Review Article

针对Nodal和Cripto-1:双潜能治疗癌症生物标志物的观点

卷 26, 期 11, 2019

页: [1994 - 2050] 页: 57

弟呕挨: 10.2174/0929867325666180912104707

价格: $65

摘要

背景:阐明肿瘤发生过程中胚胎信号通路复发的机制已经导致发现了在正常发育过程中具有生理作用但在肿瘤中异常重新激活的癌 - 胎儿运动员。在这种情况下,Nodal和Cripto-1被认为是肿瘤发育因子,它们在正常组织中不存在但在几种实体肿瘤中过表达,在那里它们可以作为治疗诊断剂。 目的:收集,回顾和讨论与Nodal和Cripto-1参与过度表达的几种肿瘤的发展,进展,复发和转移相关的最相关的论文,特别注意它们在癌干细胞(CSC)的相应亚群的表面。 结果:我们收集,合理化并讨论了从大约370篇论文中提取的最有趣的发现,这些论文涉及Cripto-1和Nodal参与所有肿瘤类型的检测。数据证明了Nodal和Cripto-1存在之间的明显联系以及它们在不同肿瘤中的多种致癌活性。我们还回顾并强调了靶向Nodal,Cripto-1及其在肿瘤细胞表面形成的复合物,尤其是CSC的复合物的潜力,作为一种创新方法,用阻断一种或多种机制的分子来检测和抑制肿瘤。他们规范。 结论:总体而言,Nodal和Cripto-1代表了两种创新且有效的生物标志物,用于开发针对正常和CSC亚群的潜在治疗性抗肿瘤药物,并克服药理学耐药性和肿瘤复发。

关键词: Nodal,Cripto-1,生物标志物,肿瘤,CSC,治疗药物。

[1]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[2]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[3]
Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev., 1989, 8(2), 98-101.
[4]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[5]
Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 1997, 3(7), 730-737.
[6]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[7]
Kim, C.F.; Jackson, E.L.; Woolfenden, A.E.; Lawrence, S.; Babar, I.; Vogel, S.; Crowley, D.; Bronson, R.T.; Jacks, T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 2005, 121(6), 823-835.
[8]
Wang, X.; Kruithof-de Julio, M.; Economides, K.D.; Walker, D.; Yu, H.; Halili, M.V.; Hu, Y.P.; Price, S.M.; Abate-Shen, C.; Shen, M.M. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 2009, 461(7263), 495-500.
[9]
O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445(7123), 106-110.
[10]
Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123), 111-115.
[11]
Hermann, P.C.; Huber, S.L.; Herrler, T.; Aicher, A.; Ellwart, J.W.; Guba, M.; Bruns, C.J.; Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007, 1(3), 313-323.
[12]
Malanchi, I.; Peinado, H.; Kassen, D.; Hussenet, T.; Metzger, D.; Chambon, P.; Huber, M.; Hohl, D.; Cano, A.; Birchmeier, W.; Huelsken, J. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature, 2008, 452(7187), 650-653.
[13]
Fang, D.; Nguyen, T.K.; Leishear, K.; Finko, R.; Kulp, A.N.; Hotz, S.; Van Belle, P.A.; Xu, X.; Elder, D.E.; Herlyn, M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res., 2005, 65(20), 9328-9337.
[14]
Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.; Clarke, M.F.; Ailles, L.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 973-978.
[15]
Agliano, A.; Calvo, A.; Box, C. The challenge of targeting cancer stem cells to halt metastasis. Semin. Cancer Biol., 2017, 44, 25-42.
[16]
Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 2015, 16(3), 225-238.
[17]
Adams, J.M.; Strasser, A. Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res., 2008, 68(11), 4018-4021.
[18]
Quail, D.F.; Taylor, M.J.; Postovit, L.M. Microenvironmental regulation of cancer stem cell phenotypes. Curr. Stem Cell Res. Ther., 2012, 7(3), 197-216.
[19]
Yang, J.; Weinberg, R.A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell, 2008, 14(6), 818-829.
[20]
Micalizzi, D.S.; Farabaugh, S.M.; Ford, H.L. Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia, 2010, 15(2), 117-134.
[21]
Kim, Y.; Joo, K.M.; Jin, J.; Nam, D.H. Cancer stem cells and their mechanism of chemo-radiation resistance. Int. J. Stem Cells, 2009, 2(2), 109-114.
[22]
Ayob, A.Z.; Ramasamy, T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci., 2018, 25(1), 20.
[23]
Costa, F.F.; Seftor, E.A.; Bischof, J.M.; Kirschmann, D.A.; Strizzi, L.; Arndt, K. Bonaldo, Mde.F.; Soares, M.B.; Hendrix, M.J. Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment. Epigenomics, 2009, 1(2), 387-398.
[24]
Postovit, L.M.; Seftor, E.A.; Seftor, R.E.; Hendrix, M.J. A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells, 2006, 24(3), 501-505.
[25]
Postovit, L.M.; Costa, F.F.; Bischof, J.M.; Seftor, E.A.; Wen, B.; Seftor, R.E.; Feinberg, A.P.; Soares, M.B.; Hendrix, M.J. The commonality of plasticity underlying multipotent tumor cells and embryonic stem cells. J. Cell. Biochem., 2007, 101(4), 908-917.
[26]
Hendrix, M.J.; Seftor, E.A.; Seftor, R.E.; Kasemeier-Kulesa, J.; Kulesa, P.M.; Postovit, L.M. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer, 2007, 7(4), 246-255.
[27]
Hadjimichael, C.; Chanoumidou, K.; Papadopoulou, N.; Arampatzi, P.; Papamatheakis, J.; Kretsovali, A. Common stemness regulators of embryonic and cancer stem cells. World J. Stem Cells, 2015, 7(9), 1150-1184.
[28]
Kim, W.T.; Ryu, C.J. Cancer stem cell surface markers on normal stem cells. BMB Rep., 2017, 50(6), 285-298.
[29]
Ben-Porath, I.; Thomson, M.W.; Carey, V.J.; Ge, R.; Bell, G.W.; Regev, A.; Weinberg, R.A. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet., 2008, 40(5), 499-507.
[30]
Vallier, L.; Alexander, M.; Pedersen, R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci., 2005, 118(Pt 19), 4495-4509.
[31]
Bertero, A.; Madrigal, P.; Galli, A.; Hubner, N.C.; Moreno, I.; Burks, D.; Brown, S.; Pedersen, R.A.; Gaffney, D.; Mendjan, S.; Pauklin, S.; Vallier, L. Activin/nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes Dev., 2015, 29(7), 702-717.
[32]
James, D.; Levine, A.J.; Besser, D.; Hemmati-Brivanlou, A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005, 132(6), 1273-1282.
[33]
Minchiotti, G. Nodal-dependant Cripto signaling in ES cells: From stem cells to tumor biology. Oncogene, 2005, 24(37), 5668-5675.
[34]
Bianco, C.; Rangel, M.C.; Castro, N.P.; Nagaoka, T.; Rollman, K.; Gonzales, M.; Salomon, D.S. Role of Cripto-1 in stem cell maintenance and malignant progression. Am. J. Pathol., 2010, 177(2), 532-540.
[35]
Bodenstine, T.M.; Chandler, G.S.; Seftor, R.E.; Seftor, E.A.; Hendrix, M.J. Plasticity underlies tumor progression: Role of Nodal signaling. Cancer Metastasis Rev., 2016, 35(1), 21-39.
[36]
Strizzi, L.; Bianco, C.; Normanno, N.; Seno, M.; Wechselberger, C.; Wallace-Jones, B.; Khan, N.I.; Hirota, M.; Sun, Y.; Sanicola, M.; Salomon, D.S. Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J. Cell. Physiol., 2004, 201(2), 266-276.
[37]
de Castro, N.P.; Rangel, M.C.; Nagaoka, T.; Salomon, D.S.; Bianco, C. Cripto-1: An embryonic gene that promotes tumorigenesis. Future Oncol., 2010, 6(7), 1127-1142.
[38]
Lonardo, E.; Parish, C.L.; Ponticelli, S.; Marasco, D.; Ribeiro, D.; Ruvo, M.; De Falco, S.; Arenas, E.; Minchiotti, G. A small synthetic cripto blocking Peptide improves neural induction, dopaminergic differentiation, and functional integration of mouse embryonic stem cells in a rat model of Parkinson’s disease. Stem Cells, 2010, 28(8), 1326-1337.
[39]
Vo, B.T.; Khan, S.A. Expression of nodal and nodal receptors in prostate stem cells and prostate cancer cells: Autocrine effects on cell proliferation and migration. Prostate, 2011, 71(10), 1084-1096.
[40]
Abe, S.; Sasano, H.; Katoh, K.; Ohara, S.; Arikawa, T.; Noguchi, T.; Asaki, S.; Yasui, W.; Tahara, E.; Nagura, H.; Toyota, T. Immunohistochemical studies on EGF family growth factors in normal and ulcerated human gastric mucosa. Dig. Dis. Sci., 1997, 42(6), 1199-1209.
[41]
Watanabe, K.; Meyer, M.J.; Strizzi, L.; Lee, J.M.; Gonzales, M.; Bianco, C.; Nagaoka, T.; Farid, S.S.; Margaryan, N.; Hendrix, M.J.; Vonderhaar, B.K.; Salomon, D.S. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells. Stem Cells, 2010, 28(8), 1303-1314.
[42]
Strizzi, L.; Abbott, D.E.; Salomon, D.S.; Hendrix, M.J. Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma. Cell Cycle, 2008, 7(13), 1931-1935.
[43]
Strizzi, L.; Margaryan, N.V.; Gilgur, A.; Hardy, K.M.; Normanno, N.; Salomon, D.S.; Hendrix, M.J. The significance of a Cripto-1 positive subpopulation of human melanoma cells exhibiting stem cell-like characteristics. Cell Cycle, 2013, 12(9), 1450-1456.
[44]
Miharada, K.; Karlsson, G.; Rehn, M.; Rörby, E.; Siva, K.; Cammenga, J.; Karlsson, S. Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIF-1α in the hypoxic bone marrow niche. Ann. N. Y. Acad. Sci., 2012, 1266, 55-62.
[45]
Mahmoudian, R.A.; Abbaszadegan, M.R.; Forghanifard, M.M.; Moghbeli, M.; Moghbeli, F.; Chamani, J.; Gholamin, M. Biological and Clinicopathological Significance of Cripto-1 Expression in the Progression of Human ESCC. Rep. Biochem. Mol. Biol., 2017, 5(2), 83-90.
[46]
Klauzinska, M.; Castro, N.P.; Rangel, M.C.; Spike, B.T.; Gray, P.C.; Bertolette, D.; Cuttitta, F.; Salomon, D. The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin. Cancer Biol., 2014, 29, 51-58.
[47]
Schier, A.F.; Shen, M.M. Nodal signalling in vertebrate development. Nature, 2000, 403(6768), 385-389.
[48]
Schier, A.F. Nodal morphogens. Cold Spring Harb. Perspect. Biol., 2009, 1(5)a003459
[49]
Schier, A.F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol., 2003, 19, 589-621.
[50]
Robertson, E.; Bradley, A.; Kuehn, M.; Evans, M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature, 1986, 323(6087), 445-448.
[51]
Zhou, X.; Sasaki, H.; Lowe, L.; Hogan, B.L.; Kuehn, M.R. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature, 1993, 361(6412), 543-547.
[52]
Oshimori, N.; Fuchs, E. The harmonies played by TGF-β in stem cell biology. Cell Stem Cell, 2012, 11(6), 751-764.
[53]
Pang, K.; Ryan, J.F.; Baxevanis, A.D.; Martindale, M.Q. Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsis leidyi. PLoS One, 2011, 6(9)e24152
[54]
Rebagliati, M.R.; Toyama, R.; Fricke, C.; Haffter, P.; Dawid, I.B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol., 1998, 199(2), 261-272.
[55]
Strizzi, L.; Hardy, K.M.; Kirschmann, D.A.; Ahrlund-Richter, L.; Hendrix, M.J. Nodal expression and detection in cancer: experience and challenges. Cancer Res., 2012, 72(8), 1915-1920.
[56]
Findlay, S.D.; Postovit, L.M. Brief report: Common genetic variation in chromosome 10 q22.1 shows a strong sex bias in human embryonic stem cell lines and directly controls the novel alternative splicing of human NODAL which is associated with XIST expression in female cell lines. Stem Cells, 2016, 34(3), 791-796.
