[1]
(a)Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.; Henner, D.; Wong, W.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Nat. Acad. Sci., 1992, 89, 4285-4289.
(b)Yamamoto, T.; Ikawa, S.; Akiyama, T.; Semba, K.; Nomura, N.; Miyajima, N.; Saito, T.; Toyoshima, K. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature, 1986, 319, 230-234.
[2]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2, 127-137.
[3]
Venter, D.; Kumar, S.; Tuzi, N.; Gullick, W. Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: Immunohistological assessment correlates with gene amplification. Lancet, 1987, 330, 69-72.
[4]
(a)Hirsch, F.R.; Franklin, W.A.; Veve, R.; Varella-Garcia, M.; Bunn, P.A. In: HER2/neu expression in malignant lung tumors; Seminars in oncology, Elsevier:, 2002; pp. 51-58.
(b)Hofmann, M.; Stoss, O.; Shi, D.; Büttner, R.; Van de Vijver, M.; Kim, W.; Ochiai, A.; Rüschoff, J.; Henkel, T. Assessment of a HER2 scoring system for gastric cancer: Results from a validation study. Histopathology, 2008, 52, 797-805.
[5]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New. Eng. J. Med., 2001, 344, 783-792.
[6]
(a)Goldenberg, M.M. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Therapeut., 1999, 21, 309-318.
(b)Hudis, C.A. Trastuzumab-mechanism of action and use in clinical practice. New. Eng. J. Med., 2007, 357, 39-51.
[7]
Cobleigh, M.A.; Vogel, C.L.; Tripathy, D.; Robert, N.J.; Scholl, S.; Fehrenbacher, L.; Wolter, J.M.; Paton, V.; Shak, S.; Lieberman, G. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol.,1999, 17, 2639-2639; (b) Hubbard, S.R. EGF receptor inhibition: Attacks on multiple fronts. Cancer cell, 2005, 7, 287-288.
[8]
Banerjee, P.; Bhattacharyya, S.S.; Bhattacharjee, N.; Pathak, S.; Boujedaini, N.; Belon, P.; Khuda-Bukhsh, A.R. Ascorbic acid combats arsenic-induced oxidative stress in mice liver. Ecotoxicol. Envir. Safety.,2009, 72, 639-649; (b) Tapio, S.; Grosche, B., Arsenic in the aetiology of cancer. Mut. Res. Rev. Mut. Res., 2006, 612, 215-246.
[9]
Barrett, J.C.; Lamb, P.W.; Wang, T.; Te Lee, C. Mechanisms of arsenic-induced cell transformation. Biol. Trace Element. Res., 1989, 21, 421-429.
[10]
Yao, X-F.; Zheng, B-L.; Bai, J.; Jiang, L-P.; Zheng, Y.; Qi, B-X.; Geng, C-Y.; Zhong, L-F.; Yang, G.; Chen, M. Low-level sodium arsenite induces apoptosis through inhibiting TrxR activity in pancreatic β-cells. Environ. Toxicol. Pharmacol., 2015, 40, 486-491.
[11]
Zhu, X-X.; Yao, X-F.; Jiang, L-P.; Geng, C-Y.; Zhong, L-F.; Yang, G.; Zheng, B-L.; Sun, X-C. Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic β-cells. Food Chem. Toxicol., 2014, 70, 144-150.
[12]
(a)Muenyi, C.S.; Trivedi, A.P.; Helm, C.W.; States, J.C. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol. Sci., 2014, 139, 74-82.
(b)Muenyi, C.S.; Pinhas, A.R.; Fan, T.W.; Brock, G.N.; Helm, C.W.; States, J.C. Sodium arsenite +/- hyperthermia sensitizes p53-expressing human ovarian cancer cells to cisplatin by modulating platinum-DNA damage responses. Toxicol. Sci., 2012, 127, 139-149.
(c)Muenyi, C.S.; States, V.A.; Masters, J.H.; Fan, T.W.; Helm, C.W.; States, J.C. Sodium arsenite and hyperthermia modulate cisplatin-DNA damage responses and enhance platinum accumulation in murine metastatic ovarian cancer xenograft after hyperthermic intraperitoneal chemotherapy (HIPEC). J. Ovarian Res., 2011, 4, 9.
(d)Taylor, B.F.; McNeely, S.C.; Miller, H.L.; States, J.C. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization. Toxicol. Appl. Pharmacol., 2008, 230, 235-246.
[13]
Chou, Y.; Chao, P.; Tsai, M.; Cheng, H.; Chen, K.; Yang, D.; Yang, C.; Lin, A. Arsenite-induced cytotoxicity in dorsal root ganglion explants. Free Radical. Biol. Med., 2008, 44, 1553-1561.
[14]
Muenyi, C.S.; Trivedi, A.P.; Helm, C.W. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol. Sci., 2014, 139, 74-82.
[15]
Huwyler, J.; Yang, J.; Pardridge, W.M. Receptor mediated delivery of daunomycin using immunoliposomes: Pharmacokinetics and tissue distribution in the rat. J. Pharmacol. Experimen. Therapeut., 1997, 282, 1541-1546.
[16]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303, 1818-1822.
[17]
Lasic, D. General introduction to liposomes. Liposomes Phy. App. Elsevier Sci., 1993, 3, 1-43.
