Review Article

碳水化合物:潜在的抗癌工具

卷 27, 期 8, 2020

页: [1206 - 1242] 页: 37

弟呕挨: 10.2174/0929867325666180719114150

价格: $65

摘要

癌症是当今最破坏性的退化性疾病之一,是药物化学和制药行业的主要目标之一。由于世界人口中癌症发病率的显着增加,以及这种疾病的复杂性(具有多因素性质),迫切需要针对与癌症有关的不同生物学靶标的新药物。在具有抗肿瘤活性的大量化合物中,该综述将涵盖碳水化合物衍生物作为特有支架的用途。它们的亲水性,以及与细胞表面的生物受体建立选择性相互作用的能力,参与细胞间的通讯过程,已经开发出了许多可用于癌症治疗的新模板。它们固有的水溶性使其可以用作前药载体,以更有效地获得药物靶标。其中将碳水化合物束缚到药效基团的糖缀合物的制备还允许药物更好地透过细胞膜渗透,其中涉及与碳水化合物基序的选择性相互作用。在这种情况下,已经证明了多价结构(例如金纳米颗粒)的设计增强了与生物受体如凝集素,糖蛋白的关键相互作用,所述生物受体可能与癌症的进展有关。此外,通过掺入金属络合物或通过用杂原子代替其内环氧或碳原子来修饰碳水化合物的结构基序,导致了新的抗肿瘤剂。这种具有相关抗肿瘤活性的糖基模板的多样性将在本综述中介绍。