[57]
Findlay, S.D.; Bilyk, O.; Lypka, K.; Waskiewicz, A.J.; Postovit, L.M. Genetically regulated human NODAL splice variants are differentially post-transcriptionally processed and functionally distinct. bioRxiv,
[http://dx.doi.org/10.1101/276170]
[58]
Krebs, L.T.; Iwai, N.; Nonaka, S.; Welsh, I.C.; Lan, Y.; Jiang, R.; Saijoh, Y.; O’Brien, T.P.; Hamada, H.; Gridley, T. Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev., 2003, 17(10), 1207-1212.
[59]
Postovit, L.M.; Seftor, E.A.; Seftor, R.E.; Hendrix, M.J. Targeting nodal in malignant melanoma cells. Expert Opin. Ther. Targets, 2007, 11(4), 497-505.
[60]
Martello, G.; Zacchigna, L.; Inui, M.; Montagner, M.; Adorno, M.; Mamidi, A.; Morsut, L.; Soligo, S.; Tran, U.; Dupont, S.; Cordenonsi, M.; Wessely, O.; Piccolo, S. MicroRNA control of nodal signalling. Nature, 2007, 449(7159), 183-188.
[61]
Choi, W.Y.; Giraldez, A.J.; Schier, A.F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science, 2007, 318(5848), 271-274.
[62]
Collignon, J. miRNA in embryonic development: the taming of Nodal signaling. Dev. Cell, 2007, 13(4), 458-460.
[63]
Liu, X.; Ma, Y.; Zhang, C.; Wei, S.; Cao, Y.; Wang, Q. Nodal promotes mir206 expression to control convergence and extension movements during zebrafish gastrulation. J. Genet. Genomics, 2013, 40(10), 515-521.
[64]
Barroso-delJesus, A.; Lucena-Aguilar, G.; Sanchez, L.; Ligero, G.; Gutierrez-Aranda, I.; Menendez, P. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. FASEB J., 2011, 25(5), 1497-1508.
[65]
Ma, H.; Lin, Y.; Zhao, Z.A.; Lu, X.; Yu, Y.; Zhang, X.; Wang, Q.; Li, L. MicroRNA-127 promotes mesendoderm differentiation of mouse embryonic stem cells by targeting left-right determination factor 2. J. Biol. Chem., 2016, 291(23), 12126-12135.
[66]
Wang, Q.; Huang, Z.; Xue, H.; Jin, C.; Ju, X.L.; Han, J.D.; Chen, Y.G. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 2008, 111(2), 588-595.
[67]
Strizzi, L.; Postovit, L.M.; Margaryan, N.V.; Lipavsky, A.; Gadiot, J.; Blank, C.; Seftor, R.E.; Seftor, E.A.; Hendrix, M.J. Nodal as a biomarker for melanoma progression and a new therapeutic target for clinical intervention. Expert. Rev. Dermatol., 2009, 4(1), 67-78.
[68]
Hardy, K.M.; Kirschmann, D.A.; Seftor, E.A.; Margaryan, N.V.; Postovit, L.M.; Strizzi, L.; Hendrix, M.J. Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Res., 2010, 70(24), 10340-10350.
[69]
Beck, S.; Le Good, J.A.; Guzman, M.; Ben Haim, N.; Roy, K.; Beermann, F.; Constam, D.B. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nat. Cell Biol., 2002, 4(12), 981-985.
[70]
Eimon, P.M.; Harland, R.M. Effects of heterodimerization and proteolytic processing on Derrière and Nodal activity: implications for mesoderm induction in Xenopus. Development, 2002, 129(13), 3089-3103.
[71]
Le Good, J.A.; Joubin, K.; Giraldez, A.J.; Ben-Haim, N.; Beck, S.; Chen, Y.; Schier, A.F.; Constam, D.B. Nodal stability determines signaling range. Curr. Biol., 2005, 15(1), 31-36.
[72]
Blanchet, M.H.; Le Good, J.A.; Oorschot, V.; Baflast, S.; Minchiotti, G.; Klumperman, J.; Constam, D.B. Cripto localizes Nodal at the limiting membrane of early endosomes. Sci. Signal., 2008, 1(45), ra13.
[73]
Blanchet, M.H.; Le Good, J.A.; Mesnard, D.; Oorschot, V.; Baflast, S.; Minchiotti, G.; Klumperman, J.; Constam, D.B. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J., 2008, 27(19), 2580-2591.
[74]
Constam, D.B. Riding shotgun: A dual role for the epidermal growth factor-Cripto/FRL-1/Cryptic protein Cripto in Nodal trafficking. Traffic, 2009, 10(7), 783-791.
[75]
Lin, S.J.; Lerch, T.F.; Cook, R.W.; Jardetzky, T.S.; Woodruff, T.K. The structural basis of TGF-beta, bone morphogenetic protein, and activin ligand binding. Reproduction, 2006, 132(2), 179-190.
[76]
Esquivies, L.; Blackler, A.; Peran, M.; Rodriguez-Esteban, C.; Izpisua Belmonte, J.C.; Booker, E.; Gray, P.C.; Ahn, C.; Kwiatkowski, W.; Choe, S. Designer nodal/BMP2 chimeras mimic nodal signaling, promote chondrogenesis, and reveal a BMP2-like structure. J. Biol. Chem., 2014, 289(3), 1788-1797.
[77]
Calvanese, L.; Marasco, D.; Doti, N.; Saporito, A.; D’Auria, G.; Paolillo, L.; Ruvo, M.; Falcigno, L. Structural investigations on the Nodal-Cripto binding: A theoretical and experimental approach. Biopolymers, 2010, 93(11), 1011-1021.
[78]
Pera, M.F.; Tam, P.P. Extrinsic regulation of pluripotent stem cells. Nature, 2010, 465(7299), 713-720.
[79]
Reissmann, E.; Jörnvall, H.; Blokzijl, A.; Andersson, O.; Chang, C.; Minchiotti, G.; Persico, M.G.; Ibáñez, C.F.; Brivanlou, A.H. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev., 2001, 15(15), 2010-2022.
[80]
Yeo, C.; Whitman, M. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol. Cell, 2001, 7(5), 949-957.
[81]
Calvanese, L.; Sandomenico, A.; Caporale, A.; Focà, A.; Focà, G.; D’Auria, G.; Falcigno, L.; Ruvo, M. Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments. J. Pept. Sci., 2015, 21(4), 283-293.
[82]
Calvanese, L.; Saporito, A.; Marasco, D.; D’Auria, G.; Minchiotti, G.; Pedone, C.; Paolillo, L.; Falcigno, L.; Ruvo, M. Solution structure of mouse Cripto CFC domain and its inactive variant Trp107Ala. J. Med. Chem., 2006, 49(24), 7054-7062.
[83]
Calvanese, L.; Saporito, A.; Oliva, R.; D’ Auria, G.; Pedone, C.; Paolillo, L.; Ruvo, M.; Marasco, D.; Falcigno, L. Structural insights into the interaction between the Cripto CFC domain and the ALK4 receptor. J. Pept. Sci., 2009, 15(3), 175-183.
[84]
Focà, A.; Sanguigno, L.; Focà, G.; Strizzi, L.; Iannitti, R.; Palumbo, R.; Hendrix, M.J.; Leonardi, A.; Ruvo, M.; Sandomenico, A. New anti-nodal monoclonal antibodies targeting the nodal pre-helix loop involved in cripto-1 binding. Int. J. Mol. Sci., 2015, 16(9), 21342-21362.
[85]
Strizzi, L.; Sandomenico, A.; Margaryan, N.V.; Focà, A.; Sanguigno, L.; Bodenstine, T.M.; Chandler, G.S.; Reed, D.W.; Gilgur, A.; Seftor, E.A.; Seftor, R.E.; Khalkhali-Ellis, Z.; Leonardi, A.; Ruvo, M.; Hendrix, M.J. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget, 2015, 6(33), 34071-34086.
[86]
Calvanese, L.; Focà, A.; Sandomenico, A.; Focà, G.; Caporale, A.; Doti, N.; Iaccarino, E.; Leonardi, A.; D’Auria, G.; Ruvo, M.; Falcigno, L. Structural insights into the interaction of a monoclonal antibody and Nodal peptides by STD-NMR spectroscopy. Bioorg. Med. Chem., 2017, 25(24), 6589-6596.
[87]
Khalkhali-Ellis, Z.; Kirschmann, D.A.; Seftor, E.A.; Gilgur, A.; Bodenstine, T.M.; Hinck, A.P.; Hendrix, M.J. Divergence(s) in nodal signaling between aggressive melanoma and embryonic stem cells. Int. J. Cancer, 2015, 136(5), E242-E251.
[88]
Zhang, Y.E. Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harb. Perspect. Biol., 2017, 9(2)a022129
[89]
Quail, D.F.; Zhang, G.; Walsh, L.A.; Siegers, G.M.; Dieters-Castator, D.Z.; Findlay, S.D.; Broughton, H.; Putman, D.M.; Hess, D.A.; Postovit, L.M. Embryonic morphogen nodal promotes breast cancer growth and progression. PLoS One, 2012, 7(11)e48237
[90]
Quail, D.F.; Zhang, G.; Findlay, S.D.; Hess, D.A.; Postovit, L.M. Nodal promotes invasive phenotypes via a mitogen-activated protein kinase-dependent pathway. Oncogene, 2014, 33(4), 461-473.
[91]
Kirsammer, G.; Strizzi, L.; Margaryan, N.V.; Gilgur, A.; Hyser, M.; Atkinson, J.; Kirschmann, D.A.; Seftor, E.A.; Hendrix, M.J. Nodal signaling promotes a tumorigenic phenotype in human breast cancer. Semin. Cancer Biol., 2014, 29, 40-50.
[92]
Lee, C.C.; Jan, H.J.; Lai, J.H.; Ma, H.I.; Hueng, D.Y.; Lee, Y.C.; Cheng, Y.Y.; Liu, L.W.; Wei, H.W.; Lee, H.M. Nodal promotes growth and invasion in human gliomas. Oncogene, 2010, 29(21), 3110-3123.
[93]
Sun, J.; Liu, S.Z.; Lin, Y.; Cao, X.P.; Liu, J.M. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways. Biochem. Biophys. Res. Commun., 2014, 443(3), 1066-1072.
[94]
Fang, R.; Zhang, G.; Guo, Q.; Ning, F.; Wang, H.; Cai, S.; Du, J. Nodal promotes aggressive phenotype via Snail-mediated epithelial-mesenchymal transition in murine melanoma. Cancer Lett., 2013, 333(1), 66-75.
[95]
Guo, Q.; Ning, F.; Fang, R.; Wang, H.S.; Zhang, G.; Quan, M.Y.; Cai, S.H.; Du, J. Endogenous Nodal promotes melanoma undergoing epithelial-mesenchymal transition via Snail and Slug in vitro and in vivo. Am. J. Cancer Res., 2015, 5(6), 2098-2112.
[96]
Tian, T.; Meng, A.M. Nodal signals pattern vertebrate embryos. Cell. Mol. Life Sci., 2006, 63(6), 672-685.
[97]
Cheng, S.K.; Olale, F.; Brivanlou, A.H.; Schier, A.F. Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors. PLoS Biol., 2004, 2(2)E30
[98]
Chen, C.; Shen, M.M. Two modes by which Lefty proteins inhibit nodal signaling. Curr. Biol., 2004, 14(7), 618-624.
[99]
Shen, M.M. Nodal signaling: Developmental roles and regulation. Development, 2007, 134(6), 1023-1034.
[100]
Tabibzadeh, S.; Hemmati-Brivanlou, A. Lefty at the crossroads of “stemness” and differentiative events. Stem Cells, 2006, 24(9), 1998-2006.
[101]
Postovit, L.M.; Margaryan, N.V.; Seftor, E.A.; Kirschmann, D.A.; Lipavsky, A.; Wheaton, W.W.; Abbott, D.E.; Seftor, R.E.; Hendrix, M.J. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc. Natl. Acad. Sci. USA, 2008, 105(11), 4329-4334.
[102]
Fuerer, C.; Nostro, M.C.; Constam, D.B. Nodal·Gdf1 heterodimers with bound prodomains enable serum-independent nodal signaling and endoderm differentiation. J. Biol. Chem., 2014, 289(25), 17854-17871.
[103]
Tanaka, C.; Sakuma, R.; Nakamura, T.; Hamada, H.; Saijoh, Y. Long-range action of Nodal requires interaction with GDF1. Genes Dev., 2007, 21(24), 3272-3282.
[104]
Di Guglielmo, G.M.; Le Roy, C.; Goodfellow, A.F.; Wrana, J.L. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat. Cell Biol., 2003, 5(5), 410-421.
[105]
Hamada, H.; Tam, P.P. Mechanisms of left-right asymmetry and patterning: Driver, mediator and responder. F1000Prime Rep., 2014, 6, 110.
