[1]
Murray, C.J.; Lopez, A.D. and World Health Organization. The
global burden of disease: A comprehensive assessment of mortality
and disability from diseases, injuries, and risk factors in 1990 and
projected to 2020: summary. 1996.
[2]
Landis, S.H.; Murray, T.; Bolden, S.; Wingo, P.A. Cancer statistics, 1999, Cancer. J. Clin., 1999, 49(1), 8-31.
[3]
Perez-Tomas, R. Multidrug resistance: Retrospect and prospects in anti-cancer drug treatment. Curr. Med. Chem., 2006, 13(16), 1859-1876.
[4]
Kuno, T.; Tsukamoto, T.; Hara, A.; Tanaka, T. Cancer chemoprevention through the induction of apoptosis by natural compounds. J. Biophys. Chem., 2012, 3(2), 156.
[5]
Chou, C.C.; Yang, J.S.; Lu, H.F.; Ip, S.W.; Lo, C.; Wu, C.C.; Lin, J.P.; Tang, N.Y.; Chung, J.G.; Chou, M.J.; Teng, Y.H. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181-1191.
[7]
Kemnitzer, W.; Sirisoma, N.; Nguyen, B.; Jiang, S.; Kasibhatla, S.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell-and caspase-based high-throughput screening assay. 1. Structure–activity relationships of the carboxamide group. Bioorg. Med. Chem. Lett., 2009, 19(11), 3045-3049.
[8]
Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev., 2015, 16(6), 2129-2144.
[9]
De-Filippis, B. Anticancer activity of stilbene‐based derivatives. ChemMedChem, 2017, 12(8), 558-570.
[10]
Martí-Centelles, R.; Murga, J.; Falomir, E.; Carda, M.; Marco, J.A. Inhibitory effect of cytotoxic nitrogen-containing heterocyclic stilbene analogues on VEGF protein secretion and VEGF, hTERT and c-Myc gene expression. MedChemComm, 2015, 6(10), 1809-1815.
[11]
Trapani, G.; Franco, M.; Latrofa, A.; Ricciardi, L.; Carotti, A.; Serra, M.; Sanna, E.; Biggio, G.; Liso, G. Novel 2-phenylimidazo [1, 2-a] pyridine derivatives as potent and selective ligands for peripheral benzodiazepine receptors: Synthesis, binding affinity, and in vivo studies. J. Med. Chem., 1999, 42(19), 3934-3941.
[12]
Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. Derivatives of imidazole. I. Synthesis and reactions of imidazo [1, 2-α] pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J. Med. Chem., 1965, 8(3), 305-312.
[13]
Couty, F.; Evano, G. Chapter 10, in: Katritzky, A.R.; Ramsden,
C.A.; Scriven, E.V.F.; Taylor, R.J.K. (Eds.). Comprehensive Heterocyclic
Chemistry III,, Elsevier Science, Oxford. 2008, 11, 409-
492.
[14]
Rupert, K.C.; Henry, J.R.; Dodd, J.H.; Wadsworth, S.A.; Cavender, D.E.; Olini, G.C.; Fahmy, B.; Siekierka, J.J. Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett., 2003, 13(3), 347-350.
[15]
Baviskar, A.T.; Madaan, C.; Preet, R.; Mohapatra, P.; Jain, V.; Agarwal, A.; Guchhait, S.K.; Kundu, C.N.; Banerjee, U.C.; Bharatam, P.V. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIα and induce apoptosis in G1/S phase. J. Med. Chem., 2011, 54(14), 5013-5030.
[17]
Arab, S.; Sadat‐Ebrahimi, S.E.; Mohammadi‐Khanaposhtani, M.; Moradi, A.; Nadri, H.; Mahdavi, M.; Moghimi, S.; Asadi, M.; Firoozpour, L.; Pirali‐Hamedani, M.; Shafiee, A. Synthesis and evaluation of chroman‐4‐one linked to n‐benzyl pyridinium derivatives as new acetylcholinesterase inhibitors. Arch. Pharm., 2015, 348, 643-649.
[18]
Mohammadi‐Khanaposhtani, M.; Mahdavi, M.; Saeedi, M.; Sabourian, R.; Safavi, M.; Khanavi, M.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, biological evaluation, and docking study of acetylcholinesterase inhibitors: New acridone‐1, 2, 4‐oxadiazole‐1, 2, 3‐triazole hybrids. Chem. Biol. Drug Des., 2015, 86, 1425-1432.
[19]
Mohammadi-Khanaposhtani, M.; Safavi, M.; Sabourian, R.; Mahdavi, M.; Pordeli, M.; Saeedi, M.; Ardestani, S.K.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9 (10H)-acridinone-1, 2, 3-triazoles. Mol. Divers., 2015, 19, 787-795.
[20]
Mohammadi-Khanaposhtani, M.; Shabani, M.; Faizi, M.; Aghaei, I.; Jahani, R.; Sharafi, Z.; Zafarghandi, N.S.; Mahdavi, M.; Akbarzadeh, T.; Emami, S.; Shafiee, A.; Foroumadi, A. Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1, 2, 4-oxadiazoles as potential anticonvulsant agents. Eur. J. Med. Chem., 2016, 112, 91-98.
[21]
Rahmani-Nezhad, S.; Khosravani, L.; Saeedi, M.; Divsalar, K.; Firoozpour, L.; Pourshojaei, Y.; Sarrafi, Y.; Nadri, H.; Moradi, A.; Mahdavi, M.; Shafiee, A. Synthesis and evaluation of coumarin–resveratrol hybrids as 15-lipoxygenaze inhibitors. Synth. Commun., 2015, 45(6), 741-749.
[22]
Mehrabi, F.; Pourshojaei, Y.; Moradi, A.; Sharifzadeh, M.; Khosravani, L.; Sabourian, R.; Rahmani-Nezhad, S.; Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Asadipour, A.; Rahimi, H.R. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Future Med. Chem., 2017, 9(7), 659-671.
[24]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[25]
Kelm, J.M.; Timmins, N.E.; Brown, C.J.; Fussenegger, M.; Nielsen, L.K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng., 2003, 83(2), 173-180.
[26]
Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp., 2011, 51, 2720.
[27]
Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today, 2013, 18(5-6), 240-249.
[28]
Ho, W.Y.; Yeap, S.K.; Ho, C.L.; Rahim, R.A.; Alitheen, N.B. Development of Multicellular Tumor Spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS One, 2012, 7(9), 44640.
[29]
Ribble, D.; Goldstein, N.B.; Norris, D.A.; Shellman, Y.G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol., 2005, 5(1), 12.
[30]
Safavi, M.; Esmati, N.; Ardestani, S.K.; Emami, S.; Ajdari, S.; Davoodi, J.; Shafiee, A.; Foroumadi, A. Halogenated flavanones as potential apoptosis-inducing agents: Synthesis and biological activity evaluation. Eur. J. Med. Chem., 2012, 58, 573-580.
[31]
Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors., 2003, 3(8), 276-284.
[32]
LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol., 1992, 5(2), 227-231.