[1]
DiDonato JA, Mercurio F, Karin M. Nf-kappab and the link between inflammation and cancer. Immunol Rev 2012; 246: 379-400.
[2]
Kong L, Yang C, Yu L, et al. Pyrroloquinoline quinine inhibits rankl-mediated expression of nfatc1 in part via suppression of c-fos in mouse bone marrow cells and inhibits wear particle-induced osteolysis in mice. PLoS One 2013; 8: e61013.
[3]
Xia Y, Shen S, Verma IM. Nf-kappab, an active player in human cancers. Cancer Immunol Res 2014; 2: 823-30.
[4]
Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of nf-[kappa]b activity. Annu Rev Immunol 2000; 18: 621-63.
[5]
Bonizzi G, Karin M. The two nf-kappab activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280-8.
[6]
Kong L, Ma R, Yang X, et al. Psoralidin suppresses osteoclastogenesis in bmms and attenuates lps-mediated osteolysis by inhibiting inflammatory cytokines. Int Immunopharmacol 2017; 51: 31-9.
[7]
Wertz IE, Dixit VM. Signaling to nf-kappab: Regulation by ubiquitination. Cold Spring Harb Perspect Biol 2010; 2: a003350.
[8]
Hayden MS, Ghosh S. Signaling to nf-kappab. Genes Dev 2004; 18: 2195-224.
[9]
Greten FR, Karin M. The ikk/nf-kappab activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2004; 206: 193-9.
[10]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140: 883-99.
[11]
Baud V, Karin M. Is nf-kappab a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8: 33-40.
[12]
Yang C, Yu L, Kong L, et al. Pyrroloquinoline quinone (pqq) inhibits lipopolysaccharide induced inflammation in part via downregulated nf-kappab and p38/jnk activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice. PLoS One 2014; 9: e109502.
[13]
Li W, Kong LB, Li JT, et al. Mir-568 inhibits the activation and function of cd4(+) t cells and treg cells by targeting nfat5. Int Immunol 2014; 26: 269-81.
[14]
Yang X, Gao W, Wang B, et al. Picroside ii inhibits rankl-mediated osteoclastogenesis by attenuating the nf-kappab and mapks signaling pathway in vitro and prevents bone loss in lipopolysaccharide treatment mice. J Cell Biochem 2017; 118(12): 4479-86.
[15]
Kong L, Wang B, Yang X, et al. Picrasidine i from picrasma quassioides suppresses osteoclastogenesis via inhibition of rankl induced signaling pathways and attenuation of ros production. Cell Physiol Biochem 2017; 43: 1425-35.
[16]
Waterfield M, Jin W, Reiley W, Zhang M, Sun SC. Ikappab kinase is an essential component of the tpl2 signaling pathway. Mol Cell Biol 2004; 24: 6040-8.
[17]
Solan NJ, Miyoshi H, Carmona EM, Bren GD, Paya CV. Relb cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 2002; 277: 1405-18.
[18]
Senftleben U, Cao Y, Xiao G, et al. Activation by ikkalpha of a second, evolutionary conserved, nf-kappa b signaling pathway. Science 2001; 293: 1495-9.
[19]
Pahl HL. Activators and target genes of rel/nf-kappab transcription factors. Oncogene 1999; 18: 6853-66.
[20]
Kim HJ, Hawke N, Baldwin AS. Nf-kappab and ikk as therapeutic targets in cancer. Cell Death Differ 2006; 13: 738-47.
[21]
Karin M. Nuclear factor-kappab in cancer development and progression. Nature 2006; 441: 431-6.
[22]
Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappab: Its role in health and disease. J Mol Med (Berl) 2004; 82: 434-48.
[23]
Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving nf-kappab, lin28, let-7 microrna, and il6 links inflammation to cell transformation. Cell 2009; 139: 693-706.
[24]
Kawauchi K, Araki K, Tobiume K, Tanaka N. P53 regulates glucose metabolism through an ikk-nf-kappab pathway and inhibits cell transformation. Nat Cell Biol 2008; 10: 611-8.
[25]
Perkins ND. Integrating cell-signalling pathways with nf-kappab and ikk function. Nat Rev Mol Cell Biol 2007; 8: 49-62.
[26]
Beinke S, Robinson MJ, Hugunin M, Ley SC. Lipopolysaccharide activation of the tpl-2/mek/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by ikappab kinase-induced proteolysis of nf-kappab1 p105. Mol Cell Biol 2004; 24: 9658-67.
[27]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646-74.