[106]
Brennan, J.; Lu, C.C.; Norris, D.P.; Rodriguez, T.A.; Beddington, R.S.; Robertson, E.J. Nodal signalling in the epiblast patterns the early mouse embryo. Nature, 2001, 411(6840), 965-969.
[107]
Feldman, B.; Gates, M.A.; Egan, E.S.; Dougan, S.T.; Rennebeck, G.; Sirotkin, H.I.; Schier, A.F.; Talbot, W.S. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature, 1998, 395(6698), 181-185.
[108]
Gritsman, K.; Talbot, W.S.; Schier, A.F. Nodal signaling patterns the organizer. Development, 2000, 127(5), 921-932.
[109]
Chu, J.; Shen, M.M. Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Dev. Biol., 2010, 342(1), 63-73.
[110]
Papageorgiou, I.; Nicholls, P.K.; Wang, F.; Lackmann, M.; Makanji, Y.; Salamonsen, L.A.; Robertson, D.M.; Harrison, C.A. Expression of nodal signalling components in cycling human endometrium and in endometrial cancer. Reprod. Biol. Endocrinol., 2009, 7, 122.
[111]
Bianco, C.; Adkins, H.B.; Wechselberger, C.; Seno, M.; Normanno, N.; De Luca, A.; Sun, Y.; Khan, N.; Kenney, N.; Ebert, A.; Williams, K.P.; Sanicola, M.; Salomon, D.S. Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells. Mol. Cell. Biol., 2002, 22(8), 2586-2597.
[112]
Vallier, L.; Reynolds, D.; Pedersen, R.A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol., 2004, 275(2), 403-421.
[113]
Brown, S.; Teo, A.; Pauklin, S.; Hannan, N.; Cho, C.H.; Lim, B.; Vardy, L.; Dunn, N.R.; Trotter, M.; Pedersen, R.; Vallier, L. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells, 2011, 29(8), 1176-1185.
[114]
Xu, C.; Zhang, Y.; Wang, Q.; Xu, Z.; Jiang, J.; Gao, Y.; Gao, M.; Kang, J.; Wu, M.; Xiong, J.; Ji, K.; Yuan, W.; Wang, Y.; Liu, H. Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nat. Commun., 2016, 7, 13287.
[115]
Mulas, C.; Kalkan, T.; Smith, A. NODAL secures pluripotency upon embryonic stem cell progression from the ground state. Stem Cell Reports, 2017, 9(1), 77-91.
[116]
Parisi, S.; D’Andrea, D.; Lago, C.T.; Adamson, E.D.; Persico, M.G.; Minchiotti, G. Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J. Cell Biol., 2003, 163(2), 303-314.
[117]
Kim, S.W.; Yoon, S.J.; Chuong, E.; Oyolu, C.; Wills, A.E.; Gupta, R.; Baker, J. Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Dev. Biol., 2011, 357(2), 492-504.
[118]
Capdevila, J.; Vogan, K.J.; Tabin, C.J.; Izpisúa Belmonte, J.C. Mechanisms of left-right determination in vertebrates. Cell, 2000, 101(1), 9-21.
[119]
Quail, D.F.; Siegers, G.M.; Jewer, M.; Postovit, L.M. Nodal signalling in embryogenesis and tumourigenesis. Int. J. Biochem. Cell Biol., 2013, 45(4), 885-898.
[120]
Wakefield, L.M.; Hill, C.S. Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat. Rev. Cancer, 2013, 13(5), 328-341.
[121]
Kalyan, A.; Carneiro, B.A.; Chandra, S.; Kaplan, J.; Chae, Y.K.; Matsangou, M.; Hendrix, M.J.C.; Giles, F. Nodal signaling as a developmental therapeutics target in oncology. Mol. Cancer Ther., 2017, 16(5), 787-792.
[122]
Xu, G.; Zhong, Y.; Munir, S.; Yang, B.B.; Tsang, B.K.; Peng, C. Nodal induces apoptosis and inhibits proliferation in human epithelial ovarian cancer cells via activin receptor-like kinase 7. J. Clin. Endocrinol. Metab., 2004, 89(11), 5523-5534.
[123]
Munir, S.; Xu, G.; Wu, Y.; Yang, B.; Lala, P.K.; Peng, C. Nodal and ALK7 inhibit proliferation and induce apoptosis in human trophoblast cells. J. Biol. Chem., 2004, 279(30), 31277-31286.
[124]
Zhong, Y.; Xu, G.; Ye, G.; Lee, D.; Modica-Amore, J.; Peng, C. Nodal and activin receptor-like kinase 7 induce apoptosis in human breast cancer cell lines: Role of caspase 3. Int. J. Physiol. Pathophysiol. Pharmacol., 2009, 1(1), 83-96.
[125]
Quail, D.F.; Walsh, L.A.; Zhang, G.; Findlay, S.D.; Moreno, J.; Fung, L.; Ablack, A.; Lewis, J.D.; Done, S.J.; Hess, D.A.; Postovit, L.M. Embryonic protein nodal promotes breast cancer vascularization. Cancer Res., 2012, 72(15), 3851-3863.
[126]
Hueng, D.Y.; Lin, G.J.; Huang, S.H.; Liu, L.W.; Ju, D.T.; Chen, Y.W.; Sytwu, H.K.; Chang, C.; Huang, S.M.; Yeh, Y.S.; Lee, H.M.; Ma, H.I. Inhibition of Nodal suppresses angiogenesis and growth of human gliomas. J. Neurooncol., 2011, 104(1), 21-31.
[127]
Chen, J.; Liu, W.B.; Jia, W.D.; Xu, G.L.; Ma, J.L.; Ren, Y.; Chen, H.; Sun, S.N.; Huang, M.; Li, J.S. Embryonic morphogen nodal is associated with progression and poor prognosis of hepatocellular carcinoma. PLoS One, 2014, 9(1)e85840
[128]
Quail, D.F.; Taylor, M.J.; Walsh, L.A.; Dieters-Castator, D.; Das, P.; Jewer, M.; Zhang, G.; Postovit, L.M. Low oxygen levels induce the expression of the embryonic morphogen Nodal. Mol. Biol. Cell, 2011, 22(24), 4809-4821.
[129]
Lai, J.H.; Jan, H.J.; Liu, L.W.; Lee, C.C.; Wang, S.G.; Hueng, D.Y.; Cheng, Y.Y.; Lee, H.M.; Ma, H.I. Nodal regulates energy metabolism in glioma cells by inducing expression of hypoxia-inducible factor 1α. Neuro-oncol., 2013, 15(10), 1330-1341.
[130]
Bianco, C.; Strizzi, L.; Normanno, N.; Khan, N.; Salomon, D.S. Cripto-1: an oncofetal gene with many faces. Curr. Top. Dev. Biol., 2005, 67, 85-133.
[131]
Ciccodicola, A.; Dono, R.; Obici, S.; Simeone, A.; Zollo, M.; Persico, M.G. Molecular characterization of a gene of the ‘EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J., 1989, 8(7), 1987-1991.
[132]
Dono, R.; Scalera, L.; Pacifico, F.; Acampora, D.; Persico, M.G.; Simeone, A. The murine cripto gene: Expression during mesoderm induction and early heart morphogenesis. Development, 1993, 118(4), 1157-1168.
[133]
Zhang, J.; Talbot, W.S.; Schier, A.F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell, 1998, 92(2), 241-251.
[134]
Kinoshita, N.; Minshull, J.; Kirschner, M.W. The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell, 1995, 83(4), 621-630.
[135]
Colas, J.F.; Schoenwolf, G.C. Subtractive hybridization identifies chick-cripto, a novel EGF-CFC ortholog expressed during gastrulation, neurulation and early cardiogenesis. Gene, 2000, 255(2), 205-217.
[136]
Bianco, C.; Salomon, D.S. Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin. Ther. Pat., 2010, 20(12), 1739-1749.
[137]
Shen, M.M.; Wang, H.; Leder, P. A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development, 1997, 124(2), 429-442.
[138]
Saloman, D.S.; Bianco, C.; Ebert, A.D.; Khan, N.I.; De Santis, M.; Normanno, N.; Wechselberger, C.; Seno, M.; Williams, K.; Sanicola, M.; Foley, S.; Gullick, W.J.; Persico, G. The EGF-CFC family: Novel epidermal growth factor-related proteins in development and cancer. Endocr. Relat. Cancer, 2000, 7(4), 199-226.
[139]
Dono, R.; Montuori, N.; Rocchi, M.; De Ponti-Zilli, L.; Ciccodicola, A.; Persico, M.G. Isolation and characterization of the CRIPTO autosomal gene and its X-linked related sequence. Am. J. Hum. Genet., 1991, 49(3), 555-565.
[140]
Saccone, S.; Rapisarda, A.; Motta, S.; Dono, R.; Persico, G.M.; Della Valle, G. Regional localization of the human EGF-like growth factor CRIPTO gene (TDGF-1) to chromosome 3p21. Hum. Genet., 1995, 95(2), 229-230.
[141]
Todd, M.C.; Xiang, R.H.; Garcia, D.K.; Kerbacher, K.E.; Moore, S.L.; Hensel, C.H.; Liu, P.; Siciliano, M.J.; Kok, K.; van den Berg, A.; Veldhuis, P.; Buys, C.H.; Killary, A.M.; Naylor, S.L. An 80 Kb P1 clone from chromosome 3p21.3 suppresses tumor growth in vivo. Oncogene, 1996, 13(11), 2387-2396.
[142]
Cuthbert, A.P.; Bond, J.; Trott, D.A.; Gill, S.; Broni, J.; Marriott, A.; Khoudoli, G.; Parkinson, E.K.; Cooper, C.S.; Newbold, R.F. Telomerase repressor sequences on chromosome 3 and induction of permanent growth arrest in human breast cancer cells. J. Natl. Cancer Inst., 1999, 91(1), 37-45.
[143]
Watanabe, K.; Salomon, D.S. Intercellular transfer regulation of the paracrine activity of GPI-anchored Cripto-1 as a Nodal co-receptor. Biochem. Biophys. Res. Commun., 2010, 403(1), 108-113.
[144]
di Bari, M.G.; Ginsburg, E.; Plant, J.; Strizzi, L.; Salomon, D.S.; Vonderhaar, B.K. MSX2 induces epithelial-mesenchymal transition in mouse mammary epithelial cells through upregulation of Cripto-1. J. Cell. Physiol., 2009, 219(3), 659-666.
[145]
Bianco, C.; Castro, N.P.; Baraty, C.; Rollman, K.; Held, N.; Rangel, M.C.; Karasawa, H.; Gonzales, M.; Strizzi, L.; Salomon, D.S. Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J. Cell. Physiol., 2013, 228(6), 1174-1188.
[146]
Hentschke, M.; Kurth, I.; Borgmeyer, U.; Hübner, C.A. Germ cell nuclear factor is a repressor of CRIPTO-1 and CRIPTO-3. J. Biol. Chem., 2006, 281(44), 33497-33504.
[147]
Chen, F.; Hou, S.K.; Fan, H.J.; Liu, Y.F. MiR-15a-16 represses Cripto and inhibits NSCLC cell progression. Mol. Cell. Biochem., 2014, 391(1-2), 11-19.
[148]
Mancino, M.; Strizzi, L.; Wechselberger, C.; Watanabe, K.; Gonzales, M.; Hamada, S.; Normanno, N.; Salomon, D.S.; Bianco, C. Regulation of human Cripto-1 gene expression by TGF-beta1 and BMP-4 in embryonal and colon cancer cells. J. Cell. Physiol., 2008, 215(1), 192-203.
[149]
Strizzi, L.; Mancino, M.; Bianco, C.; Raafat, A.; Gonzales, M.; Booth, B.W.; Watanabe, K.; Nagaoka, T.; Mack, D.L.; Howard, B.; Callahan, R.; Smith, G.H.; Salomon, D.S. Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland. J. Cell. Physiol., 2008, 216(3), 824-834.
[150]
Bianco, C.; Cotten, C.; Lonardo, E.; Strizzi, L.; Baraty, C.; Mancino, M.; Gonzales, M.; Watanabe, K.; Nagaoka, T.; Berry, C.; Arai, A.E.; Minchiotti, G.; Salomon, D.S. Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. Am. J. Pathol., 2009, 175(5), 2146-2158.
[151]
Morkel, M.; Huelsken, J.; Wakamiya, M.; Ding, J.; van de Wetering, M.; Clevers, H.; Taketo, M.M.; Behringer, R.R.; Shen, M.M.; Birchmeier, W. Beta-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development, 2003, 130(25), 6283-6294.
