[1]
Poenaru, S.; Rouhani, S.; Rayssiguier, Y.; Durlach, J.; Regnard, J.; Iovino, M. Electrophysiological parameters in the male wistar rat. Acta Neurol. (Napoli), 1983, 5, 337-345.
[2]
Poenaru, S.; Rohuani, S.; Durlach, J.; Aymard, N.; Belkahla, F.; Iovino, M. Vigilance states and cerebral monoamine metabolism in experimental magnesium deficiency. Magnesium, 1984, 3, 145-151.
[3]
Moruzzi, G.; Magoun, H.W. Brain stem reticular formation and activation of EEG. Electroencephalogr. Clin. Neurophysiol., 1949, 4, 455-473.
[4]
Magoun, H.W. The ascending reticular activating system. Res. Publ. Assoc. Res. Nerv. Ment. Dis., 1952, 30, 480-492.
[5]
Neylan, T.C. Physiology of arousal: Moruzzi and Magoun’s ascending reticular activating system. J. Neuropsychiatry Clin. Neurosci., 1995, 7(2), 250.
[6]
Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci., 1981, 1(8), 876-886.
[7]
Berridge, C.W. Noradrenergic modulation of arousal. Brain Res. Brain, 2008, 5, 1-17.
[8]
Takahashi, K.; Kayama, Y.; Lin, J.S.; Sakai, K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience, 2010, 169, 1115-1126.
[9]
Cirielli, C.; Huber, R.; Gopalakrishanan, A.; Southard, T.L.; Tononi, G. Locus coeruleus control of slow-wave homeostasis. J. Neurosci., 2005, 25, 4503-4511.
[10]
Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci., 2010, 13, 1526-1533.
[11]
Belkin, M.R.; Schwartz, T.L. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder. Drugs Context, 2015, 4, 212-286.
[12]
Malenka, R.C.; Nestler, E.J.; Hyman, S.E. Widely projecting systems: Monoamines, acetylcholine and orexin.in: Sydor a., brown ry. Molecular Neuropharmacology: A foundation for Clinical Neuroscience; McGraw-Hill: New York, 2009, pp. 175-176.
[13]
Iwanczuk, W.; Guzniczake, P. Neurophysiological foundations of sleep, arousal, awareness and consciousness phenomena. part 1. anaesthesiol. Intensive Ther., 2015, 47, 162-167.
[14]
Burlet, S.; Tyler, C.J.; Leonard, C.S. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: Implications for wakefulness and narcolepsy. J. Neurosci., 2002, 22, 2862-2872.
[15]
Saalmann, Y.B. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Front. Syst. Urosci., 2014, 8, 83-102.
[16]
Mc Cann, U.D.; Penetar, D.M.; Shaham, Y.; Thorne, D.R.; Sing, H.C.; Thomas, M.L.; Gillin, J.C. Effects of catecholamine depletion on alertness and mood in rested and sleep deprived normal volunteers. Neuropsychopharmacology, 1993, 8, 345-356.
[17]
Berts, T.A. Adrenoceptor drugs and sleep. In: Wheatley D. Psychopharmacology
of sleep. Raven Press, New York ,, 1981, 199-
212.
[18]
Ursin, R. Serotonin and sleep. Sleep Med. Rev., 2002, 6, 57-69.
[19]
Dugovic, C. Role of serotonin in sleep mechanisms. Rev. Neurol., 2001, 157, 516-519.
[20]
Mc Ginty, D.T. Serotonin and sleep: Molecular, functional and clinical aspects. Sleep, 2009, 32, 699-700.
[21]
Hobson, J.A.; Mc Carley, R.W.; Wyzinski, P.W. Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science, 1975, 189, 55-58.
[22]
Garcia-Lorenzo, D.; Longo-Dos Santos, C.; Ewenczyk, C. Leu-Senuluscu, S.; Gallea, C.; Quattrocchi, G.; Pita Lobo, P.; Poupon C.; Benali, H. The coeruleus/subcoeruleus complex in rapid eye movement sleep behavior disorders in Parkinson’s disease. Brain, 2013, 136, 2120-2129.