[28]
Fan Y, Dutta J, Gupta N, Fan G, Gelinas C. Regulation of programmed cell death by nf-kappab and its role in tumorigenesis and therapy. Adv Exp Med Biol 2008; 615: 223-50.
[29]
Johnson RF, Witzel II, Perkins ND. P53-dependent regulation of mitochondrial energy production by the rela subunit of nf-kappab. Cancer Res 2011; 71: 5588-97.
[30]
Coopman PJ, Do MT, Barth M, et al. The syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 2000; 406: 742-7.
[31]
Coopman PJ, Mueller SC. The syk tyrosine kinase: A new negative regulator in tumor growth and progression. Cancer Lett 2006; 241: 159-73.
[32]
Rickert RC. New insights into pre-bcr and bcr signalling with relevance to b cell malignancies. Nat Rev Immunol 2013; 13: 578-91.
[33]
Chen L, Monti S, Juszczynski P, et al. Syk-dependent tonic b-cell receptor signaling is a rational treatment target in diffuse large b-cell lymphoma. Blood 2008; 111: 2230-7.
[34]
Baudot AD, Jeandel PY, Mouska X, et al. The tyrosine kinase syk regulates the survival of chronic lymphocytic leukemia b cells through pkcdelta and proteasome-dependent regulation of mcl-1 expression. Oncogene 2009; 28: 3261-73.
[35]
Buchner M, Fuchs S, Prinz G, et al. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res 2009; 69: 5424-32.
[36]
Young RM, Hardy IR, Clarke RL, et al. Mouse models of non-hodgkin lymphoma reveal syk as an important therapeutic target. Blood 2009; 113: 2508-16.
[37]
Hatton O, Phillips LK, Vaysberg M, Hurwich J, Krams SM, Martinez OM. Syk activation of phosphatidylinositol 3-kinase/akt prevents htra2-dependent loss of x-linked inhibitor of apoptosis protein (xiap) to promote survival of epstein-barr virus+ (ebv+) b cell lymphomas. J Biol Chem 2011; 286: 37368-78.
[38]
Zhu Z, Hao D, Wang B, et al. Selection of surgical treatment approaches for cervicothoracic spinal tuberculosis: A 10-year case review. PLoS One 2018; 13: e0192581.
[39]
Gao W, Wang B, Hao D, et al. Surgical treatment of lower cervical fracture-dislocation with spinal cord injuries by anterior approach: 5- to 15-year follow-up. World Neurosurg 2018; 115: e137-45.
[40]
Yang H, He H, Dong Y. Card9 syk-dependent and raf-1 syk-independent signaling pathways in target recognition of candida albicans by dectin-1. Eur J Clin Microbiol Infect Dis 2011; 30: 303-5.
[41]
Glocker EO, Hennigs A, Nabavi M, et al. A homozygous card9 mutation in a family with susceptibility to fungal infections. N Engl J Med 2009; 361: 1727-35.
[42]
Gross O, Gewies A, Finger K, et al. Card9 controls a non-tlr signalling pathway for innate anti-fungal immunity. Nature 2006; 442: 651-6.
[43]
Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 2005; 106: 2543-50.
[44]
Gringhuis SI, den Dunnen J, Litjens M, et al. Dectin-1 directs t helper cell differentiation by controlling noncanonical nf-kappab activation through raf-1 and syk. Nat Immunol 2009; 10: 203-13.
[45]
Chen L, Monti S, Juszczynski P, et al. Syk inhibition modulates distinct pi3k/akt- dependent survival pathways and cholesterol biosynthesis in diffuse large b cell lymphomas. Cancer Cell 2013; 23: 826-38.
[46]
Fang J, Wang Y, Lv X, Shen X, Ni X, Ding K. Structure of a beta-glucan from grifola frondosa and its antitumor effect by activating dectin-1/syk/nf-kappab signaling. Glycoconj J 2012; 29: 365-77.
[47]
Chapard C, Hohl D, Huber M. The role of the traf-interacting protein in proliferation and differentiation. Exp Dermatol 2012; 21: 321-6.
[48]
Takada Y, Aggarwal BB. Tnf activates syk protein tyrosine kinase leading to tnf-induced mapk activation, nf-kappab activation, and apoptosis. J Immunol 2004; 173: 1066-77.
[49]
Zhou Q, Geahlen RL. The protein-tyrosine kinase syk interacts with traf-interacting protein trip in breast epithelial cells. Oncogene 2009; 28: 1348-56.