[152]
Loying, P.; Manhas, J.; Sen, S.; Bose, B. Autoregulation and heterogeneity in expression of human Cripto-1. PLoS One, 2015, 10(2)e0116748
[153]
Minchiotti, G.; Parisi, S.; Liguori, G.; Signore, M.; Lania, G.; Adamson, E.D.; Lago, C.T.; Persico, M.G. Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse development. Mech. Dev., 2000, 90(2), 133-142.
[154]
Yan, Y.T. Liu, J.J.; Luo, Y.; e, C.; Haltiwanger, R.S.; Abate-Shen, C.; Shen, M.M. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol. Cell. Biol., 2002, 22(13), 4439-4449.
[155]
Brandt, R.; Normanno, N.; Gullick, W.J.; Lin, J.H.; Harkins, R.; Schneider, D.; Jones, B.W.; Ciardiello, F.; Persico, M.G.; Armenante, F. Identification and biological characterization of an epidermal growth factor-related protein: Cripto-1. J. Biol. Chem., 1994, 269(25), 17320-17328.
[156]
Minchiotti, G.; Manco, G.; Parisi, S.; Lago, C.T.; Rosa, F.; Persico, M.G. Structure-function analysis of the EGF-CFC family member Cripto identifies residues essential for nodal signalling. Development, 2001, 128(22), 4501-4510.
[157]
Kohda, D.; Inagaki, F. Three-dimensional nuclear magnetic resonance structures of mouse epidermal growth factor in acidic and physiological pH solutions. Biochemistry, 1992, 31(47), 11928-11939.
[158]
Foley, S.F.; van Vlijmen, H.W.; Boynton, R.E.; Adkins, H.B.; Cheung, A.E.; Singh, J.; Sanicola, M.; Young, C.N.; Wen, D. The CRIPTO/FRL-1/CRYPTIC (CFC) domain of human Cripto. Functional and structural insights through disulfide structure analysis. Eur. J. Biochem., 2003, 270(17), 3610-3618.
[159]
Marasco, D.; Saporito, A.; Ponticelli, S.; Chambery, A.; De Falco, S.; Pedone, C.; Minchiotti, G.; Ruvo, M. Chemical synthesis of mouse cripto CFC variants. Proteins, 2006, 64(3), 779-788.
[160]
Cheng, S.K.; Olale, F.; Bennett, J.T.; Brivanlou, A.H.; Schier, A.F. EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes Dev., 2003, 17(1), 31-36.
[161]
Chen, C.; Ware, S.M.; Sato, A.; Houston-Hawkins, D.E.; Habas, R.; Matzuk, M.M.; Shen, M.M.; Brown, C.W. The Vg1-related protein GDF3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development, 2006, 133(2), 319-329.
[162]
Bianco, C.; Strizzi, L.; Rehman, A.; Normanno, N.; Wechselberger, C.; Sun, Y.; Khan, N.; Hirota, M.; Adkins, H.; Williams, K.; Margolis, R.U.; Sanicola, M.; Salomon, D.S.A. Nodal- and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src. Cancer Res., 2003, 63(6), 1192-1197.
[163]
Gray, P.C.; Harrison, C.A.; Vale, W. Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5193-5198.
[164]
Bianco, C.; Kannan, S.; De Santis, M.; Seno, M.; Tang, C.K.; Martinez-Lacaci, I.; Kim, N.; Wallace-Jones, B.; Lippman, M.E.; Ebert, A.D.; Wechselberger, C.; Salomon, D.S. Cripto-1 indirectly stimulates the tyrosine phosphorylation of erb B-4 through a novel receptor. J. Biol. Chem., 1999, 274(13), 8624-8629.
[165]
Kelber, J.A.; Shani, G.; Booker, E.C.; Vale, W.W.; Gray, P.C. Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal. J. Biol. Chem., 2008, 283(8), 4490-4500.
[166]
Shani, G.; Fischer, W.H.; Justice, N.J.; Kelber, J.A.; Vale, W.; Gray, P.C. GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol. Cell. Biol., 2008, 28(2), 666-677.
[167]
Nagaoka, T.; Karasawa, H.; Castro, N.P.; Rangel, M.C.; Salomon, D.S.; Bianco, C. An evolving web of signaling networks regulated by Cripto-1. Growth Factors, 2012, 30(1), 13-21.
[168]
Rangel, M.C.; Karasawa, H.; Castro, N.P.; Nagaoka, T.; Salomon, D.S.; Bianco, C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. Am. J. Pathol., 2012, 180(6), 2188-2200.
[169]
Watanabe, K.; Hamada, S.; Bianco, C.; Mancino, M.; Nagaoka, T.; Gonzales, M.; Bailly, V.; Strizzi, L.; Salomon, D.S. Requirement of glycosylphosphatidylinositol anchor of Cripto-1 for trans activity as a Nodal co-receptor. J. Biol. Chem., 2007, 282(49), 35772-35786.
[170]
Harms, P.W.; Chang, C. Tomoregulin-1 (TMEFF1) inhibits nodal signaling through direct binding to the nodal coreceptor Cripto. Genes Dev., 2003, 17(21), 2624-2629.
[171]
Adkins, H.B.; Bianco, C.; Schiffer, S.G.; Rayhorn, P.; Zafari, M.; Cheung, A.E.; Orozco, O.; Olson, D.; De Luca, A.; Chen, L.L.; Miatkowski, K.; Benjamin, C.; Normanno, N.; Williams, K.P.; Jarpe, M.; LePage, D.; Salomon, D.; Sanicola, M. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J. Clin. Invest., 2003, 112(4), 575-587.
[172]
Gray, P.C.; Shani, G.; Aung, K.; Kelber, J.; Vale, W. Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol. Cell. Biol., 2006, 26(24), 9268-9278.
[173]
Gray, P.C.; Vale, W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett., 2012, 586(14), 1836-1845.
[174]
Bianco, C.; Strizzi, L.; Mancino, M.; Watanabe, K.; Gonzales, M.; Hamada, S.; Raafat, A.; Sahlah, L.; Chang, C.; Sotgia, F.; Normanno, N.; Lisanti, M.; Salomon, D.S. Regulation of Cripto-1 signaling and biological activity by caveolin-1 in mammary epithelial cells. Am. J. Pathol., 2008, 172(2), 345-357.
[175]
Kelber, J.A.; Panopoulos, A.D.; Shani, G.; Booker, E.C.; Belmonte, J.C.; Vale, W.W.; Gray, P.C. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene, 2009, 28(24), 2324-2336.
[176]
Sato, M.; Yao, V.J.; Arap, W.; Pasqualini, R. GRP78 signaling hub a receptor for targeted tumor therapy. Adv. Genet., 2010, 69, 97-114.
[177]
Zhang, L.H.; Zhang, X. Roles of GRP78 in physiology and cancer. J. Cell. Biochem., 2010, 110(6), 1299-1305.
[178]
Miharada, K.; Karlsson, G.; Rehn, M.; Rörby, E.; Siva, K.; Cammenga, J.; Karlsson, S. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell, 2011, 9(4), 330-344.
[179]
Spike, B.T.; Kelber, J.A.; Booker, E.; Kalathur, M.; Rodewald, R.; Lipianskaya, J.; La, J.; He, M.; Wright, T.; Klemke, R.; Wahl, G.M.; Gray, P.C. CRIPTO/GRP78 signaling maintains fetal and adult mammary stem cells ex vivo. Stem Cell Reports, 2014, 2(4), 427-439.
[180]
Kouznetsova, V.L.; Hu, H.; Teigen, K.; Zanetti, M.; Tsigelny, I.F. Cripto stabilizes GRP78 on the cell membrane. Protein Sci., 2018, 27(3), 653-661.
[181]
Gurusinghe, K.R.D.S.N.S.; Mishra, A.; Mishra, S. Glucose-regulated protein 78 substrate-binding domain alters its conformation upon EGCG inhibitor binding to nucleotide-binding domain: Molecular dynamics studies. Sci. Rep., 2018, 8(1), 5487.
[182]
Srinivasan, R.; Gillett, C.E.; Barnes, D.M.; Gullick, W.J. Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Res., 2000, 60(6), 1483-1487.
[183]
Terry, S.; El-Sayed, I.Y.; Destouches, D.; Maillé, P.; Nicolaiew, N.; Ploussard, G.; Semprez, F.; Pimpie, C.; Beltran, H.; Londono-Vallejo, A.; Allory, Y.; de la Taille, A.; Salomon, D.S.; Vacherot, F. CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities. Oncotarget, 2015, 6(14), 11994-12008.
[184]
Watanabe, K.; Nagaoka, T.; Lee, J.M.; Bianco, C.; Gonzales, M.; Castro, N.P.; Rangel, M.C.; Sakamoto, K.; Sun, Y.; Callahan, R.; Salomon, D.S. Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. J. Cell Biol., 2009, 187(3), 343-353.
[185]
Andersson, E.R.; Sandberg, R.; Lendahl, U. Notch signaling: simplicity in design, versatility in function. Development, 2011, 138(17), 3593-3612.
[186]
Strizzi, L.; Margaryan, N.V.; Gerami, P.; Haghighat, Z.; Harms, P.W.; Madonna, G.; Botti, G.; Ascierto, P.A.; Hendrix, M.J. Translational significance of Nodal, Cripto-1 and Notch4 in adult nevi. Oncol. Lett., 2016, 12(2), 1349-1354.
[187]
Tao, Q.; Yokota, C.; Puck, H.; Kofron, M.; Birsoy, B.; Yan, D.; Asashima, M.; Wylie, C.C.; Lin, X.; Heasman, J. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell, 2005, 120(6), 857-871.
[188]
Hirota, M.; Watanabe, K.; Hamada, S.; Sun, Y.; Strizzi, L.; Mancino, M.; Nagaoka, T.; Gonzales, M.; Seno, M.; Bianco, C.; Salomon, D.S. Smad2 functions as a co-activator of canonical Wnt/beta-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cell. Signal., 2008, 20(9), 1632-1641.
[189]
Nagaoka, T.; Karasawa, H.; Turbyville, T.; Rangel, M.C.; Castro, N.P.; Gonzales, M.; Baker, A.; Seno, M.; Lockett, S.; Greer, Y.E.; Rubin, J.S.; Salomon, D.S.; Bianco, C. Cripto-1 enhances the canonical Wnt/β-catenin signaling pathway by binding to LRP5 and LRP6 co-receptors. Cell. Signal., 2013, 25(1), 178-189.
[190]
Sun, Y.; Strizzi, L.; Raafat, A.; Hirota, M.; Bianco, C.; Feigenbaum, L.; Kenney, N.; Wechselberger, C.; Callahan, R.; Salomon, D.S. Overexpression of human Cripto-1 in transgenic mice delays mammary gland development and differentiation and induces mammary tumorigenesis. Am. J. Pathol., 2005, 167(2), 585-597.
[191]
Wechselberger, C.; Strizzi, L.; Kenney, N.; Hirota, M.; Sun, Y.; Ebert, A.; Orozco, O.; Bianco, C.; Khan, N.I.; Wallace-Jones, B.; Normanno, N.; Adkins, H.; Sanicola, M.; Salomon, D.S. Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma. Oncogene, 2005, 24(25), 4094-4105.
[192]
D’Aniello, C.; Lonardo, E.; Iaconis, S.; Guardiola, O.; Liguoro, A.M.; Liguori, G.L.; Autiero, M.; Carmeliet, P.; Minchiotti, G. G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ. Res., 2009, 105(3), 231-238.
[193]
Su, D.; Jing, S.; Guan, L.; Li, Q.; Zhang, H.; Gao, X.; Ma, X. Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy. Biochem. Cell Biol., 2014, 92(3), 183-190.
[194]
Klauzinska, M.; Bertolette, D.; Tippireddy, S.; Strizzi, L.; Gray, P.C.; Gonzales, M.; Duroux, M.; Ruvo, M.; Wechselberger, C.; Castro, N.P.; Rangel, M.C.; Focà, A.; Sandomenico, A.; Hendrix, M.J.; Salomon, D.; Cuttitta, F. Cripto-1: an extracellular protein - connecting the sequestered biological dots. Connect. Tissue Res., 2015, 56(5), 364-380.
[195]
Zhang, D.M.; Bao, Y.L.; Yu, C.L.; Wang, Y.M.; Song, Z.B. Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-κB signaling. Immunol. Res., 2016, 64(1), 104-114.
[196]
Vallier, L.; Mendjan, S.; Brown, S.; Chng, Z.; Teo, A.; Smithers, L.E.; Trotter, M.W.; Cho, C.H.; Martinez, A.; Rugg-Gunn, P.; Brons, G.; Pedersen, R.A. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development, 2009, 136(8), 1339-1349.
[197]
Park, S.W.; Do, H.J.; Han, M.H.; Choi, W.; Kim, J.H. The expression of the embryonic gene Cripto-1 is regulated by OCT4 in human embryonal carcinoma NCCIT cells. FEBS Lett., 2018, 592(1), 24-35.