[23]
Steriade, M.; Gloor, P.; Llinas, R.R.; Lopas de Silva, F.H.; Mesulam, M.M. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol., 1990, 76, 481-508.
[24]
Steriade, M. Grouping of brain rhythms in corticothalamic systems. Neuroscience, 2006, 137, 1087-1106.
[25]
Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol., 1993, 55, 349-374.
[26]
Vazquez, J.; Baghdoyan, H.A. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, 230, R598-R601.
[27]
Batini, C.; Moruzzi, G.; Palestini, M.; Rossi, G.F.; Zanchetti, A. Persistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science, 1958, 128, 30-32.
[28]
Fuller, P.M.; Gooley, J.J.; Saper, C.B. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation and regulatory feedback. J. Biol. Rhythms, 2006, 21, 482-493.
[29]
Villablanca, J.R. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J. Sleep Res., 2004, 13, 179-208.
[30]
Dahlstroem, A.; Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl., 1964, 232, 1-55.
[31]
Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. Suppl., 1971, 367, 1-48.
[32]
Geyer, M.A.; Puerto, A.; Dawsey, W.J.; Knapp, S.; Bullard, W.P.; Mandell, A.J. Histologic and enzymatic studies of the mesolimbic and mesocortical serotonergic pathways. Brain Res., 1976, 106, 241-256.
[33]
Delorme, F.; Froment, J.L.; Jouvet, M. Suppression du sommeil par la p-chloro-methamphetamine et p-chlorophenylalanine. C. R. Seances Soc. Biol. Fil. (Paris), 1966, 160, 2347-2351.
[34]
Dement, W.; Mitler, M.; Henriksen, S. Sleep changes during chronic administration of para-chlorophenylalanine. Rev. Can. Biol., 1972, 31, 239-246.
[35]
Sawchenko, P.E.; Swanson, L.W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. Brain., 1982, 4, 275-325.
[36]
Oltmans, G.A.; Lorden, J.F.; Margules, D.L. Food intake and body weight: Effects of specific and non-specific lesions in the midbrain path of the ascending noradrenergic neurons of the rat. Brain Res., 1977, 128, 293-308.
[37]
Lightman, S.L.; Todd, K.; Everitt, B.J. Ascending noradrenergic projections from the brainstem: Evidence for a major role in the regulation of blood pressure and vasopressin secretion. Exp. Brain Res., 1984, 55, 145-151.
[38]
Gottesmann, C. The involvement of noradrenaline in rapid eye movement sleep mentation. Front. Neurol., 2011, 2, 81.
[39]
Factor, S.A.; Mc Alarney, T.; Sanchez-Ramos, J.R.; Weiner, W.J. Sleep disorders and sleep effect in Parkinson’s disease. Mov. Disord., 1990, 5, 280-285.
[40]
Tandberg, E.; Larsen, J.P.; Karlsen, K. A community-based study of sleep disorders in patients with Parkinson’s disease. Mov. Disord., 1998, 13, 895-899.
[41]
Hobson, D.E.; Yang, A.E.; Martin, W.R.W.; Razmy, A.; Rivest, J.; Fleming, J. Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease: A survey by the Canadian movement disorders group. JAMA, 2002, 287, 455-463.
[42]
Jouvet, M.; Michel, F. New research on the structures responsible for the paradoxical phases of sleep. J. Physiol., 1960, 52, 130-131.
[43]
Dren, A.T.; Domino, E.F. Effects of hemicholinium (HC-3) on EEG activation and brain acetylcholine in the dog. J. Pharmacol. Exp. Ther., 1968, 161, 141-154.