[50]
Zhou F, Hu J, Ma H, Harrison ML, Geahlen RL. Nucleocytoplasmic trafficking of the syk protein tyrosine kinase. Mol Cell Biol 2006; 26: 3478-91.
[51]
Catz SD, Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa b and its significance in prostate cancer. Oncogene 2001; 20: 7342-51.
[52]
Tamatani M, Che YH, Matsuzaki H, et al. Tumor necrosis factor induces bcl-2 and bcl-x expression through nfkappab activation in primary hippocampal neurons. J Biol Chem 1999; 274: 8531-8.
[53]
Yamamoto K, Arakawa T, Ueda N, Yamamoto S. Transcriptional roles of nuclear factor kappa b and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in mc3t3-e1 cells. J Biol Chem 1995; 270: 31315-20.
[54]
Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. Nf-kappab controls cell growth and differentiation through transcriptional regulation of cyclin d1. Mol Cell Biol 1999; 19: 5785-99.
[55]
Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (nf)-kappab-regulated x-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998; 188: 211-6.
[56]
Roccaro AM, Vacca A, Ribatti D. Bortezomib in the treatment of cancer. Recent Patents Anticancer Drug Discov 2006; 1: 397-403.
[57]
Chariot A. The nf-kappab-independent functions of ikk subunits in immunity and cancer. Trends Cell Biol 2009; 19: 404-13.
[58]
Gilmore TD, Herscovitch M. Inhibitors of nf-kappab signaling: 785 and counting. Oncogene 2006; 25: 6887-99.
[59]
Shangary S, Wang S. Small-molecule inhibitors of the mdm2-p53 protein-protein interaction to reactivate p53 function: A novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009; 49: 223-41.
[60]
Mayo MW, Madrid LV, Westerheide SD, et al. Pten blocks tumor necrosis factor-induced nf-kappa b-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J Biol Chem 2002; 277: 11116-25.
[61]
Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS. Akt-dependent regulation of nf-kappab is controlled by mtor and raptor in association with ikk. Genes Dev 2008; 22: 1490-500.
[62]
Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS Jr, Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the rela/p65 subunit of nf-kappab. Mol Cell Biol 2000; 20: 1626-38.
[63]
Buss H, Dorrie A, Schmitz ML, et al. Phosphorylation of serine 468 by gsk-3beta negatively regulates basal p65 nf-kappab activity. J Biol Chem 2004; 279: 49571-4.
[64]
Barre B, Perkins ND. The skp2 promoter integrates signaling through the nf-kappab, p53, and akt/gsk3beta pathways to regulate autophagy and apoptosis. Mol Cell 2010; 38: 524-38.
[65]
Guma M, Stepniak D, Shaked H, et al. Constitutive intestinal nf-kappab does not trigger destructive inflammation unless accompanied by mapk activation. J Exp Med 2011; 208: 1889-900.
[66]
Greten FR, Eckmann L, Greten TF, et al. Ikkbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285-96.
[67]
Barre B, Perkins ND. A cell cycle regulatory network controlling nf-kappab subunit activity and function. EMBO J 2007; 26: 4841-55.
[68]
Rocha S, Martin AM, Meek DW, Perkins ND. P53 represses cyclin d1 transcription through down regulation of bcl-3 and inducing increased association of the p52 nf-kappab subunit with histone deacetylase 1. Mol Cell Biol 2003; 23: 4713-27.
[69]
Westerheide SD, Mayo MW, Anest V, Hanson JL, Baldwin AS Jr. The putative oncoprotein bcl-3 induces cyclin d1 to stimulate g(1) transition. Mol Cell Biol 2001; 21: 8428-36.
[70]
Geryk B, Macek M, Stolcova E, Luka J, Dibakova E. [late results following the operative treatment of congenital postero-lateral diaphragmatic hernia]. Zentralbl Chir 1984; 109: 1001-5.
[71]
Kong L, Zhao Q, Wang X, Zhu J, Hao D, Yang C. Angelica sinensis extract inhibits rankl-mediated osteoclastogenesis by down-regulated the expression of nfatc1 in mouse bone marrow cells. BMC Complement Altern Med 2014; 14: 481.
[72]
Delmore JE, Issa GC, Lemieux ME, et al. Bet bromodomain inhibition as a therapeutic strategy to target c-myc. Cell 2011; 146: 904-17.
[73]
Zuber J, Shi J, Wang E, et al. Rnai screen identifies brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524-8.
[74]
Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by candida albicans yeast or zymosan triggers nfat activation in macrophages and dendritic cells. J Immunol 2007; 178: 3107-15.