[198]
Mancino, M.; Esposito, C.; Watanabe, K.; Nagaoka, T.; Gonzales, M.; Bianco, C.; Normanno, N.; Salomon, D.S.; Strizzi, L. Neuronal guidance protein Netrin-1 induces differentiation in human embryonal carcinoma cells. Cancer Res., 2009, 69(5), 1717-1721.
[199]
Boles, N.C.; Hirsch, S.E.; Le, S.; Corneo, B.; Najm, F.; Minotti, A.P.; Wang, Q.; Lotz, S.; Tesar, P.J.; Fasano, C.A. NPTX1 regulates neural lineage specification from human pluripotent stem cells. Cell Rep., 2014, 6(4), 724-736.
[200]
Liguori, G.L.; Echevarria, D.; Bonilla, S.; D’Andrea, D.; Liguoro, A.; Persico, M.G.; Martinez, S. Characterization of the functional properties of the neuroectoderm in mouse Cripto(-/-) embryos showing severe gastrulation defects. Int. J. Dev. Biol., 2009, 53(4), 549-557.
[201]
Bianco, C.; Wechselberger, C.; Ebert, A.; Khan, N.I.; Sun, Y.; Salomon, D.S. Identification of Cripto-1 in human milk. Breast Cancer Res. Treat., 2001, 66(1), 1-7.
[202]
Strizzi, L.; Bianco, C.; Hirota, M.; Watanabe, K.; Mancino, M.; Hamada, S.; Raafat, A.; Lawson, S.; Ebert, A.D.; D’Antonio, A.; Losito, S.; Normanno, N.; Salomon, D.S. Development of leiomyosarcoma of the uterus in MMTV-CR-1 transgenic mice. J. Pathol., 2007, 211(1), 36-44.
[203]
Wei, B.; Jin, W.; Ruan, J.; Xu, Z.; Zhou, Y.; Liang, J.; Cheng, H.; Jin, K.; Huang, X.; Lu, P.; Hu, Q. Cripto-1 expression and its prognostic value in human bladder cancer patients. Tumour Biol., 2015, 36(2), 1105-1113.
[204]
Bianco, C.; Strizzi, L.; Mancino, M.; Rehman, A.; Hamada, S.; Watanabe, K.; De Luca, A.; Jones, B.; Balogh, G.; Russo, J.; Mailo, D.; Palaia, R.; D’Aiuto, G.; Botti, G.; Perrone, F.; Salomon, D.S.; Normanno, N. Identification of cripto-1 as a novel serologic marker for breast and colon cancer. Clin. Cancer Res., 2006, 12(17), 5158-5164.
[205]
Pilgaard, L.; Mortensen, J.H.; Henriksen, M.; Olesen, P.; Sørensen, P.; Laursen, R.; Vyberg, M.; Agger, R.; Zachar, V.; Moos, T.; Duroux, M. Cripto-1 expression in glioblastoma multiforme. Brain Pathol., 2014, 24(4), 360-370.
[206]
Spiller, C.M.; Gillis, A.J.; Burnet, G.; Stoop, H.; Koopman, P.; Bowles, J.; Looijenga, L.H. Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors. Mol. Oncol., 2016, 10(4), 526-537.
[207]
Xu, C.H.; Chi, C.Z.; Zhang, Q.; Wang, Y.C.; Wang, W.; Yuan, Q.; Zhan, P.; Zhang, X.W.; Lin, Y. Diagnostic and prognostic value of serum Cripto-1 in patients with non-small cell lung cancer. Clin. Respir. J., 2018, 12(10), 2469-2474.
[208]
Ruggiero, D.; Nappo, S.; Nutile, T.; Sorice, R.; Talotta, F.; Giorgio, E.; Bellenguez, C.; Leutenegger, A.L.; Liguori, G.L.; Ciullo, M. Genetic variants modulating CRIPTO serum levels identified by genome-wide association study in Cilento isolates. PLoS Genet., 2015, 11(1)e1004976
[209]
Bianco, C.; Normanno, N.; Salomon, D.S.; Ciardiello, F. Role of the cripto (EGF-CFC) family in embryogenesis and cancer. Growth Factors, 2004, 22(3), 133-139.
[210]
Bianco, C.; Strizzi, L.; Ebert, A.; Chang, C.; Rehman, A.; Normanno, N.; Guedez, L.; Salloum, R.; Ginsburg, E.; Sun, Y.; Khan, N.; Hirota, M.; Wallace-Jones, B.; Wechselberger, C.; Vonderhaar, B.K.; Tosato, G.; Stetler-Stevenson, W.G.; Sanicola, M.; Salomon, D.S. Role of human cripto-1 in tumor angiogenesis. J. Natl. Cancer Inst., 2005, 97(2), 132-141.
[211]
Rangel, M.C.; Bertolette, D.; Castro, N.P.; Klauzinska, M.; Cuttitta, F.; Salomon, D.S. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res. Treat., 2016, 156(2), 211-226.
[212]
Seftor, E.A.; Seftor, R.E.B.; Weldon, D.; Kirsammer, G.T.; Margaryan, N.V.; Gilgur, A.; Hendrix, M.J.C. Melanoma tumor cell heterogeneity: A molecular approach to study subpopulations expressing the embryonic morphogen nodal. Semin. Oncol., 2014, 41(2), 259-266.
[213]
Schatton, T.; Murphy, G.F.; Frank, N.Y.; Yamaura, K.; Waaga-Gasser, A.M.; Gasser, M.; Zhan, Q.; Jordan, S.; Duncan, L.M.; Weishaupt, C.; Fuhlbrigge, R.C.; Kupper, T.S.; Sayegh, M.H.; Frank, M.H. Identification of cells initiating human melanomas. Nature, 2008, 451(7176), 345-349.
[214]
Bittner, M.; Meltzer, P.; Chen, Y.; Jiang, Y.; Seftor, E.; Hendrix, M.; Radmacher, M.; Simon, R.; Yakhini, Z.; Ben-Dor, A.; Sampas, N.; Dougherty, E.; Wang, E.; Marincola, F.; Gooden, C.; Lueders, J.; Glatfelter, A.; Pollock, P.; Carpten, J.; Gillanders, E.; Leja, D.; Dietrich, K.; Beaudry, C.; Berens, M.; Alberts, D.; Sondak, V. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000, 406(6795), 536-540.
[215]
Seftor, E.A.; Meltzer, P.S.; Schatteman, G.C.; Gruman, L.M.; Hess, A.R.; Kirschmann, D.A.; Seftor, R.E.; Hendrix, M.J. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: Role in vasculogenic mimicry. Crit. Rev. Oncol. Hematol., 2002, 44(1), 17-27.
[216]
Hendrix, M.J.; Seftor, E.A.; Hess, A.R.; Seftor, R.E. Molecular plasticity of human melanoma cells. Oncogene, 2003, 22(20), 3070-3075.
[217]
Postovit, L.M.; Margaryan, N.V.; Seftor, E.A.; Hendrix, M.J. Role of nodal signaling and the microenvironment underlying melanoma plasticity. Pigment Cell Melanoma Res., 2008, 21(3), 348-357.
[218]
Topczewska, J.M.; Postovit, L.M.; Margaryan, N.V.; Sam, A.; Hess, A.R.; Wheaton, W.W.; Nickoloff, B.J.; Topczewski, J.; Hendrix, M.J. Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness. Nat. Med., 2006, 12(8), 925-932.
[219]
Postovit, L.M.; Seftor, E.A.; Seftor, R.E.; Hendrix, M.J. Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res., 2006, 66(16), 7833-7836.
[220]
Inman, G.J.; Nicolás, F.J.; Callahan, J.F.; Harling, J.D.; Gaster, L.M.; Reith, A.D.; Laping, N.J.; Hill, C.S. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol., 2002, 62(1), 65-74.
[221]
Ruvo, M.; Sandomenico, A.; Leonardi, A.; Sanguigno, L.; Hendrix, M.J.C.; Seftor, E.A.; Seftor, R.E.B.; Strizzi, L. Khalkhali-ellis. Novel anti-nodal antibodies and methods of using same. US Patent WO2016057683A3, 2015.
[222]
Strizzi, L.; Hardy, K.M.; Seftor, E.A.; Costa, F.F.; Kirschmann, D.A.; Seftor, R.E.; Postovit, L.M.; Hendrix, M.J. Development and cancer: at the crossroads of Nodal and Notch signaling. Cancer Res., 2009, 69(18), 7131-7134.
[223]
Hardy, K.M.; Strizzi, L.; Margaryan, N.V.; Gupta, K.; Murphy, G.F.; Scolyer, R.A.; Hendrix, M.J. Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma. Mol. Cancer Res., 2015, 13(4), 670-680.
[224]
Hendrix, M.J.; Kandela, I.; Mazar, A.P.; Seftor, E.A.; Seftor, R.E.; Margaryan, N.V.; Strizzi, L.; Murphy, G.F.; Long, G.V.; Scolyer, R.A. Targeting melanoma with front-line therapy does not abrogate Nodal-expressing tumor cells. Lab. Invest., 2017, 97(2), 176-186.
[225]
Mallikarjuna, K.; Vaijayanthi, P.; Krishnakumar, S. Cripto-1 expression in uveal melanoma: an immunohistochemical study. Exp. Eye Res., 2007, 84(6), 1060-1066.
[226]
De Luca, A.; Lamura, L.; Strizzi, L.; Roma, C.; D’Antonio, A.; Margaryan, N.; Pirozzi, G.; Hsu, M.Y.; Botti, G.; Mari, E.; Hendrix, M.J.; Salomon, D.S.; Normanno, N. Expression and functional role of CRIPTO-1 in cutaneous melanoma. Br. J. Cancer, 2011, 105(7), 1030-1038.
[227]
Roesch, A.; Fukunaga-Kalabis, M.; Schmidt, E.C.; Zabierowski, S.E.; Brafford, P.A.; Vultur, A.; Basu, D.; Gimotty, P.; Vogt, T.; Herlyn, M. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 2010, 141(4), 583-594.
[228]
Ahn, A.; Chatterjee, A.; Eccles, M.R. The slow cycling phenotype: A growing problem for treatment resistance in melanoma. Mol. Cancer Ther., 2017, 16(6), 1002-1009.
[229]
Rothhammer, T.; Bataille, F.; Spruss, T.; Eissner, G.; Bosserhoff, A.K. Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene, 2007, 26(28), 4158-4170.
[230]
Wang, X.F.; Wang, H.S.; Zhang, F.; Guo, Q.; Wang, H.; Wang, K.F.; Zhang, G.; Bu, X.Z.; Cai, S.H.; Du, J. Nodal promotes the generation of M2-like macrophages and downregulates the expression of IL-12. Eur. J. Immunol., 2014, 44(1), 173-183.
[231]
Ligtenberg, M.A.; Witt, K.; Galvez-Cancino, F.; Sette, A.; Lundqvist, A.; Lladser, A.; Kiessling, R. Cripto-1 vaccination elicits protective immunity against metastatic melanoma. OncoImmunology, 2016, 5(5)e1128613
[232]
Kwong, A.; Sanlorenzo, M.; Rappersberger, K.; Vujic, I. Update on advanced melanoma treatments: small molecule targeted therapy, immunotherapy, and future combination therapies. Wien. Med. Wochenschr., 2017.
[http://dx.doi.org/10.1007/s10354-016-0535-1]
[233]
Kenney, N.J.; Adkins, H.B.; Sanicola, M. Nodal and Cripto-1: embryonic pattern formation genes involved in mammary gland development and tumorigenesis. J. Mammary Gland Biol. Neoplasia, 2004, 9(2), 133-144.
[234]
Strizzi, L.; Postovit, L.M.; Margaryan, N.V.; Seftor, E.A.; Abbott, D.E.; Seftor, R.E.; Salomon, D.S.; Hendrix, M.J. Emerging roles of nodal and Cripto-1: from embryogenesis to breast cancer progression. Breast Dis., 2008, 29, 91-103.
[235]
Polyak, K. Heterogeneity in breast cancer. J. Clin. Invest., 2011, 121(10), 3786-3788.
[236]
Neophytou, C.; Boutsikos, P.; Papageorgis, P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front. Oncol., 2018, 8, 31.
[237]
Strizzi, L.; Hardy, K.M.; Margaryan, N.V.; Hillman, D.W.; Seftor, E.A.; Chen, B.; Geiger, X.J.; Thompson, E.A.; Lingle, W.L.; Andorfer, C.A.; Perez, E.A.; Hendrix, M.J. Potential for the embryonic morphogen Nodal as a prognostic and predictive biomarker in breast cancer. Breast Cancer Res., 2012, 14(3), R75.