[44]
Rainnie, D.G.; Grunze, H.C.; Mc Carley, R.W.; Green, R.W. Adenosine inhibition of mesopontine cholinergic neurons implications for EEG arousal. Science, 1994, 26, 689-692.
[45]
Steriade, M.M.; Mc Carley, R.W. Neurotransmitter-modulated currents of brainstem neurons and some their forebrain targets.In: Steriade M.M. and Mc Carley R.W. Brain control of wakefulness and sleep; Springer: New York, 2007, pp. 211-254.
[46]
Schwartz, J.R.L.; Roth, T. Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Curr. Neuropharmacol., 2008, 6, 367-378.
[47]
Kayama, Y.; Ohta, M.; Jodo, E. Firing of “possibly” cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Bain Res, 1992, 569, 210-220.
[48]
Jouvet, M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb. Physiol., 1972, 64, 166-307.
[49]
Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull., 1982, 9, 321-353.
[50]
Muzerelle, A.; Scotto-Lomassese, S.; Bernard, J.F.; Soiza-Reilly, M.; Gaspar, P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and bainstem. Brain Struct. Funct., 2016, 221, 535-561.
[51]
Sherin, J.E.; Shiromani, P.J.; McCarley, R.W.; Saper, C.B. Activation of ventrolateral preoptic neurons during sleep. Science, 1996, 271, 216-219.
[52]
Szymusiak, R.; Alam, N.; Steininger, T.L.; Mc Ginty, D. Sleep-waking discharge pattern of venrolateral preotic/anterior hypothalamus in rats. Brain Res., 1998, 803, 178-188.
[53]
Mc Ginty, D.; Szymusiak, R. Brain structures and mechanisms involved in the generation of NREM sleep: Focus on the preoptic hypothalamus. Sleep Med. Rev., 2001, 5, 323-342.
[54]
Mc Ginty, D.; Gang, H.; Suntsova, N.; Alam, M.N.; Methippara, M. Sleep-promoting functions of the hypothalamic median preoptic nucleus: Inhibition of arousal system. Arch. Ital. Biol., 2004, 142, 501-509.
[55]
Suntsova, N.; Szymusiak, R.; Alam, M.N.; Guzman-Marin, R.; Mc Ginty, D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J. Physiol., 2002, 543, 66-77.
[56]
Bremer, F. Cerebral hypnogenic centers. Ann. Neurol., 1977, 2, 1-6.
[57]
Saper, C.B.; Chou, T.C.; Scammell, T.E. The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neurosci., 2001, 24, 726-731.
[58]
Chou, T.C.; Bjorkum, A.A.; Gaus, S.E.; Lu, J.; Scammell, T.C.; Saper, C.B. Afferents to the ventrolateral preoptic nucleus. J. Neurosci., 2002, 22, 977-990.
[59]
Wurtmann, R.J.; Cardinali, D.P. The pineal organ. In: Williams
R.H. The textbook of Endocrinology, ed. 5. W.B. Saunders, Philadelphia,, 1974, pp. 832-850.
[60]
Klein, D.C. The role of serotonin N-acetyltransferase in the adrenergic
regulation of indole metabolism in the pineal gland. In: Barchas
J., Usdin E. Serotonin and Behavior. Academic Press, New
York,, 1973, pp.109-120.
[61]
Binkley, S.A. Circadian rhythms of pineal function in rats. Endocr. Rev., 1983, 4, 255-270.
[62]
Nishino, H.; Koizume, K. Responses of neurons in the suprachiasmatic nuclei of the hypothalamus to putative transmitters. Brain Res., 1977, 120, 167-172.
[63]
Ebadi, M.; Govitrapong, P. Neural pathways and transmitters affecting melatonin synthesis. J. Neural Transm. Suppl., 1986, 21, 125-155.
[64]
Axelrod, J. The pineal gland: A neurochemical transducer. Science, 1974, 184, 1341-1348.
[65]
Reiter, R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev., 1991, 12, 151-180.
