-di-GMP signaling. Front. Microbiol., 2017, 8, 1045.
[104]
Shi, J.; Jin, Y.; Bian, T.; Li, K.; Sun, Z.; Cheng, Z.; Jin, S.; Wu, W. SuhB is a novel ribosome associated protein that regulates expression of MexXY by modulating ribosome stalling in Pseudomonas aeruginosa. Mol. Microbiol., 2015, 98(2), 370-383.
[105]
Whitchurch, C.B.; Tolker-Nielsen, T.; Ragas, P.C.; Mattick, J.S. Extracellular DNA required for bacterial biofilm formation. Science, 2002, 295(5559), 1487.
[106]
Allesen-Holm, M.; Barken, K.B.; Yang, L.; Klausen, M.; Webb, J.S.; Kjelleberg, S.; Molin, S.; Givskov, M.; Tolker-Nielsen, T. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol., 2006, 59(4), 1114-1128.
[107]
Barken, K.B.; Pamp, S.J.; Yang, L.; Gjermansen, M.; Bertrand, J.J.; Klausen, M.; Givskov, M.; Whitchurch, C.B.; Engel, J.N.; Tolker-Nielsen, T. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ. Microbiol., 2008, 10(9), 2331-2343.
[108]
Mulcahy, H.; Charron-Mazenod, L.; Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog., 2008, 4(11)e1000213
[109]
Rice, S.A.; Tan, C.H.; Mikkelsen, P.J.; Kung, V.; Woo, J.; Tay, M.; Hauser, A.; McDougald, D.; Webb, J.S.; Kjelleberg, S. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J., 2009, 3(3), 271-282.
[110]
Zegans, M.E.; Wagner, J.C.; Cady, K.C.; Murphy, D.M.; Hammond, J.H.; O’Toole, G.A. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol., 2009, 91(1), 210-219.
[111]
Webb, J.S.; Thompson, L.S.; James, S.; Charlton, T.; Tolker-Nielsen, T.; Koch, B.; Givskov, M.; Kjelleberg, S. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 2003, 185(15), 4585-4592.
[112]
Webb, J.S.; Lau, M.; Kjelleberg, S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 2004, 186(23), 8066-8073.
[113]
Ryan, R.P.; Fouhy, Y.; Garcia, B.F.; Watt, S.A.; Niehaus, K.; Yang, L.; Tolker-Nielsen, T.; Dow, J.M. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol., 2008, 68(1), 75-86.
[114]
Tang, J-L.; Liu, Y-N.; Barber, C.E.; Dow, J.M.; Wootton, J.C.; Daniels, M.J. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. MGG Mol. Gen. Genet., 1991, 226(3), 409-417.
[115]
Barber, C.E.; Tang, J.L.; Feng, J.X.; Pan, M.Q.; Wilson, T.J.G.; Slater, H.; Dow, J.M.; Williams, P.; Daniels, M.J. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol., 1997, 24(3), 555-566.
[116]
Boon, C.; Deng, Y.; Wang, L-H.; He, Y.; Xu, J-L.; Fan, Y.; Pan, S.Q.; Zhang, L-H. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J., 2008, 2(1), 27-36.
[117]
Davies, D.G.; Marques, C.N.H. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol., 2009, 191(5), 1393-1403.
[118]
Slater, H.; Alvarez-Morales, A.; Barber, C.E.; Daniels, M.J.; Dow, J.M. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol., 2002, 38(5), 986-1003.
[119]
Amari, D.T.; Marques, C.N.H.; Davies, D.G. The putative enoyl-coenzyme A hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J. Bacteriol., 2013, 195(20), 4600-4610.
[120]
Cohen, D.; Mechold, U.; Nevenzal, H.; Yarmiyhu, Y.; Randall, T.E.; Bay, D.C.; Rich, J.D.; Parsek, M.R.; Kaever, V. … Banin, E. Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2015, 112(36), 11359-11364.
[121]
An, S.; Ryan, R.P. Combating chronic bacterial infections by manipulating cyclic nucleotide-regulated biofilm formation. Future Med. Chem., 2016, 8(9), 949-961.
[122]
Ryan, R.P. Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology, 2013, 159(7), 1286-1297.
[123]
Ryan, R.P.; An, S.; Allan, J.H.; McCarthy, Y.; Dow, J.M. The DSF family of cell-cell signals: An expanding class of bacterial virulence regulators. PLoS Pathog., 2015, 11(7)e1004986
[124]
Coggan, K.A.; Wolfgang, M.C. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr. Issues Mol. Biol., 2012, 14(2), 47-70.
[125]
Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev., 2006, 30(2), 274-291.
[126]
Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density- responsive transcriptional regulators. J. Bacteriol., 1994, 176(2), 269-275.
[127]
Schuster, M.; Greenberg, E.P. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics, 2007, 8, 287.
[128]
Schuster, M.; Lostroh, C.P.; Ogi, T.; Greenberg, E.P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J. Bacteriol., 2003, 185(7), 2066-2079.
[129]
Schuster, M.; Greenberg, E.P. A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol., 2006, 296(2-3), 73-81.
[130]
Wilder, C.N.; Diggle, S.P.; Schuster, M. Cooperation and cheating in Pseudomonas aeruginosa: the roles of the Las, Rhl and Pqs quorum-sensing systems. ISME J., 2011, 5, 1332-1343.
[131]
Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280(5361), 295-298.
[132]
Lee, K.; Yoon, S.S. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J. Microbiol. Biotechnol., 2017, 27(6), 1053-1064.
[133]
Juhas, M.; Eberl, L.; Tümmler, B. Quorum sensing: The power of cooperation in the world of Pseudomonas. Environ. Microbiol., 2005, •••, 459-471.