[238]
Bodenstine, T.M.; Chandler, G.S.; Reed, D.W.; Margaryan, N.V.; Gilgur, A.; Atkinson, J.; Ahmed, N.; Hyser, M.; Seftor, E.A.; Strizzi, L.; Hendrix, M.J. Nodal expression in triple-negative breast cancer: Cellular effects of its inhibition following doxorubicin treatment. Cell Cycle, 2016, 15(9), 1295-1302.
[239]
Lonardo, E.; Hermann, P.C.; Mueller, M.T.; Huber, S.; Balic, A.; Miranda-Lorenzo, I.; Zagorac, S.; Alcala, S.; Rodriguez-Arabaolaza, I.; Ramirez, J.C.; Torres-Ruíz, R.; Garcia, E.; Hidalgo, M.; Cebrián, D.A.; Heuchel, R.; Löhr, M.; Berger, F.; Bartenstein, P.; Aicher, A.; Heeschen, C. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 2011, 9(5), 433-446.
[240]
Jabbour-Leung, N.A.; Chen, X.; Bui, T.; Jiang, Y.; Yang, D.; Vijayaraghavan, S.; McArthur, M.J.; Hunt, K.K.; Keyomarsi, K. Sequential combination therapy of CDK inhibition and doxorubicin is synthetically lethal in p53-mutant triple-negative breast cancer. Mol. Cancer Ther., 2016, 15(4), 593-607.
[241]
Gong, Y.P.; Yarrow, P.M.; Carmalt, H.L.; Kwun, S.Y.; Kennedy, C.W.; Lin, B.P.; Xing, P.X.; Gillett, D.J. Overexpression of Cripto and its prognostic significance in breast cancer: a study with long-term survival. Eur. J. Surg. Oncol., 2007, 33(4), 438-443.
[242]
Niemeyer, C.C.; Persico, M.G.; Adamson, E.D. Cripto: Roles in mammary cell growth, survival, differentiation and transformation. Cell Death Differ., 1998, 5(5), 440-449.
[243]
Smith, B.N.; Bhowmick, N.A. Role of EMT in metastasis and therapy resistance. J. Clin. Med., 2016, 5(2)E17
[244]
Wechselberger, C.; Ebert, A.D.; Bianco, C.; Khan, N.I.; Sun, Y.; Wallace-Jones, B.; Montesano, R.; Salomon, D.S. Cripto-1 enhances migration and branching morphogenesis of mouse mammary epithelial cells. Exp. Cell Res., 2001, 266(1), 95-105.
[245]
Strizzi, L.; Bianco, C.; Normanno, N.; Salomon, D. Cripto-1: A multifunctional modulator during embryogenesis and oncogenesis. Oncogene, 2005, 24(37), 5731-5741.
[246]
Normanno, N.; De Luca, A.; Bianco, C.; Maiello, M.R.; Carriero, M.V.; Rehman, A.; Wechselberger, C.; Arra, C.; Strizzi, L.; Sanicola, M.; Salomon, D.S. Cripto-1 overexpression leads to enhanced invasiveness and resistance to anoikis in human MCF-7 breast cancer cells. J. Cell. Physiol., 2004, 198(1), 31-39.
[247]
Castro, N.P.; Fedorova-Abrams, N.D.; Merchant, A.S.; Rangel, M.C.; Nagaoka, T.; Karasawa, H.; Klauzinska, M.; Hewitt, S.M.; Biswas, K.; Sharan, S.K.; Salomon, D.S. Cripto-1 as a novel therapeutic target for triple negative breast cancer. Oncotarget, 2015, 6(14), 11910-11929.
[248]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[249]
Inamura, K. Prostatic cancers: understanding their molecular pathology and the 2016 WHO classification. Oncotarget, 2018, 9(18), 14723-14737.
[250]
Terry, S.; Beltran, H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front. Oncol., 2014, 4, 60.
[251]
Nauseef, J.T.; Henry, M.D. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat. Rev. Urol., 2011, 8(8), 428-439.
[252]
Jeter, C.R.; Liu, B.; Liu, X.; Chen, X.; Liu, C.; Calhoun-Davis, T.; Repass, J.; Zaehres, H.; Shen, J.J.; Tang, D.G. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 2011, 30(36), 3833-3845.
[253]
Harris, K.S.; Kerr, B.A. Prostate cancer stem cell markers drive progression, therapeutic resistance, and bone metastasis. Stem Cells Int., 2017, 20178629234
[254]
Lawrence, M.G.; Margaryan, N.V.; Loessner, D.; Collins, A.; Kerr, K.M.; Turner, M.; Seftor, E.A.; Stephens, C.R.; Lai, J.; Postovit, L.M.; Clements, J.A.; Hendrix, M.J. Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells. Prostate, 2011, 71(11), 1198-1209.
[255]
Cocciadiferro, L.; Miceli, V.; Kang, K.S.; Polito, L.M.; Trosko, J.E.; Carruba, G. Profiling cancer stem cells in androgen-responsive and refractory human prostate tumor cell lines. Ann. N. Y. Acad. Sci., 2009, 1155, 257-262.
[256]
Zoni, E.; Chen, L.; Karkampouna, S.; Granchi, Z.; Verhoef, E.I.; La Manna, F.; Kelber, J.; Pelger, R.C.M.; Henry, M.D.; Snaar-Jagalska, E.; van Leenders, G.J.L.H.; Beimers, L.; Kloen, P.; Gray, P.C.; van der Pluijm, G.; Kruithof-de Julio, M. CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer. Oncogene, 2017, 36(33), 4739-4749.
[257]
Kasper, S. Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Rev., 2008, 4(3), 193-201.
[258]
Gu, G.; Yuan, J.; Wills, M.; Kasper, S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res., 2007, 67(10), 4807-4815.
[259]
Xing, P.X.; Hu, X.F.; Pietersz, G.A.; Hosick, H.L.; McKenzie, I.F. Cripto: A novel target for antibody-based cancer immunotherapy. Cancer Res., 2004, 64(11), 4018-4023.
[260]
Wu, D.; Shi, Z.; Xu, H.; Chen, R.; Xue, S.; Sun, X. Knockdown of Cripto-1 inhibits the proliferation, migration, invasion, and angiogenesis in prostate carcinoma cells. J. Biosci., 2017, 42(3), 405-416.
[261]
Liu, Y.; Qin, Z.; Yang, K.; Liu, R.; Xu, Y. Cripto-1 promotes epithelial-mesenchymal transition in prostate cancer via Wnt/β-catenin signaling. Oncol. Rep., 2017, 37(3), 1521-1528.
[262]
van den Hoogen, C.; van der Horst, G.; Cheung, H.; Buijs, J.T.; Lippitt, J.M.; Guzmán-Ramírez, N.; Hamdy, F.C.; Eaton, C.L.; Thalmann, G.N.; Cecchini, M.G.; Pelger, R.C.; van der Pluijm, G. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res., 2010, 70(12), 5163-5173.
[263]
Leão, R.; Domingos, C.; Figueiredo, A.; Hamilton, R.; Tabori, U.; Castelo-Branco, P. Cancer stem cells in prostate cancer: Implications for targeted therapy. Urol. Int., 2017, 99(2), 125-136.
[264]
Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int. J. Mol. Sci., 2017, 18(7)E1338
[265]
Friess, H.; Yamanaka, Y.; Büchler, M.; Kobrin, M.S.; Tahara, E.; Korc, M. Cripto, a member of the epidermal growth factor family, is over-expressed in human pancreatic cancer and chronic pancreatitis. Int. J. Cancer, 1994, 56(5), 668-674.
[266]
Tsutsumi, M.; Yasui, W.; Naito, A.; Ohashi, K.; Kobayashi, E.; Noguchi, O.; Horiguchi, K.; Okita, S.; Tsujiuchi, T.; Kitada, H. Expression of cripto in human pancreatic tumors. Jpn. J. Cancer Res., 1994, 85(2), 118-121.
[267]
Hong, S.P.; Lee, E.K.; Park, J.Y.; Jeon, T.J.; Bang, S.; Park, S.; Chung, J.B.; Lee, W.J.; Kim, H.; Song, S.Y. Cripto-1 overexpression is involved in the tumorigenesis of gastric-type and pancreatobiliary-type intraductal papillary mucinous neoplasms of the pancreas. Oncol. Rep., 2009, 21(1), 19-24.
[268]
Duan, W.; Li, R.; Ma, J.; Lei, J.; Xu, Q.; Jiang, Z.; Nan, L.; Li, X.; Wang, Z.; Huo, X.; Han, L.; Wu, Z.; Wu, E.; Ma, Q. Overexpression of Nodal induces a metastatic phenotype in pancreatic cancer cells via the Smad2/3 pathway. Oncotarget, 2015, 6(3), 1490-1506.
[269]
Kong, B.; Wang, W.; Esposito, I.; Friess, H.; Michalski, C.W.; Kleeff, J. Increased expression of Nodal correlates with reduced patient survival in pancreatic cancer. Pancreatology, 2015, 15(2), 156-161.
[270]
Dorado, J.; Lonardo, E.; Miranda-Lorenzo, I.; Heeschen, C. Pancreatic cancer stem cells: New insights and perspectives. J. Gastroenterol., 2011, 46(8), 966-973.
[271]
Hanna, A.; Shevde, L.A. Hedgehog signaling: Modulation of cancer properies and tumor mircroenvironment. Mol. Cancer, 2016, 15, 24.
[272]
Zeuner, A.; Todaro, M.; Stassi, G.; De Maria, R. Colorectal cancer stem cells: From the crypt to the clinic. Cell Stem Cell, 2014, 15(6), 692-705.
[273]
Fanali, C.; Lucchetti, D.; Farina, M.; Corbi, M.; Cufino, V.; Cittadini, A.; Sgambato, A. Cancer stem cells in colorectal cancer from pathogenesis to therapy: Controversies and perspectives. World J. Gastroenterol., 2014, 20(4), 923-942.
[274]
Gong, Y.; Guo, Y.; Hai, Y.; Yang, H.; Liu, Y.; Yang, S.; Zhang, Z.; Ma, M.; Liu, L.; Li, Z.; He, Z. Nodal promotes the self-renewal of human colon cancer stem cells via an autocrine manner through Smad2/3 signaling pathway. BioMed Res. Int., 2014, 2014364134
[275]
Saeki, T.; Stromberg, K.; Qi, C.F.; Gullick, W.J.; Tahara, E.; Normanno, N.; Ciardiello, F.; Kenney, N.; Johnson, G.R.; Salomon, D.S. Differential immunohistochemical detection of amphiregulin and cripto in human normal colon and colorectal tumors. Cancer Res., 1992, 52(12), 3467-3473.
[276]
Adamson, E.D.; Minchiotti, G.; Salomon, D.S. Cripto: A tumor growth factor and more. J. Cell. Physiol., 2002, 190(3), 267-278.
[277]
Miyoshi, N.; Ishii, H.; Mimori, K.; Sekimoto, M.; Doki, Y.; Mori, M. TDGF1 is a novel predictive marker for metachronous metastasis of colorectal cancer. Int. J. Oncol., 2010, 36(3), 563-568.
[278]
Normanno, N.; Tortora, G.; De Luca, A.; Pomatico, G.; Casamassimi, A.; Agrawal, S.; Mendelsohn, J.; Bianco, A.R.; Ciardiello, F. Synergistic growth inhibition and induction of apoptosis by a novel mixed backbone antisense oligonucleotide targeting CRIPTO in combination with C225 anti-EGFR monoclonal antibody and 8-Cl-cAMP in human GEO colon cancer cells. Oncol. Rep., 1999, 6(5), 1105-1109.
[279]
Jiang, P.C.; Zhu, L.; Fan, Y.; Zhao, H.L. Clinicopathological and biological significance of cripto overexpression in human colon cancer. World J. Gastroenterol., 2013, 19(46), 8630-8637.
[280]
Ciardiello, F.; Tortora, G.; Bianco, C.; Selvam, M.P.; Basolo, F.; Fontanini, G.; Pacifico, F.; Normanno, N.; Brandt, R.; Persico, M.G. Inhibition of CRIPTO expression and tumorigenicity in human colon cancer cells by antisense RNA and oligodeoxynucleotides. Oncogene, 1994, 9(1), 291-298.
[281]
Francescangeli, F.; Contavalli, P.; De Angelis, M.L.; Baiocchi, M.; Gambara, G.; Pagliuca, A.; Fiorenzano, A.; Prezioso, C.; Boe, A.; Todaro, M.; Stassi, G.; Castro, N.P.; Watanabe, K.; Salomon, D.S.; De Maria, R.; Minchiotti, G.; Zeuner, A. Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer. Cell Death Differ., 2015, 22(10), 1700-1713.