[66]
Klein, D.C.; Moore, R.Y. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: Control by the retino-hypothalamic tract and the suprachiasmatic nucleus. Brain Res., 1979, 174, 245-262.
[67]
Dijk, D.J.; Roth, C.; Landolt, H.P.; Werth, A.; Appli, M.; Acherman, P.; Barbely, A.A. Melatonin effect low frequency activity and enhancement of spindle frequency activity. Neurosci. Lett., 1995, 201, 13-16.
[68]
Lavie, P. Melatonin: Role in gating nocturnal rise in sleep propensity. J. Biol. Rhythms, 1997, 12, 657-665.
[69]
Sack, R.L.; Hughes, R.J.; Edgar, D.M.; Lewy, A.J. Sleep-promoting effects of melatonin: At what dose, in whom, under what conditions, and by what mechanisms? Sleep, 1997, 20, 908-915.
[70]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Triggiani, V. Vasopressin secretion control: Central neural pathways, neurotransmitters and effects of drugs. Curr. Pharm. Des., 2012, 18, 4714-4724.
[71]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Fiore, G.; Licchelli, B.; Iovino, E.; Triggiani, V. Role of central and peripheral chemoreceptors in vasopressin secretion control. Endocr. Metab. Immune Disord. Drug Targets, 2013, 13(3), 250-255.
[72]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Triggiani, V. Molecular mechanisms involved in the control of neurohypophyseal hormones secretion. Curr. Pharm. Des., 2014, 20, 6702-6713.
[73]
Iovino, M.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Guastamacchia, E.; Triggiani, V. Synaptic inputs of neural afferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocr. Metab. Immune Disord., 2016, 16, 276-287.
[74]
Trudel, E.; Bourque, C.W. Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat. Neurosci., 2010, 13, 467-474.
[75]
Trudel, E.; Bourque, C.W. Circadian modulation of osmoregulated firing in rat supraoptic nucleus neurons. J. Neuroendocrinol., 2012, 24, 577-586.
[76]
Hanger, R.L.; Datzenberg, F.M. Regulation of the stress response
by corticotropin-releasing factor receptors. In: Conn P.M., Freeman
M.E. Neuroendocrinology in physiology and medicine. Totowa,
Human Press, 2000, 261-87.
[77]
Moore, R.Y.; Eichler, V.P. Loss of a circadian adrenal corticosterone rhythm following suparchiasmatic lesions in the rat. Brain Res., 1972, 42, 201-206.
[78]
Swanson, L.W.; Cowan, W.M. The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J. Comp. Neurol., 1975, 160, 1-12.
[79]
Vrang, N.; Larsen, P.; Mikkelsen, J.D. Direct projection from the suprachiasmatic nucleus to hypophysioprophic coricotropin-releasing-factor immunoreactive cells in the paravenricular nucleus of the hypothalamus. Brain Res., 1995, 684, 61-69.
[80]
Buijs, R.M.; Wortel, J.; van Heerikhuize, J.; Feenstre, M.G.; Ter Horst, G.J.; Romijn, H.J.; Kalsbeek, A. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathways. Eur. J. Neurosci., 1999, 11, 1535-1544.
[81]
Watts, A.G.; Tanimura, S.; Sanchez-Watts, G. Corticotropin-releasing hormone and arginine vasopressin gene transcription in the hypothalamic paraventricular nucleus of unstressed rats: Daily rhythms and their interactions with corticosterone. Endocrinology, 2004, 145, 529-540.
[82]
Fries, E.; Dettenborn, L.; Hirshbaum, C. The cortisol awakening response (CAR): Facts and future directions. Int. J. Psychophysiol., 2009, 72, 67-73.
[83]
Perras, B.; Marshall, L.; Kohler, G.; Born, J.; Fehm, H.L. Sleep And endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged human. Psychoneuroendocrinology, 1999, 24, 743-757.