关键词: 癌症,碳水化合物,糖结合物,药物载体,金属络合物,多价,癌症疫苗。

[1]
National Cancer Institute. https://www.cancer.gov/types/(Accessed on: Feb. 19,. 2020.
[2]
World Health Organization. https://www.who.int/cancer/ resources/keyfacts/en/ (Accessed on: Feb. 19, . 2020.
[3]
Karanikolos, M.; Ellis, L.; Coleman, M.P.; McKee, M. Health systems performance and cancer outcomes. J. Natl. Cancer Inst. Monogr., 2013, 2013(46), 7-12.
[http://dx.doi.org/10.1093/jncimonographs/lgt003] [PMID: 23962507]
[4]
Bansal, Y.; Silakari, O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.060] [PMID: 24565571 ]
[5]
Bardin, C.; Veal, G.; Paci, A.; Chatelut, E.; Astier, A.; Levêque, D.; Widmer, N.; Beijnen, J. Therapeutic drug monitoring in cancer-are we missing a trick? Eur. J. Cancer, 2014, 50(12), 2005-2009.
[http://dx.doi.org/10.1016/j.ejca.2014.04.013] [PMID: 24878063]
[6]
Chabner, B.A.; Roberts, T.G. Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416 ]
[7]
Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Viñals, F.; Capellá, G. Recent advances in cancer therapy: an overview. Curr. Pharm. Des., 2010, 16(1), 3-10.
[http://dx.doi.org/10.2174/138161210789941847] [PMID: 20214614 ]
[8]
Huggins, D.J.; Sherman, W.; Tidor, B. Rational approaches to improving selectivity in drug design. J. Med. Chem., 2012, 55(4), 1424-1444.
[http://dx.doi.org/10.1021/jm2010332] [PMID: 22239221 ]
[9]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230 ]
[10]
López, Ó.; Merino-Montiel, P.; Martos-Delgado, S.; González-Benjumea, A. Carbohydrate chemistry-Chemical and biological approaches-Specialist periodical reports; Rauter,A.P.; Lindhorst, T.K.,, Eds. Royal Society of Chemistry, , 2012. 38, pp. 215-262.
[11]
Stütz, A.E.; Wrodnigg, T.M. Imino sugars and glycosyl hydrolases: historical context, current aspects, emerging trends. Adv. Carbohydr. Chem. Biochem., 2011, 66, 187-298.
[http://dx.doi.org/10.1016/B978-0-12-385518-3.00004-3] [PMID: 22123190 ]
[12]
Bols, M.; López, Ó.; Ortega-Caballero, F. Comprehensive glycoscience-From chemistry to systems biology In: Kamerling, J.P., Ed.; Els. Sci., Oxf, ; , 2007; Vol. 3, pp. 815-848.
[http://dx.doi.org/10.1016/B978-044451967-2/00100-8]
[13]
Lillelund, V.H.; Jensen, H.H.; Liang, X.; Bols, M. Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem. Rev., 2002, 102(2), 515-553.
[http://dx.doi.org/10.1021/cr000433k] [PMID: 11841253 ]
[14]
Gerber-Lemaire, S.; Juillerat-Jeanneret, L. Glycosylation pathways as drug targets for cancer: glycosidase inhibitors. Mini Rev. Med. Chem., 2006, 6(9), 1043-1052.
[http://dx.doi.org/10.2174/138955706778195162] [PMID: 17018003 ]
[15]
Meany, D.L.; Chan, D.W. Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin. Proteomics, 2011, 8(1), 7.
[http://dx.doi.org/10.1186/1559-0275-8-7] [PMID: 21906357 ]
[16]
Zois, C.E.; Harris, A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med. (Berl.), 2016, 94(2), 137-154.
[http://dx.doi.org/10.1007/s00109-015-1377-9] [PMID: 26882899 ]
[17]
Gerber-Lemaire, S.; Juillerat-Jeanneret, L. Studies toward new anti-cancer strategies based on α-mannosidase inhibition. Chimia (Aarau), 2010, 64(9), 634-639.
[http://dx.doi.org/10.2533/chimia.2010.634] [PMID: 21138109 ]
[18]
Wang, L.; Liu, Y.; Wu, L.; Sun, X-L. Sialyltransferase inhibition and recent advances. Biochim. Biophys. Acta, 2016, 1864(1), 143-153.
[http://dx.doi.org/10.1016/j.bbapap.2015.07.007] [PMID: 26192491 ]
[19]
Tsai, C-J.; Nussinov, R. The molecular basis of targeting protein kinases in cancer therapeutics. Semin. Cancer Biol., 2013, 23(4), 235-242.
[http://dx.doi.org/10.1016/j.semcancer.2013.04.001] [PMID: 23651790 ]
[20]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506 ]
[21]
Shay, J.W.; Wright, W.E. Role of telomeres and telomerase in cancer. Semin. Cancer Biol., 2011, 21(6), 349-353.
[http://dx.doi.org/10.1016/j.semcancer.2011.10.001] [PMID: 22015685]
[22]
Lange, S.S.; Takata, K.; Wood, R.D. DNA polymerases and cancer. Nat. Rev. Cancer, 2011, 11(2), 96-110.
[http://dx.doi.org/10.1038/nrc2998] [PMID: 21258395]
[23]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285 ]
[24]
Fulda, S. Targeting apoptosis for anticancer therapy. Semin. Cancer Biol., 2015, 31, 84-88.