[134]
Patriquin, G.M.; Banin, E.; Gilmour, C.; Tuchman, R.; Greenberg, E.P.; Poole, K. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J. Bacteriol., 2008, 190(2), 662-671.
[135]
Bjarnsholt, T.; Jensen, P.Ø.; Jakobsen, T.H.; Phipps, R.; Nielsen, A.K.; Rybtke, M.T.; Tolker-Nielsen, T.; Givskov, M.; Høiby, N.; Ciofu, O. Scandinavian Cystic Fibrosis Study Consortium. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One, 2010, 5(4)e10115
[136]
Dusane, D.H.; Zinjarde, S.S.; Venugopalan, V.P.; McLean, R.J.C.; Weber, M.M.; Rahman, P.K.S.M. Quorum sensing: Implications on rhamnolipid biosurfactant production. Biotechnol. Genet. Eng. Rev., 2010, 27(1), 159-184.
[137]
Rampioni, G.; Schuster, M.; Greenberg, E.P.; Bertani, I.; Grasso, M.; Venturi, V.; Zennaro, E.; Leoni, L. RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol. Microbiol., 2007, 66(6), 1557-1565.
[138]
Ledgham, F.; Ventre, I.; Soscia, C.; Foglino, M.; Sturgis, J.N.; Lazdunski, A. Interactions of the quorum sensing regulator QscR: Interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol. Microbiol., 2003, 48(1), 199-210.
[139]
Li, L.L.; Malone, J.E.; Iglewski, B.H. Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J. Bacteriol., 2007, 189(12), 4367-4374.
[140]
Seet, Q.; Zhang, L.H. Anti-activator QslA defines the quorum sensing threshold and response in Pseudomonas aeruginosa. Mol. Microbiol., 2011, 80(4), 951-965.
[141]
Gallagher, L.A.; McKnight, S.L.; Kuznetsova, M.S.; Pesci, E.C.; Manoil, C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol., 2002, 184(23), 6472-6480.
[142]
Schertzer, J.W.; Boulette, M.L.; Whiteley, M. More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol., 2009, 17(5), 189-195.
[143]
Camilli, A.; Bassler, B.L. Bacterial small-molecule signaling pathways. Science, 2006, 311(5764), 1113-1116.
[144]
Yang, L.; Nilsson, M.; Gjermansen, M.; Givskov, M.; Tolker-Nielsen, T. Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol. Microbiol., 2009, 74(6), 1380-1392.
[145]
Pamp, S.J.; Tolker-Nielsen, T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J. Bacteriol., 2007, 189(6), 2531-2539.
[146]
Chugani, S.A.; Whiteley, M.; Lee, K.M.; D’Argenio, D.; Manoil, C.; Greenberg, E.P. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2752-2757.
[147]
Lee, J.; Wu, J.; Deng, Y.; Wang, J.; Wang, C.; Wang, J.; Chang, C.; Dong, Y.; Williams, P.; Zhang, L.H. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol., 2013, 9(5), 339-343.
[148]
Lee, D.G.; Urbach, J.M.; Wu, G.; Liberati, N.T.; Feinbaum, R.L.; Miyata, S.; Diggins, L.T.; He, J.; Saucier, M.; Deziel, E.; Friedman, L.; Li, L.; Montgomery, K.; Kucherlapati, R.; Rahme, L.G. Ausubel, F.M. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol., 2006, 7(10), r90.
[149]
Lequette, Y.; Lee, J.H.; Ledgham, F.; Lazdunski, A.; Greenberg, E.P. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol., 2006, 188(9), 3365-3370.
[150]
Jenul, C.; Sieber, S.; Daeppen, C.; Mathew, A.; Lardi, M.; Pessi, G.; Hoepfner, D.; Neuburger, M.; Linden, A.; Gademann, K.; Eberl, L. Biosynthesis of fragin is controlled by a novel quorum sensing signal. Nat. Commun., 2018, 9(1), 1297.
[151]
Erez, Z.; Steinberger-Levy, I.; Shamir, M.; Doron, S.; Stokar-Avihail, A.; Peleg, Y.; Melamed, S.; Leavitt, A.; Savidor, A.; Albeck, S.; Amitai, G.; Sorek, R. Communication between viruses guides lysis-lysogeny decisions. Nature, 2017, 541(7638), 488-493.
[152]
Dasgupta, N.; Ferrell, E.P.; Kanack, K.J.; West, S.E.H.; Ramphal, R. FleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J. Bacteriol., 2002, 184(19), 5240-5250.
[153]
Martin, D.W.; Schurr, M.J.; Yu, H.; Deretic, V. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: Relationship to sigma E and stress response. J. Bacteriol., 1994, 176(21), 6688-6696.
[154]
Malone, J.G.; Williams, R.; Christen, M.; Jenal, U.; Spiers, A.J.; Rainey, P.B. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology, 2007, 153(4), 980-994.
[155]
Ueda, A.; Wood, T.K. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA(PA3885). PLoS Pathog., 2009, 5(6)e1000483
[156]
Dieppois, G.; Ducret, V.; Caille, O.; Perron, K. The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLoS One, 2012, 7(5), 1-26.
[157]
O’Callaghan, J.; Reen, F.J.; Adams, C.; O’Gara, F. Low oxygen induces the type III secretion system in Pseudomonas aeruginosa via modulation of the small RNAs rsmZ and rsmY. Microbiology, 2011, 157(12), 3417-3428.
[158]
Williams, P.; Cámara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol., 2009, 12(2), 182-191.
[159]
Gupta, K.; Marques, C.N.H.; Petrova, O.E.; Sauer, K. Antimicrobial tolerance of pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid sagS. J. Bacteriol., 2013, 195(21), 4975-4987.