[84]
Steiger, A.; Guldner, J.; Hemmeter, V.; Rothe, B.; Wiedemann, K.; Holsboer, F. Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology, 1992, 56, 566-573.
[85]
Takahashi, Y.; Kipnis, D.M.; Daughaday, W.H. Growth hormone secretion during sleep. J. Clin. Invest., 1968, 47, 2079-2090.
[86]
Steiger, A.; Antonijevic, I.A.; Bohlhalter, S.; Frieboes, R.M.; Friess, E.; Murck, H. Effects of hormone on sleep. Horm. Res., 1999, 49, 125-130.
[87]
Schrier, T.; Guldner, J.; Colla, M.; Holsber, F.; Steiger, A. Changes in sleep-endocrine activity after growth hormone-releasing hormone depend on time of administration. J. Neuroendocrinol., 1997, 9, 201-205.
[88]
Edgar, D.M.; Dement, W.C.; Fuller, C.A. Effect of SCN lesions on sleep in squirrel monkeys: Evidence for opponent processes in sleep-wake regulation. J. Neurosci., 1993, 13, 1065-1079.
[89]
Curtis, A.L.; Lechner, S.M.; Pavcovich, L.A.; Valentino, R.J. Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion on corticotrophin-releasing factor: Effects on discharge rate, cortical norepinephrine levels and electroencephalographic activity. J. Pharmacol. Exp. Ther., 1997, 281, 163-172.
[90]
Curtis, A.L.; Pavcovich, L.A.; Valentino, R.J. Long-term regulation of locus coeruleus sensitività of corticotropin-releasing factor by swim stress. J. Pharmacol. Exp. Ther., 1999, 289, 1211-1219.
[91]
Nolte, J. Organization of the brainstem. In: The Human Brain. 5ht
ed., Moby, St. Louis,, 2002, 262-90.
[92]
Takahashi, Y.; Kipnis, D.M.; Daughaday, W.H. Growth hormone secretion during sleep. J. Clin. Invest., 1968, 47, 2079-2084.
[93]
Prinz, P.N.; Weitzman, E.D.; Cunnigham, G.R.; Karakan, I. Plasma growth hormone during sleep in young and aged men. J. Gerontol., 1983, 38, 519-524.
[94]
Van Cauter, E.; Plat, L. Physiology of growth hormone secretion during sleep. J. Pediatr., 1996, 128, 532-537.
[95]
Van Cauter, E.; Leproult, R.; Plat, L. Age-related changes in slow waves sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA, 2000, 284, 861-868.
[96]
Beck, U.; Brezinova, V.; Hunter, W.M.; Osvald, I. Plasma growth hormone and slow wave sleep increase after interrumption of sleep. J. Clin. Endocrinol. Metab., 1975, 40, 812-815.
[97]
Karakan, I.; Rosenbloom, A.L.; London, J.H.; Williams, R.L.; Salis, P.J. Growth hormone levels during morning and after naps. Behav. Neuropsychiatry, 1975, 6, 67-70.
[98]
Sonntag, A.; Rothe, B.; Guldner, J.; Yassouridis, A.; Holsboer, F.; Setiger, A. Trimipramine and imipramine exert different effects on the sleep EEG and on nocturnal hormone secretion during treatment of major depression. Depression, 1996, 4, 1-13.
[99]
Steiger, A.; Guldner, J.; Hemmeter, U.; Rothe, B.; Wiedemann, K.; Holsboer, F. Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology, 1992, 56, 566-573.
[100]
Obal, F.; Payne, L.; Kapas, L.; Opp, M.; Krueger, J.M. Inhibition of growth hormone-releasing factor suppresses both sleep and growth hormone secretion in rat. Brain Res., 1991, 557, 149-153.
[101]
Chicara, K.; Kalo, Y.; Maeda, K.; Matsukura, S.; Imura, H. Suppression by cyproheptadine of human growth hormone and cortisol secretion during sleep. J. Clin. Invest., 1976, 57, 1393-1402.
