[1]
Prokopiou, E.M.; Ryder, S.A.; Walsh, J.J. Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis, 2013, 16(3), 503-524.
[2]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Hybrid pharmacophore-based drug design, synthesis, and antiproliferative activity of 1, 4-dihydropyridines-linked alkylating anticancer agents. Med. Chem. Res., 2014, 24(4), 1534-1545.
[3]
Gourdeau, H.; Leblond, L.; Hamelin, B.; Desputeau, C.; Dong, K.; Kianicka, I.; Custeau, D.; Boudreau, C.; Geerts, L.; Cai, S-X. Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4, 5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Mol. Cancer Ther., 2004, 3(11), 1375-1384.
[4]
Mladenovi, Ä. M.; MihailoviÄ, M.; BogojeviÄ, D.; MatiÄ, S.; NićiforoviÄ, N.; MihailoviÄ, V.; VukoviÄ, N.; Sukdolak, S.; SolujiÄ, S. In vitro antioxidant activity of selected 4-hydroxy-chromene-2-one derivatives-SAR, QSAR and DFT studies. Int. J. Mol. Sci., 2011, 12(5), 2822-2841.
[5]
Nicolaou, K.C.; Pfefferkorn, J.A.; Roecker, A.J.; Cao, G.Q.; Barluenga, S.; Mitchell, H.J. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans. J. Am. Chem. Soc., 2000, 122(41), 9939-9953.
[6]
Doshi, J.M.; Tian, D.; Xing, C. Structure-activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4 H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer. J. Med. Chem., 2006, 49(26), 7731-7739.
[8]
Wilson, L.; Jordan, M.A. Microtubule dynamics: Taking aim at a moving target. Chem. Biol., 1995, 2(9), 569-573.
[9]
Madari, H.; Panda, D.; Wilson, L.; Jacobs, R.S. Dicoumaro. Cancer Res., 2003, 63(6), 1214-1220.
[10]
Kim, S-N.; Kim, N.H.; Park, Y.S.; Kim, H.; Lee, S.; Wang, Q.; Kim, Y.K. 7-Diethylamino-3 (2′-benzoxazolyl)-coumarin is a novel microtubule inhibitor with antimitotic activity in multidrug resistant cancer cells. Biochem. Pharmacol., 2009, 77(12), 1773-1779.
[11]
Atwal, K.S.; Rovnyak, G.C.; Kimball, S.D.; Floyd, D.M.
Moreland, S.; Swanson, B.N.; Gougoutas, J.Z.; Schwartz, J.; Smillie, K.M.; Malley, M.F. Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1, 4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J. Med. Chem., 1990, 33(9), 2629-2635.
[12]
Hulubei, V.; Meikrantz, S.B.; Quincy, D.A.; Houle, T.; McKenna, J.I.; Rogers, M.E.; Steiger, S.; Natale, N.R. 4-Isoxazolyl-1, 4-dihydropyridines exhibit binding at the multidrug-resistance transporter. Bioorg. Med. Chem., 2012, 20(22), 6613-6620.
[13]
Matsuno, K.; Sawada, J.I.; Sugimoto, M.; Ogo, N.; Asai, A. Bis (hetero) aryl derivatives as unique kinesin spindle protein inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(4), 1058-1061.
[14]
Myers, S.M.; Collins, I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med. Chem., 2016, 8(4), 463-489.
[15]
Tcherniuk, S.; Van Lis, R.; Kozielski, F.; Skoufias, D.A. Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in tumor derived cell lines. Biochem. Pharmacol., 2010, 79(6), 864-872.
[16]
Kozhevnikova, E.F.; Rafiee, E.; Kozhevnikov, I.V. Fries rearrangement of aryl esters catalysed by heteropoly acid: catalyst regeneration and reuse. Appl. Catal. A Gen., 2004, 260(1), 25-34.
[17]
Zilla, M.K.; Nayak, D.; Vishwakarma, R.A.; Sharma, P.R.; Goswami, A.; Ali, A. A convergent synthesis of alkyne-azide cycloaddition derivatives of 4-α, β-2-propyne podophyllotoxin depicting potent cytotoxic activity. Eur. J. Med. Chem., 2014, 77, 47-55.
[18]
Rah, B.; Lone, S.H.; Rasool, R.U.; Farooq, S.; Nayak, D.; Chikan, N.A.; Chakraborty, S.; Behl, A.; Mondhe, D.M.; Goswami, A. Design and synthesis of antitumor heck-coupled Sclareol analogues: Modulation of BH3 family members by SS-12 in autophagy and apoptotic cell death. J. Med. Chem., 2015, 58(8), 3432-3444.
[19]
Sinha, S.; Mishra, P.; Amin, H.; Rah, B.; Nayak, D.; Goswami, A.; Kumar, N.; Vishwakarma, R.; Ghosal, S. A new cytotoxic quinolone alkaloid and a pentacyclic steroidal glycoside from the stem bark of Crataeva nurvala: Study of anti-proliferative and apoptosis inducing property. Eur. J. Med. Chem., 2013, 60, 490-496.