[282]
Kim, S.S.; Harford, J.B.; Pirollo, K.F.; Chang, E.H. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem. Biophys. Res. Commun., 2015, 468(3), 485-489.
[283]
Soeda, A.; Hara, A.; Kunisada, T.; Yoshimura, S.; Iwama, T.; Park, D.M. The evidence of glioblastoma heterogeneity. Sci. Rep., 2015, 5, 7979.
[284]
Plate, K.H.; Risau, W. Angiogenesis in malignant gliomas. Glia, 1995, 15(3), 339-347.
[285]
Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev., 2015, 29(12), 1203-1217.
[286]
De Silva, T.; Ye, G.; Liang, Y.Y.; Fu, G.; Xu, G.; Peng, C. Nodal promotes glioblastoma cell growth. Front. Endocrinol. (Lausanne), 2012, 3, 59.
[287]
Oliveira-Nunes, M.C.; Assad Kahn, S.; de Oliveira Barbeitas, A.L.; Spohr, E. T.C.; Dubois, L.G.; Ventura Matioszek, G.M.; Querido, W.; Campanati, L.; de Brito Neto, J.M.; Lima, F.R.; Moura-Neto, V.; Carneiro, K. The availability of the embryonic TGF-β protein Nodal is dynamically regulated during glioblastoma multiforme tumorigenesis. Cancer Cell Int., 2016, 16, 46.
[288]
Frittoli, E.; Palamidessi, A.; Marighetti, P.; Confalonieri, S.; Bianchi, F.; Malinverno, C.; Mazzarol, G. Viale, G.; Martin-Padura, I.; Garré, M.; Parazzoli, D.; Mattei, V.; Cortellino, S.; Bertalot, G.; Di Fiore, P.P.; Scita, G. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J. Cell Biol., 2014, 206(2), 307-328.
[289]
Zhang, M.; Chen, L.; Wang, S.; Wang, T. Rab7: Roles in membrane trafficking and disease. Biosci. Rep., 2009, 29(3), 193-209.
[290]
Kargiotis, O.; Chetty, C.; Gondi, C.S.; Tsung, A.J.; Dinh, D.H.; Gujrati, M.; Lakka, S.S.; Kyritsis, A.P.; Rao, J.S. Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene, 2008, 27(35), 4830-4840.
[291]
Wick, W.; Naumann, U.; Weller, M. Transforming growth factor-beta: A molecular target for the future therapy of glioblastoma. Curr. Pharm. Des., 2006, 12(3), 341-349.
[292]
Peñuelas, S.; Anido, J.; Prieto-Sánchez, R.M.; Folch, G.; Barba, I.; Cuartas, I.; García-Dorado, D.; Poca, M.A.; Sahuquillo, J.; Baselga, J.; Seoane, J. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell, 2009, 15(4), 315-327.
[293]
Tysnes, B.B.; Satran, H.A.; Mork, S.J.; Margaryan, N.V.; Eide, G.E.; Petersen, K.; Strizzi, L.; Hendrix, M.J. Age-dependent association between protein expression of the embryonic stem cell marker cripto-1 and survival of glioblastoma patients. Transl. Oncol., 2013, 6(6), 732-741.
[294]
Sun, G.; Yan, S.S.; Shi, L.; Wan, Z.Q.; Jiang, N.; Fu, L.S.; Li, M.; Guo, J. MicroRNA-15b suppresses the growth and invasion of glioma cells through targeted inhibition of cripto-1 expression. Mol. Med. Rep., 2016, 13(6), 4897-4903.
[295]
Parish, C.L.; Parisi, S.; Persico, M.G.; Arenas, E.; Minchiotti, G. Cripto as a target for improving embryonic stem cell-based therapy in Parkinson’s disease. Stem Cells, 2005, 23(4), 471-476.
[296]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[297]
Kuper, H.; Ye, W.; Broomé, U.; Romelsjö, A.; Mucci, L.A.; Ekbom, A.; Adami, H.O.; Trichopoulos, D.; Nyrén, O. The risk of liver and bile duct cancer in patients with chronic viral hepatitis, alcoholism, or cirrhosis. Hepatology, 2001, 34(4 Pt 1), 714-718.
[298]
Ou, D.P.; Yang, L.Y.; Huang, G.W.; Tao, Y.M.; Ding, X.; Chang, Z.G. Clinical analysis of the risk factors for recurrence of HCC and its relationship with HBV. World J. Gastroenterol., 2005, 11(14), 2061-2066.
[299]
Sun, C.; Sun, L.; Jiang, K.; Gao, D.M.; Kang, X.N.; Wang, C.; Zhang, S.; Huang, S.; Qin, X.; Li, Y.; Liu, Y.K. NANOG promotes liver cancer cell invasion by inducing epithelial-mesenchymal transition through NODAL/ SMAD3 signaling pathway. Int. J. Biochem. Cell Biol., 2013, 45(6), 1099-1108.
[300]
Wang, J.H.; Wei, W.; Xu, J.; Guo, Z.X.; Xiao, C.Z.; Zhang, Y.F.; Jian, P.E.; Wu, X.L.; Shi, M.; Guo, R.P. Elevated expression of Cripto-1 correlates with poor prognosis in hepatocellular carcinoma. Oncotarget, 2015, 6(33), 35116-35128.
[301]
Lo, R.C.; Leung, C.O.; Chan, K.K.; Ho, D.W.; Wong, C.M.; Lee, T.K.; Ng, I.O. Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ., 2018, 25(8), 1426-1441.
[302]
Behne, T.; Copur, M.S. Biomarkers for hepatocellular carcinoma. Int. J. Hepatol., 2012, 2012859076
[303]
Lo, J.; Lau, E.Y.; Ching, R.H.; Cheng, B.Y.; Ma, M.K.; Ng, I.O.; Lee, T.K. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology, 2015, 62(2), 534-545.
[304]
Pez, F.; Lopez, A.; Kim, M.; Wands, J.R.; Caron de Fromentel, C.; Merle, P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J. Hepatol., 2013, 59(5), 1107-1117.
[305]
Karkampouna, S.; van der Helm, D.; Gray, P.C.; Chen, L.; Klima, I.; Grosjean, J.; Burgmans, M.C.; Farina-Sarasqueta, A.; Snaar-Jagalska, E.B.; Stroka, D.M.; Terracciano, L.; van Hoek, B.; Schaapherder, A.F.; Osanto, S.; Thalmann, G.N.; Verspaget, H.W.; Coenraad, M.J.; Kruithof-de Julio, M. CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma. J. Pathol., 2018, 245(3), 297-310.
[306]
Looijenga, L.H.; Stoop, H.; Biermann, K. Testicular cancer: biology and biomarkers. Virchows Arch., 2014, 464(3), 301-313.
[307]
van de Geijn, G.J.; Hersmus, R.; Looijenga, L.H. Recent developments in testicular germ cell tumor research. Birth Defects Res. C Embryo Today, 2009, 87(1), 96-113.
[308]
Gillis, A.J.; Stoop, H.; Biermann, K.; van Gurp, R.J.; Swartzman, E.; Cribbes, S.; Ferlinz, A.; Shannon, M.; Oosterhuis, J.W.; Looijenga, L.H. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. Int. J. Androl., 2011, 34(4 Pt 2), e160-e174.
[309]
Spiller, C.M.; Feng, C.W.; Jackson, A.; Gillis, A.J.; Rolland, A.D.; Looijenga, L.H.; Koopman, P.; Bowles, J. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development, 2012, 139(22), 4123-4132.
[310]
Baldassarre, G.; Romano, A.; Armenante, F.; Rambaldi, M.; Paoletti, I.; Sandomenico, C.; Pepe, S.; Staibano, S.; Salvatore, G.; De Rosa, G.; Persico, M.G.; Viglietto, G. Expression of Teratocarcinoma-Derived Growth Factor-1 (TDGF-1) in testis germ cell tumors and its effects on growth and differentiation of embryonal carcinoma cell line NTERA2/D1. Oncogene, 1997, 15(8), 927-936.
[311]
Pal, R.; Ravindran, G. Assessment of pluripotency and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells. Cell Prolif., 2006, 39(6), 585-598.
[312]
Papanayotou, C.; Benhaddou, A.; Camus, A.; Perea-Gomez, A.; Jouneau, A.; Mezger, V.; Langa, F.; Ott, S.; Sabéran-Djoneidi, D.; Collignon, J. A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol., 2014, 12(6)e1001890
[313]
McAlpine, J.; Leon-Castillo, A.; Bosse, T. The rise of a novel classification system for endometrial carcinoma; integration of molecular subclasses. J. Pathol., 2018, 244(5), 538-549.
[314]
Del Carmen, M.G.; Boruta, D.M., II; Schorge, J.O. Recurrent endometrial cancer. Clin. Obstet. Gynecol., 2011, 54(2), 266-277.
[315]
Talhouk, A.; McAlpine, J.N. New classification of endometrial cancers: The development and potential applications of genomic-based classification in research and clinical care. Gynecol. Oncol. Res. Pract., 2016, 3, 14.
[316]
Jones, R.L.; Salamonsen, L.A.; Zhao, Y.C.; Ethier, J.F.; Drummond, A.E.; Findlay, J.K. Expression of activin receptors, follistatin and betaglycan by human endometrial stromal cells; consistent with a role for activins during decidualization. Mol. Hum. Reprod., 2002, 8(4), 363-374.
[317]
Kyo, S.; Kato, K. Endometrial cancer stem cell as a potential therapeutic target. Semin. Reprod. Med., 2015, 33(5), 341-349.
[318]
Zhang, Z.; Jiang, T.; Li, Q.; Wang, J.; Yang, D.; Li, X.; Wang, Q.; Song, X. Nodal activates smad and extracellular signal-regulated kinases 1/2 pathways promoting renal cell carcinoma proliferation. Mol. Med. Rep., 2015, 12(1), 587-594.
[319]
Axelson, H.; Johansson, M.E. Renal stem cells and their implications for kidney cancer. Semin. Cancer Biol., 2013, 23(1), 56-61.
[320]
Peired, A.J.; Sisti, A.; Romagnani, P. Renal cancer stem cells: Characterization and targeted therapies. Stem Cells Int., 2016, 20168342625
[321]
Okajima, E.; Tsutsumi, M.; Okajima, E.; Konishi, Y. Cripto expression in human urological tumors. Cancer Lett., 1997, 111(1-2), 67-70.
[322]
Chai, Y.J.; Kim, Y.A.; Jee, H.G.; Yi, J.W.; Jang, B.G.; Lee, K.E.; Park, Y.J.; Youn, Y.K. Expression of the embryonic morphogen Nodal in differentiated thyroid carcinomas: Immunohistochemistry assay in tissue microarray and the cancer genome atlas data analysis. Surgery, 2014, 156(6), 1559-1567.
[323]
Yamashita, A.S.; Geraldo, M.V.; Fuziwara, C.S.; Kulcsar, M.A.; Friguglietti, C.U.; da Costa, R.B.; Baia, G.S.; Kimura, E.T. Notch pathway is activated by MAPK signaling and influences papillary thyroid cancer proliferation. Transl. Oncol., 2013, 6(2), 197-205.
[324]
Minion, L.E.; Tewari, K.S. Cervical cancer - State of the science: From angiogenesis blockade to checkpoint inhibition. Gynecol. Oncol., 2018, 148(3), 609-621.
[325]
Liu, P.; Xin, F.; Ma, C.F. Clinical significance of serum miR-196a in cervical intraepithelial neoplasia and cervical cancer. Genet. Mol. Res., 2015, 14(4), 17995-18002.
[326]
Czerniak, B.; Olszewska-Słonina, D. Biomarkers could facilitate prediction of worse clinical outcome of cancer with special insight to cervical cancer. Contemp. Oncol. (Pozn.), 2018, 22(1), 1-7.
[327]
Ertoy, D.; Ayhan, A.; Saraç, E.; Karaağaoğlu, E.; Yasui, W.; Tahara, E.; Ayhan, A. Clinicopathological implication of cripto expression in early stage invasive cervical carcinomas. Eur. J. Cancer, 2000, 36(8), 1002-1007.
[328]
Ebert, A.D.; Wechselberger, C.; Frank, S.; Wallace-Jones, B.; Seno, M.; Martinez-Lacaci, I.; Bianco, C.; De Santis, M.; Weitzel, H.K.; Salomon, D.S. Cripto-1 induces phosphatidylinositol 3′-kinase-dependent phosphorylation of AKT and glycogen synthase kinase 3beta in human cervical carcinoma cells. Cancer Res., 1999, 59(18), 4502-4505.