[102]
Koulu, M.; Pihlajamaki, K.; Hupponen, R. Effect of the benzodiazepine derivative, diazepam, on clonidine-stimulated growth hormone secretion. J. Clin. Endocrinol. Metab., 1983, 56, 1316-1318.
[103]
Sassin, J.F.; Frantz, A.G.; Kapen, S.; Weitzman, E.D. The nocturnal rise of human prolactin is dependent on sleep. J. Clin. Endocrinol. Metab., 1973, 37, 436-440.
[104]
Sassin, J.F.; Frantz, A.G.; Weitzman, E.D.; Kapen, S. Human prolactin: 24-hour pattern with increased release during sleep. Science, 1972, 177, 1205-1207.
[105]
Spiegel, K.; Follenius, M.; Simon, C.; Scini, J.; Ehrhart, J.; Brandenberger, G. Prolactin secretion and sleep. Sleep, 1994, 17, 20-27.
[106]
Spiegel, K.; Luthringer, R.; Follenius, M.; Schaltenbrand, N.; Macher, J.P.; Braudenberger, G. Temporal relationship between prolactin secretion and slow-wave electroencephalic activity during sleep. Sleep, 1995, 18, 543-548.
[107]
Linkowski, P.; Spiegel, K.; Kerkhofs, M.; L’Hermite-Baleriaux, M.; Van Onderbergen, A.; Leproult, R.; Mendlewicz, T.; Van Cauter, E. Genetic and environmental influences on prolactin secretion during wake and during sleep. Am. J. Physiol., 1998, 274, E909-E919.
[108]
Shechter, A.; Boivin, D.B. Sleep, hormones and circadian rhythms throughout the menstrual cycle in healthy women with premenstrual dysphoric disorder. Int. J. Endocrinol., 2010, 2010, 259345.
[109]
Machado, F.B.; Rocha, M.R.; Sucheki, D. Brain prolactin is involved in stress- induced REM sleep rebound. Horm. Behav., 2017, 89, 38-47.
[110]
Obal, F.; Payne, L.; Kacsoh, B.; Opp, M.; Kapas, L.; Grosvenor, C.E.; Krueger, J.M. Involvement of PRL in REM sleep-promoting activity of systemic vasoactive intestinal peptide. Brain Res., 1994, 645, 143-149.
[111]
Obal, F.; Garcia-Garcia, I.; Kacsoh, B.; Taishi, P.; Horseman, N.D.; Krueger, J.M. Rapid eye movements sleep is reduced in prolactin-deficient mice. J. Neurosci., 2005, 25, 10282-10289.
[112]
Boyar, R.; Finkelstein, J.W.; Roffwarg, H.; Kapen, S.; Weitzman, D.; Hellman, L. Twenty-four hour luteinizing hormone and follicle-stimulating hormone secretory patterns in gonadal dysgenesis. J. Clin. Endocrinol. Metab., 1973, 37, 521-525.
[113]
Boyar, R.; Finkelstein, J.W.; Roffwarg, H.; Kapen, S.; Weitzman, D.; Hellman, L. Synchronization of augmented luteinizing hormone secretion with sleep during puberty. New . Engl. J. Med., 1972, 287, 582-586.
[114]
Boyar, R.; Perlow, M.; Hellman, L.; Kapen, S.; Weitzman, E. Twenty-four hour pattern of luteinizing hormone secretion in normal men with sleep stage. J. Clin. Endocrinol. Metab., 1972, 35, 73-81.
[115]
Wenning, J.K.; Delemarre-van de Waal, H.A.; Schoemaker, R.; Schoemaker, H.; Schoemaker, J. Luteinizing hormone and follicle stimulating hormone patterns in boys throughout puberty measured using highly sensitive immunoradiometric assay. Clin. Endocrinol., 1989, 31, 551-564.