[20]
Zilla, M.K.; Nayak, D.; Amin, H.; Nalli, Y.; Rah, B.; Chakraborty, S.; Kitchlu, S.; Goswami, A.; Ali, A. 4′-Demethyl-deoxypodophyllotoxin glucoside isolated from Podophyllum hexandrum exhibits potential anticancer activities by altering Chk-2 signaling pathway in MCF-7 breast cancer cells. Chem. Biol. Interact., 2014, 224, 100-107.
[21]
Sinha, S.; Amin, H.; Nayak, D.; Bhatnagar, M.; Kacker, P.; Chakraborty, S.; Kitchlu, S.; Vishwakarma, R.; Goswami, A.; Ghosal, S. Assessment of microtubule depolymerization property of flavonoids isolated from tanacetum gracile in breast cancer cells by biochemical and molecular docking approach. Chem. Biol. Interact., 2015, 239, 1-11.
[22]
Amin, H.; Nayak, D. ur Rasool, R.; Chakraborty, S.; Kumar, A.; Yousuf, K.; Sharma, P.R.; Ahmed, Z.; Sharma, N.; Magotra, A. Par-4 dependent modulation of cellular β-catenin by medicinal plant natural product derivative 3-azido Withaferin A. Mol. Carcinog., 2015, 55(5), 864-881.
[23]
Dash, A.K.; Jaladanki, C.K.; Maiti, D.K.; Singh, D.; Tripathi, A.K.; Gupta, V.K.; Bharatam, P.V.; Mukherjee, D. Tandem gem-dichlorination and nitrile oxide generation from chlorochromene aldoximes: synthesis of a new class of room temperature fluxional 4-chromanone derivatives. ChemistrySelect, 2016, 1(3), 567-571.
[24]
Kappe, C.O. Recent advances in the biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[25]
Rafiee, E.; Shahbazi, F. One-pot synthesis of dihydropyrimidones using silica-supported heteropoly acid as an efficient and reusable catalyst: Improved protocol conditions for the Biginelli reaction. J. Mol. Catal. Chem., 2006, 250(1), 57-61.
[26]
Fouda, A.M. Synthesis of several 4H-chromene derivatives of expected antitumor activity. Med. Chem. Res., 2016, 25(6), 1229-1238.
[27]
Focher, F.; Ubiali, D.; Pregnolato, M.; Zhi, C.; Gambino, J.; Wright, G.E.; Spadari, S. Novel nonsubstrate inhibitors of human thymidine phosphorylase, a potential target for tumor-dependent angiogenesis. J. Med. Chem., 2000, 43(13), 2601-2607.
[28]
Giovannetti, E.; Mey, V.; Nannizzi, S.; Pasqualetti, G.; Marini, L.; Del Tacca, M.; Danesi, R. Cellular and pharmacogenetics foundation of synergistic interaction of pemetrexed and gemcitabine in human non-small-cell lung cancer cells. Mol. Pharmacol., 2005, 68(1), 110-118.
[29]
Huang, C-l.; Yokomise, H.; Fukushima, M.; Kinoshita, M. Tailor-made chemotherapy for non-small cell lung cancer patients; Future Med, 2006, pp. 289-299.
[30]
Canto, R.M.F.S.; Bernardi, A.; Battastini, A.M.O.; Russowsky, D.; Eifler-Lima, V.L. Synthesis of dihydropyrimidin-2-one/thione library and cytotoxic activity against the human U138-MG and Rat C6 glioma cell lines. J. Braz. Chem. Soc., 2011, 22(7), 1379-1388.
[31]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[32]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[33]
Chen, Q.; Chai, Y.C.; Mazumder, S.; Jiang, C.; Macklis, R.M.; Chisolm, G.M.; Almasan, A. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ., 2003, 10(3), 323-334.
[34]
Gupta, G.P.; Massagu, Ã. ©, J. Cancer metastasis: Building a framework. Cell, 2006, 127(4), 679-695.
[35]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[36]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178.
[37]
Beg, A.A.; Baltimore, D. An essential role for NF-kB in preventing TNF-alpha-induced cell death. Science, 1996, 274(5288), 782.
[38]
Catz, S.D.; Johnson, J.L. Transcriptional regulation of bcl-2 by nuclear factor [kappa] B and its significance in prostate cancer. Oncogene, 2001, 20(50), 7342.
[39]
Rosa, J.; Canovas, P.; Islam, A.; Altieri, D.C.; Doxsey, S.J. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol. Biol. Cell, 2006, 17(3), 1483-1493.
[40]
Suzuki, Y.; Nakabayashi, Y.; Nakata, K.; Reed, J.C.; Takahashi, R. X-linked Inhibitor of Apoptosis Protein (XIAP) inhibits caspase-3 and-7 in distinct modes. J. Biol. Chem., 2001, 276(29), 27058-27063.
[41]
Kawakami, H.; Tomita, M.; Matsuda, T.; Ohta, T.; Tanaka, Y.; Fujii, M.; Hatano, M.; Tokuhisa, T.; Mori, N. Transcriptional activation of survivin through the NF-kB pathway by human T-cell leukemia virus type I tax. Int. J. Cancer, 2005, 115(6), 967-974.