[18]
Ahmad, I.; Longenecker, M.; Samuel, J.; Allen, T.M. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res., 1993, 53, 1484-1488.
[19]
Barrajón-Catalán, E.; Menéndez-Gutiérrez, M.P.; Falco, A.; Carrato, A.; Saceda, M.; Micol, V. Selective death of human breast cancer cells by lytic immunoliposomes: Correlation with their HER2 expression level. Cancer Lett., 2010, 290, 192-203.
[20]
Johnson, D.L.; Pilson, M.E. Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters. Anal. Chim. Acta, 1972, 58, 289-299.
[21]
Peterson, G.L. A simplification of the protein assay method of Lowry. which is more generally applicable. Anal. Biochem., 1977, 83, 346-356.
[22]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth, 1983, 65, 55-63.
[23]
(a)Richardson, V.J.; Jeyasingh, K.; Jewkes, R.; Ryman, B.E.; Tattersall, M. Possible tumor localization of Tc-99m-labeled liposomes: effects of lipid composition, charge, and liposome size. J. Nuc. Med. Off. Pub. Soc. Nuc. Med., 1978, 19, 1049-1054.
(b)He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31, 3657-3666.
(c)Hsu, M.; Juliano, R.L. Interactions of liposomes with the reticuloendothelial system: II. Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochimica et Biophysica Acta (BBA)-. Mol. Cell Res., 1982, 720, 411-419.
[24]
Richardson, V.J.; Jeyasingh, K.; Jewkes, R.F.; Ryman, B.E.; Tattersall, M.H. Possible tumor localization of Tc-99m-labeled liposomes: effects of lipid composition, charge, and liposome size. J. Nucl. Med., 1978, 19, 1049-1054.
[25]
Lattrich, C.; Juhasz-Boess, I.; Ortmann, O.; Treeck, O. Detection of an elevated HER2 expression in MCF-7 breast cancer cells overexpressing estrogen receptor β1. Oncol. Rep., 2008, 19, 811-817.
[26]
Jeon, B-G.; Kumar, B.M.; Kang, E-J.; Maeng, G-H.; Lee, Y-M.; Hah, Y-S.; Ock, S-A.; Kwack, D-O.; Park, B-W.; Rho, G-J. Differential cytotoxic effects of sodium meta-arsenite on human cancer cells, dental papilla stem cells and somatic cells correlate with telomeric properties and gene expression. Anticancer Res., 2011, 31, 4315-4328.
[27]
Watcharasit, P.; Thiantanawat, A.; Satayavivad, J. GSK3 promotes arsenite‐induced apoptosis via facilitation of mitochondria disruption. J. Appl. Toxicol., 2008, 28, 466-474.
[28]
Ruiz-Ramos, R.; Lopez-Carrillo, L.; Rios-Perez, A.D.; De Vizcaya-Ruíz, A.; Cebrian, M.E. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-κB activation and cell proliferation in human breast cancer MCF-7 cells. Mut. Res. Gene. Toxicol. Enviro. Mutagenesis., 2009, 674, 109-115.
[29]
(a)Yang, P.; He, X-Q.; Peng, L.; Li, A-P.; Wang, X-R.; Zhou, J-W.; Liu, Q-Z. The role of oxidative stress in hormesis induced by sodium arsenite in Human Embryo Lung Fibroblast (HELF) cellular proliferation model. J. Toxicol. Environ. Health, 2007, 70, 976-983.
(b)Calabrese, E.J.; Baldwin, L.A. Inorganics and hormesis. Critic. Rev. Toxicol., 2003, 33, 215-304.
[30]
Stoica, A.; Pentecost, E.; Martin, M.B. Effects of arsenite on estrogen receptor-α expression and activity in MCF-7 breast cancer cells 1. Endocrinology, 2000, 141, 3595-3602.
[31]
Fathi, S.; Oyelere, A.K. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice? Future Med. Chem., 2016, 8, 2091-2112.
[32]
(a)Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303, 1818-1822.
(b)Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30, 592-599.
[33]
Park, J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4, 95-99.
[34]
(a)Guo, J.; Lu, W-L. Effects of stealth liposomal daunorubicin plus tamoxifen on the breast cancer and cancer stem cells. J. Pharm. Pharmaceu. Sci., 2010, 13, 136-151.
(b)Lin, Y-L.; Chen, C-H.; Wu, H-Y.; Tsai, N-M.; Jian, T-Y.; Chang, Y-C.; Lin, C-H.; Wu, C-H.; Hsu, F-T.; Leung, T.K. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnol, 2016, 14, 1.
[35]
O’brien, M.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D.; Tomczak, P.; Ackland, S. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Annals. Oncol., 2004, 15, 440-449.
[36]
Shin, D.H.; Koo, M.J.; Kim, J.S.; Kim, J.S. Herceptin-conjugated temperature-sensitive immunoliposomes encapsulating gemcitabine for breast cancer. Arch. Pharm. Res., 2016, 39, 350-358.
[37]
Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev., 2013, 65, 104-120.
[38]
Park, J.W.; Hong, K.; Carter, P.; Asgari, H.; Guo, L.Y.; Keller, G.A.; Wirth, C.; Shalaby, R.; Kotts, C.; Wood, W.I. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc. Natl. Acad. Sci. USA, 1995, 92, 1327-1331.