[116]
Shaw, N.D.; Butler, J.P.; Mc Kinney, S.M.; Nelson, S.A.; Ellenbogen, J.M.; Hall, J.E. Insights into puberty: The relationship between sleep stages and pulsatile LH secretion. J. Clin. Endocrinol. Metab., 2012, 97, E2055-E2062.
[117]
Rossmanith, W.G. The impact of sleep on gonadotropin secretion. Gynecol. Endocrinol., 1998, 12, 381-389.
[118]
Touzet, R.; Rabillond, M.; Boehringer, H.; Barrauco, E.; Echochard, R. Relationship between sleep and secretion of gonadotropin and ovarian hormones in women with normal cycles. Fertil. Steril., 2002, 77, 738-744.
[119]
Boyar, R.M.; Rosenfeld, R.S.; Kapen, S.; Finkelstein, J.W.; Roffwarg, H.P.; Weitzman, E.D.; Helman, L. Human puberty simultaneous augmented secretion of luteinizing hormone and testosterone during sleep. J. Clin. Invest., 1974, 54, 609-618.
[120]
Gary, K.A.; Winckner, A.; Douglas, S.D.; Kapoor, S.; Zaugg, L.; Dinges, D.F. Total sleep deprivation and the thyroid axis: Effects of sleep and waking activity. Aviat. Space Environ. Med., 1996, 67, 513-519.
[121]
Parker, D.C.; Rossman, L.G.; Pekary, A.E.; Hershman, J.M. Effects of 64-hour sleep deprivation of the circadian waveform of thyrotropin (TSH): Further evidence of sleep-related inhibition of TSH release. J. Clin. Endocrinol. Metab., 1987, 64, 157-161.
[122]
Goichot, B.; Braudenberger, G.; Saini, J.; Wittersheim, G.; Follonius, M. Nocturnal plasma thyrotropin variations are related to slow-wave sleep. J. Sleep Res., 1992, 1, 186-190.
[123]
Attal, P.; Chanson, P. Endocrine aspects of obstructive sleep apnea. J. Clin. Endocrinol. Metab., 2010, 95, 483-495.
[124]
Duarte, F.H.; Jallad, R.S.; Amaro, A.C.; Drager, L.F.; Lorenzi-Filho, G.; Bronstein, M.D. The impact of sleep apnea treatment on carbohydrate metabolism in patients with acromegaly. Pituitary, 2013, 16, 341-350.
[125]
Cannavò, S.; Condurso, R.; Ragonese, M.; Ferraù, F.; Alibrandi, A.; Aricò, I.; Romanello, G.; Squadrito, S.; Trimarchi, F.; Silvestri, R. Increased prevalence of restless leg syndrome in patients with acromegaly and effects on quality of life assessed by Acro-QoL. Pituitary, 2011, 14, 328-334.
[126]
Biurmasz, N.R.; Joustra, S.D.; Douga, E.; Pereira, A.M.; van Duinen, N.; Van Dijk, M. Patients previously treated for nonfunctioning pituitary macroadenomas have disturbed sleep characteristics, circadian movement rhythm and subjective sleep quality. J. Clin. Endocrinol. Metab., 2011, 96, 1524-1532.
[127]
Joustra, S.D.; Thijs, R.D.; van den Berg, R.; van Dijk, M.; Pereira, A.M.; Lammers, G.; van Someren, E.J.W.; Romijn, J.A.; Biermasz, N.R. Alterations in diurnal rhythmicity in patients treated for nonfunctioning pituitary macroadenoma: A controlled study and literature review. Eur. J. Endocrinol., 2014, 171, 217-228.
[128]
Thorpy, M.J. Classification of sleep disorders. Neurotherapeutics, 2012, 9, 687-701.
[129]
Bamford, C.R. Menstrual-associated sleep disorder: An unusual hypersomniac variant associated with both menstrual and amenorrhea with a possible link to prolactin and metoclorpropamide. Sleep, 1993, 16, 484-486.