[329]
Ebert, A.D.; Wechselberger, C.; Nees, M.; Clair, T.; Schaller, G.; Martinez-Lacaci, I.; Wallace-Jones, B.; Bianco, C.; Weitzel, H.K.; Salomon, D.S. Cripto-1-induced increase in vimentin expression is associated with enhanced migration of human Caski cervical carcinoma cells. Exp. Cell Res., 2000, 257(1), 223-229.
[330]
Shroff, G.S.; de Groot, P.M.; Papadimitrakopoulou, V.A.; Truong, M.T.; Carter, B.W. Targeted therapy and immunotherapy in the treatment of non-small cell lung cancer. Radiol. Clin. North Am., 2018, 56(3), 485-495.
[331]
Xu, C.H.; Sheng, Z.H.; Hu, H.D.; Hao, K.K.; Wang, Q.B.; Yu, L.K. Elevated expression of Cripto-1 correlates with poor prognosis in non-small cell lung cancer. Tumour Biol., 2014, 35(9), 8673-8678.
[332]
Xu, C.H.; Cao, L.; Wei, Y.; Yu, L.K. Serum cripto-1 as a clinical marker for lung cancer. Int. J. Biol. Markers, 2015, 30(4), e369-e373.
[333]
Xu, C.H.; Wang, Y.; Qian, L.H.; Yu, L.K.; Zhang, X.W.; Wang, Q.B. Serum Cripto-1 is a novel biomarker for non-small cell lung cancer diagnosis and prognosis. Clin. Respir. J., 2017, 11(6), 765-771.
[334]
Park, K.S.; Moon, Y.W.; Raffeld, M.; Lee, D.H.; Wang, Y.; Giaccone, G. High cripto-1 and low miR-205 expression levels as prognostic markers in early stage non-small cell lung cancer. Lung Cancer, 2018, 116, 38-45.
[335]
Park, K.S.; Raffeld, M.; Moon, Y.W.; Xi, L.; Bianco, C.; Pham, T.; Lee, L.C.; Mitsudomi, T.; Yatabe, Y.; Okamoto, I.; Subramaniam, D.; Mok, T.; Rosell, R.; Luo, J.; Salomon, D.S.; Wang, Y.; Giaccone, G. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance. J. Clin. Invest., 2014, 124(7), 3003-3015.
[336]
Shan, Y.; Li, S. Expression of Cripto-1 gene protein and Activin-A in human lung adenocarcinoma tissue. Pak. J. Pharm. Sci., 2015, 28(2)(Suppl.), 739-743.
[337]
Zhang, H.; Zhang, B.; Gao, L.; Zhang, L.; Zhu, K.; Cheng, R.; Wang, C. Clinical significance of cripto-1 expression in lung adenocarcinoma. Oncotarget, 2017, 8(45), 79087-79098.
[338]
Zakaria, N.; Satar, N.A.; Abu Halim, N.H.; Ngalim, S.H.; Yusoff, N.M.; Lin, J.; Yahaya, B.H. Targeting lung cancer stem cells: Research and clinical impacts. Front. Oncol., 2017, 7, 80.
[339]
Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol., 2009, 45(4-5), 309-316.
[340]
Yoon, H.J.; Hong, J.S.; Shin, W.J.; Lee, Y.J.; Hong, K.O.; Lee, J.I.; Hong, S.P.; Hong, S.D. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma. Oral Oncol., 2011, 47(11), 1023-1031.
[341]
Kato, K.; Kawashiri, S.; Yoshizawa, K.; Kitahara, H.; Okamune, A.; Sugiura, S.; Noguchi, N.; Yamamoto, E. Expression form of p53 and PCNA at the invasive front in oral squamous cell carcinoma: Correlation with clinicopathological features and prognosis. J. Oral Pathol. Med., 2011, 40(9), 693-698.
[342]
Baillie, R.; Tan, S.T.; Itinteang, T. Cancer stem cells in oral cavity squamous cell carcinoma: A review. Front. Oncol., 2017, 7, 112.
[343]
Liu, Q.; Cui, X.; Yu, X.; Bian, B.S.; Qian, F.; Hu, X.G.; Ji, C.D.; Yang, L.; Ren, Y.; Cui, W.; Zhang, X.; Zhang, P.; Wang, J.M.; Cui, Y.H.; Bian, X.W. Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol. Cancer, 2017, 16(1), 81.
[344]
Wu, Z.; Li, G.; Wu, L.; Weng, D.; Li, X.; Yao, K. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma. BMC Cancer, 2009, 9, 315.
[345]
Zhong, X.Y.; Zhang, L.H.; Jia, S.Q.; Shi, T.; Niu, Z.J.; Du, H.; Zhang, G.G.; Hu, Y.; Lu, A.P.; Li, J.Y.; Ji, J.F. Positive association of up-regulated Cripto-1 and down-regulated E-cadherin with tumour progression and poor prognosis in gastric cancer. Histopathology, 2008, 52(5), 560-568.
[346]
Desai, A.; Xu, J.; Aysola, K.; Qin, Y.; Okoli, C.; Hariprasad, R.; Chinemerem, U.; Gates, C.; Reddy, A.; Danner, O.; Franklin, G.; Ngozi, A.; Cantuaria, G.; Singh, K.; Grizzle, W.; Landen, C.; Partridge, E.E.; Rice, V.M.; Reddy, E.S.; Rao, V.N. Epithelial ovarian cancer: An overview. World J. Transl. Med., 2014, 3(1), 1-8.
[347]
Lupia, M.; Cavallaro, U. Ovarian cancer stem cells: Still an elusive entity? Mol. Cancer, 2017, 16(1), 64.
[348]
Xu, G.; Zhou, H.; Wang, Q.; Auersperg, N.; Peng, C. Activin receptor-like kinase 7 induces apoptosis through up-regulation of Bax and down-regulation of Xiap in normal and malignant ovarian epithelial cell lines. Mol. Cancer Res., 2006, 4(4), 235-246.
[349]
Xu, G.; Bernaudo, S.; Fu, G.; Lee, D.Y.; Yang, B.B.; Peng, C. Cyclin G2 is degraded through the ubiquitin-proteasome pathway and mediates the antiproliferative effect of activin receptor-like kinase 7. Mol. Biol. Cell, 2008, 19(11), 4968-4979.
[350]
Fu, G.; Peng, C. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells. Oncogene, 2011, 30(37), 3953-3966.
[351]
Niikura, H.; Sasano, H.; Sato, S.; Yajima, A. Expression of epidermal growth factor-related proteins and epidermal growth factor receptor in common epithelial ovarian tumors. Int. J. Gynecol. Pathol., 1997, 16(1), 60-68.
[352]
D’Antonio, A.; Losito, S.; Pignata, S.; Grassi, M.; Perrone, F.; De Luca, A.; Tambaro, R.; Bianco, C.; Gullick, W.J.; Johnson, G.R.; Iaffaioli, V.R.; Salomon, D.S.; Normanno, N. Transforming growth factor alpha, amphiregulin and cripto-1 are frequently expressed in advanced human ovarian carcinomas. Int. J. Oncol., 2002, 21(5), 941-948.
[353]
Casamassimi, A.; De Luca, A.; Agrawal, S.; Stromberg, K.; Salomon, D.S.; Normanno, N. EGF-related antisense oligonucleotides inhibit the proliferation of human ovarian carcinoma cells. Ann. Oncol., 2000, 11(3), 319-325.
[354]
Fernandez-Piñeiro, I.; Badiola, I.; Sanchez, A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol. Adv., 2017, 35(3), 350-360.
[355]
Babu, A.; Munshi, A.; Ramesh, R. Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev. Ind. Pharm., 2017, 43(9), 1391-1401.
[356]
Rothschild, S.I. microRNA therapies in cancer. Mol. Cell. Ther., 2014, 2, 7.
[357]
Normanno, N.; Bianco, C.; Damiano, V.; de Angelis, E.; Selvam, M.P.; Grassi, M.; Magliulo, G.; Tortora, G.; Bianco, A.R.; Mendelsohn, J.; Salomon, D.S.; Ciardiello, F. Growth inhibition of human colon carcinoma cells by combinations of anti-epidermal growth factor-related growth factor antisense oligonucleotides. Clin. Cancer Res., 1996, 2(3), 601-609.
[358]
De Luca, A.; Casamassimi, A.; Selvam, M.P.; Losito, S.; Ciardiello, F.; Agrawal, S.; Salomon, D.S.; Normanno, N. EGF-related peptides are involved in the proliferation and survival of MDA-MB-468 human breast carcinoma cells. Int. J. Cancer, 1999, 80(4), 589-594.
[359]
Normanno, N.; De Luca, A.; Maiello, M.R.; Bianco, C.; Mancino, M.; Strizzi, L.; Arra, C.; Ciardiello, F.; Agrawal, S.; Salomon, D.S. CRIPTO-1: A novel target for therapeutic intervention in human carcinoma. Int. J. Oncol., 2004, 25(4), 1013-1020.
[360]
De Luca, A.; Selvam, M.P.; Sandomenico, C.; Pepe, S.; Bianco, A.R.; Ciardiello, F.; Salomon, D.S.; Normanno, N. Anti-sense oligonucleotides directed against EGF-related growth factors enhance anti-proliferative effect of conventional anti-tumor drugs in human colon-cancer cells. Int. J. Cancer, 1997, 73(2), 277-282.
[361]
De Luca, A.; Arra, C.; D’Antonio, A.; Casamassimi, A.; Losito, S.; Ferraro, P.; Ciardiello, F.; Salomon, D.S.; Normanno, N. Simultaneous blockage of different EGF-like growth factors results in efficient growth inhibition of human colon carcinoma xenografts. Oncogene, 2000, 19(51), 5863-5871.
[362]
van Boxtel, A.L.; Chesebro, J.E.; Heliot, C.; Ramel, M.C.; Stone, R.K.; Hill, C.S. A Temporal window for signal activation dictates the dimensions of a nodal signaling domain. Dev. Cell, 2015, 35(2), 175-185.
[363]
Cioffi, M.; Trabulo, S.M.; Sanchez-Ripoll, Y.; Miranda-Lorenzo, I.; Lonardo, E.; Dorado, J.; Reis Vieira, C.; Ramirez, J.C.; Hidalgo, M.; Aicher, A.; Hahn, S.; Sainz, B., Jr; Heeschen, C. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut, 2015, 64(12), 1936-1948.
[364]
Hu, X.F.; Xing, P.X. Cripto as a target for cancer immunotherapy. Expert Opin. Ther. Targets, 2005, 9(2), 383-394.
[365]
Glaser, S.; Van Vlijmen, H.; Lugovskoy, A.A.; Sanicola-Nadel, M.; Wu, X.; Garber, E. Cripto binding molecules. US Patent WO2006/074397, 13 July, 2006.
[366]
Kelly, R.K.; Olson, D.L.; Sun, Y.; Wen, D.; Wortham, K.A.; Antognetti, G.; Cheung, A.E.; Orozco, O.E.; Yang, L.; Bailly, V.; Sanicola, M. An antibody-cytotoxic conju-gate, BIIB015, is a new targeted therapy for Cripto positive tumours. Eur. J. Cancer, 2011, 47(11), 1736-1746.
[367]
McKenzie, I.F.C.; Xing, P.X.; Hu, X.F. Antibodies against cancer. US Patent 12/619,053, 13 May, 2010.
[368]
Hu, X.F.; Li, J.; Yang, E.; Vandervalk, S.; Xing, P.X. Anti-Cripto Mab inhibit tumour growth and overcome MDR in a human leukaemia MDR cell line by inhibition of Akt and activation of JNK/SAPK and bad death pathways. Br. J. Cancer, 2007, 96(6), 918-927.
[369]
Gray, P.C.; Shani, G.; Kelber, J.A.; Vale, W. Compositions and methods for the inhibition of Cripto/GRP78 complex formation and signaling. US Patent 12/615,033, June 3, 2010.
[370]
Aykul, S.; Ni, W.; Mutatu, W.; Martinez-Hackert, E. Human Cerberus prevents nodal-receptor binding, inhibits nodal signaling, and suppresses nodal-mediated phenotypes. PLoS One, 2015, 10(1)e0114954
[371]
Shi, Y.; Bao, Y.L.; Wu, Y.; Yu, C.L.; Huang, Y.X.; Sun, Y.; Zheng, L.H.; Li, Y.X. Alantolactone inhibits cell proliferation by interrupting the interaction between Cripto-1 and activin receptor type II A in activin signaling pathway. J. Biomol. Screen., 2011, 16(5), 525-535.
[372]
Rasul, A.; Khan, M.; Ali, M.; Li, J.; Li, X. Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone. Sci. World J., 2013, 2013248532

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy