[1]
Kumar, A.; Sasmal, D.; Sharma, N. Understanding of complex signaling pathways of immune system: A review. World J. Pharm. Sci., 2014, 3(10), 241-255.
[2]
Blanco, G.A. Immune response to environmental exposure.Encyclopedia of Envoirmental Health; Elsevier Science B.V: Amsterdam, 2011, pp. 141-154.
[3]
Krzystyniak, K.; Tryphonas, H.; Fournier, M. Approaches to the evaluation of chemical-induced immunotoxicity. Environ. Health Perspect., 1995, 103, 17-22.
[4]
Yonar, M.E.; Sakin, F. Ameliorative effect of lycopene on antioxidant status in Cyprinus carpio during pyrethroid deltamethrin exposure. Pestic. Biochem. Physiol., 2011, 99(3), 226-231.
[5]
Sondhia, S.; Dixit, A. Determination of terminal residues of oxyfluorfen in onion. Ann. Plant Prot. Sci., 2007, 15(1), 232-234.
[6]
Sondhia, S.; Singhai, B. Persistence of sulfosulfuron under wheat cropping system. Bull. Environ. Contam. Toxicol., 2008, 80(5), 423-427.
[7]
Laskowski, D.A. Physical and chemical properties of pyrethroids. Rev. Environ. Contam. Toxicol., 2002, 174, 49-170.
[8]
Chen, S.Y.; Zhang, Z.W.; He, F.S.; Yao, P.P.; Wu, Y.Q.; Sun, J.X.; Liu, L.H.; Li, Q.G. An epidemiological study on occupational acute pyrethroid poisoning in cotton farmers. Occup. Environ. Med., 1991, 48(2), 77-81.
[9]
Gassner, B.; Wüthrich, A.; Lis, J.; Scholtysik, G.; Solioz, M. Topical application of synthetic pyrethroids to cattle as a source of persistent environmental contamination. J. Environ. Sci. Health B, 1997, 32(5), 729-739.
[10]
Kolaczinski, J.H.; Curtis, C.F. Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: A review of the debate. Food Chem. Toxicol., 2004, 42(5), 697-706.
[11]
Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Cela, R. Development of a high-throughput method for the determination of organochlorinated compounds, nitromusks and pyrethroid insecticides in indoor dust. J. Chromatogr. A, 2007, 1174(1-2), 112-124.
[12]
Toumi, H.; Boumaiza, M.; Millet, M.; Radetski, C.M.; Felten, V.; Fouque, C.; Férard, J.F. Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera). Sci. Total Environ., 2013, 458, 47-53.
[13]
Enan, E.; Pinkerton, K.E.; Peake, J.; Matsumura, F. Deltamethrin-induced thymus atrophy in male Balb/c mice. J. Biochem. Pharmacol, 1996, 51(4), 447-454.
[14]
El-Gohary, M.; Awara, W.M.; Nassar, S.; Hawas, S. Deltamethrin-induced testicular apoptosis in rats: The protective effect of nitric oxide synthase inhibitor. Toxicol., 1999, 132(1), 1-8.
[15]
Kumar, A.; Sasmal, D.; Sharma, N. Deltamethrin induced an apoptogenic signaling pathway in murine thymocytes: Exploring the molecular mechanism. J. Appl. Toxicol., 2014, 34(12), 1303-1310.
[16]
Kumar, A.; Sasmal, D.; Bhaskar, A.; Mukhopadhyay, K.; Thakur, A.; Sharma, N. Deltamethrin‐induced oxidative stress and mitochondrial caspase‐dependent signaling pathways in murine splenocytes. Environ. Toxicol., 2016, 31(7), 808-819.
[17]
Ragot, K.; Delmas, D.; Athias, A.; Nury, T.; Baarine, M.; Lizard, G. α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem. Phys. Lipids, 2011, 164(6), 469-478.
[18]
Mazlan, M.; Then, S.M.; Top, G.M.; Ngah, W.Z. Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. J. Neurol. Sci., 2006, 243(1), 5-12.
[19]
Salinthone, S.; Kerns, A.R.; Tsang, V.; Carr, D.W. α-Tocopherol (vitamin E) stimulates cyclic AMP production in human peripheral mononuclear cells and alters immune function. Mol. Immunol., 2013, 53(3), 173-178.
[20]
Vargas, F.D.S.; Soares, D.G.; Basso, F.G.; Hebling, J. Costa, CADS. Dose-response and time-course of a-tocoferol mediating the cytoprotection of dental pulp cells against hydrogen peroxide. Braz. Dent. J., 2014, 25(5), 367-371.
[21]
González, R.; Collado, J.A.; Nell, S.; Briceño, J.; Tamayo, M.J.; Fraga, E.; Bernardos, Á.; López-Cillero, P.; Pascussi, J.M.; Rufián, S.; Vilarem, M.J. Cytoprotective properties of α-tocopherol are related to gene regulation in cultured D-galactosamine-treated human hepatocytes. Free Radic. Biol. Med., 2007, 43(10), 1439-1452.
[22]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol., 1983, 65(1-2), 55-63.
[23]
Bonini, M.G.; Rota, C.; Tomasi, A.; Mason, R.P. The oxidation of 2′, 7′-dichlorofluorescin to reactive oxygen species: A self-fulfilling prophesy? Free Radic. Biol. Med., 2006, 40(6), 968-975.
[24]
Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 1976, 74(1), 214-226.
[25]
Riccardi, C.; Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc., 2006, 1(3), 1458-1461.
[26]
Darzynkiewicz, Z.; Bruno, S.; Del Bino, G.; Gorczyca, W.; Hotz, M.A.; Lassota, P.; Traganos, F. Features of apoptotic cells measured by flow cytometry. Cytometry A, 1992, 13(8), 795-808.
[27]
Sharma, N.; Kumar, A. Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes. Cell Biol. Toxicol., 2014, 30(2), 101-112.
[28]
Nemmiche, S.; Chabane-Sari, D.; Guiraud, P. Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat’s blood, liver and brain. Chem. Biol. Interact., 2007, 170(3), 221-230.
[29]
Kumar, A.; Sasmal, D.; Sharma, N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environ. Toxicol. Pharmacol., 2015, 39(2), 504-514.
[30]
Yousef, M.I.; Awad, T.I.; Mohamed, E.H. Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by Vitamin E. Toxicology, 2006, 227(3), 240-247.
[31]
Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med., 2000, 29(3-4), 323-333.
[32]
Ramanathan, K.; Anusuyadevi, M.; Shila, S.; Panneerselvam, C. Ascorbic acid and α-tocopherol as potent modulators of apoptosis on arsenic induced toxicity in rats. Toxicol. Lett., 2005, 156(2), 297-306.