[130]
Gadoth, N.; Dikerman, Z.; Bechar, M.; Laron, Z.; Lavie, P. Episodic hormone secretion during sleep in Kleine-Levin syndrome: Evidence for hypothalamic dysfunction. Brain Dev., 1987, 9, 309-315.
[131]
Chesson, A.; Levine, S.; Kong, L.; Lee, S. Neuroendocrine evaluation in Kleine-Levin syndrome: Evidence of reduced dopaminergic tone during periods of hypersomnolence. Sleep, 1991, 14, 226-232.
[132]
Carranza-Lira, S.; Garcia Lopez, F. Melatonin and climatery. Med. Sci. Monit., 2000, 6, 1209-1212.
[133]
Gursoy, A.Y.; Kiseli, M.; Caglar, G.S. Melatonin in aging women. Climacteric, 2015, 18, 790-796.
[134]
Marcolina, S.T.; Rosenshein, B. Insomnia in women: Menopause and melatonin. Part III of III-Part; Series, 2008.
[135]
Eichling, P.S.; Sahni, J. Menopause related sleep disorders. J. Clin. Sleep Med., 2005, 1, 291-300.
[136]
Rohr, U.D.; Herold, J. Melatonin deficiencies in women. Maturitas, 2002, 41(Suppl. 1), 85-104.
[137]
Bortolato, B.; Berk, M.; Maes, M.; McIntyre, R.S.; Carvalho, A.F. Fibromyalgia and bipolar disorders: Emerging, epidemiological associations and shared pathophysiology. Curr. Mol. Med., 2016, 16, 119-136.
[138]
Balbo, M.; Leproult, R.; Van Cauter, E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int. J. Endocrinol., 2010, 2010, 759234.
[139]
Koatsu, N.D.; Tsai, R.; Young, T.; Vaugilder, R.; Burmesister, L.F.; Stromquist, A.M. Sleep duration and body mass index in a rural population. Arch. Intern. Med., 2006, 166, 1701-1705.
[140]
Gupta, N.K.; Mueller, W.H.; Chan, W.; Meninger, J.C. Is obesity associated with poor sleep quality in adolescents? Am. J. Hum. Biol., 2002, 14, 762-768.
[141]
Patel, S.R.; Hu, F.B. Short sleep duration and weight gain: A systematic review. Obesity., 2008, 16, 643-653.
[142]
Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet, 1999, 354, 1435-1439.
[143]
Spiegel, K.; Tasali, E.; Penev, V.; Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased levels of leptin, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med., 2004, 141, 846-850.
[144]
Taheri, S. The link beween short sleep duration and obesity: We should recommend more sleep to prevent obesity. Arch. Dis. Child., 2006, 91, 881-884.
[145]
Marquet, P. Sleep function and cerebral metabolism. Behav. Brain Res., 1995, 69, 75-83.
[146]
Simon, C.; Granfier, C.; Schlienger, J.L.; Braudenberger, G. Circadian and ultradian variations of leptin in normal men under continuous enteral nutrition: Relationship to sleep and body temperature. J. Clin. Endocrinol. Metab., 1998, 83, 1893-1899.
[147]
Copinschi, G. Metabolic and endocrine effects of sleep deprivation. Essent. Psychopharmacol., 2005, 6, 341-347.
[148]
Hewson, A.K.; Dickson, S.L. Systemic administration of ghrelin induces Fos and Erg-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J. Neuroendocrinol., 2000, 12, 1047-1049.
[149]
Kalinchuk, A.V.; McCarley, R.W.; Stenberg, D.; Porkka-Heiskanen, T.; Basheer, R. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: Lessons from 192 IgG-saporin. Neuroscience, 2008, 157, 238-253.
[150]
Halassa, M.M.; Florian, C.; Follin, T.; Munoz, J.R.; Lee, S.Y.; Abel, T.; Haydon, P.G.; Frank, M.G. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 2009, 61, 213-219.