[http://dx.doi.org/10.1016/j.semcancer.2014.05.002] [PMID: 24859747]
[25]
Otrock, Z.K.; Mahfouz, R.A.R.; Makarem, J.A.; Shamseddine, A.I. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis., 2007, 39(2), 212-220.
[http://dx.doi.org/10.1016/j.bcmd.2007.04.001] [PMID: 17553709 ]
[26]
El-Kenawi, A.E.; El-Remessy, A.B. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol., 2013, 170(4), 712-729.
[http://dx.doi.org/10.1111/bph.12344] [PMID: 23962094 ]
[27]
Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 411-421.
[http://dx.doi.org/10.1038/nrm3801] [PMID: 24854789 ]
[28]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353 ]
[29]
Payne, B.A.I.; Chinnery, P.F. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim. Biophys. Acta, 2015, 1847(11), 1347-1353.
[http://dx.doi.org/10.1016/j.bbabio.2015.05.022] [PMID: 26050973 ]
[30]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[31]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[32]
Pani, G.; Galeotti, T.; Chiarugi, P. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev., 2010, 29(2), 351-378.
[http://dx.doi.org/10.1007/s10555-010-9225-4] [PMID: 20386957]
[33]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004] [PMID: 28088622]
[34]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[35]
Buonaguro, L.; Petrizzo, A.; Tornesello, M.L.; Buonaguro, F.M. Translating tumor antigens into cancer vaccines. Clin. Vaccine Immunol., 2011, 18(1), 23-34.
[http://dx.doi.org/10.1128/CVI.00286-10] [PMID: 21048000 ]
[36]
van der Burg, S.H.; Arens, R.; Ossendorp, F.; van Hall, T.; Melief, C.J.M. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer, 2016, 16(4), 219-233.
[http://dx.doi.org/10.1038/nrc.2016.16] [PMID: 26965076 ]
[37]
Cho, E.; Jung, S. Biotinylated cyclooligosaccharides for paclitaxel solubilization. Molecules, 2018, 23(1), 90.
[http://dx.doi.org/10.3390/molecules23010090] [PMID: 29301309]
[38]
Cipolla, L.; La Ferla, B.; Airoldi, C.; Zona, C.; Orsato, A.; Shaikh, N.; Russo, L.; Nicotra, F. Carbohydrate mimetics and scaffolds: sweet spots in medicinal chemistry. Future Med. Chem., 2010, 2(4), 587-599.
[http://dx.doi.org/10.4155/fmc.10.8] [PMID: 21426009]
[39]
Bouffard, E.; El Cheikh, K.; Gallud, A.; Da Silva, A.; Maynadier, M.; Basile, I.; Gary-Bobo, M.; Morère, A.; Garcia, M. Why Anticancer Nanomedicine Needs Sugars? Curr. Med. Chem., 2015, 22(26), 3014-3024.
[http://dx.doi.org/10.2174/0929867322666150805103104] [PMID: 26242256 ]
[40]
Ranjbari, J.; Mokhtarzadeh, A.; Alibakhshi, A.; Tabarzad, M.; Hejazi, M.; Ramezani, M. Anti-cancer drug delivery using carbohydrate-based polymers. Curr. Pharm. Des., 2018, 23(39), 6019-6032.
[http://dx.doi.org/10.2174/1381612823666170505124927] [PMID: 28482782]
[41]
Pastuch-Gawołek, G.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Musioł, M.; Serda, M.; Czaplinska, B.; Musiol, R. Small molecule glycoconjugates with anticancer activity. Eur. J. Med. Chem., 2016, 112, 130-144.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.061] [PMID: 26890119]
[42]
Rippe, M.; Cosenza, V.; Auzély-Velty, R. Design of soft nanocarriers combining hyaluronic acid with another functional polymer for cancer therapy and other biomedical applications. Pharmaceutics, 2019, 11(7), 338.
[http://dx.doi.org/10.3390/pharmaceutics11070338] [PMID: 31311150]
[43]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998 ]
[44]
Zhang, R.; Song, L.; Jiang, B.; Wang, L.; Wu, N.; Guo, S.; Shi, D. Design of antitumor agents containing carbohydrate based on GLUT1, and evaluation of antiproliferative activity. Bioorg. Med. Chem. Lett., 2017, 27(11), 2488-2492.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.094] [PMID: 28462838]
[45]
Cunha, C.R.A.; Oliveira, A.D.P.R.; Firmino, T.V.C.; Tenório, D.P.L.A.; Pereira, G.; Carvalho, L.B., Jr; Santos, B.S.; Correia, M.T.S.; Fontes, A. Biomedical applications of glyconanoparticles based on quantum dots. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(3), 427-439.
[http://dx.doi.org/10.1016/j.bbagen.2017.11.010] [PMID: 29126854 ]
[46]
He, X-P.; Zeng, Y-L.; Zang, Y.; Li, J.; Field, R.A.; Chen, G.R. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res., 2016, 429, 1-22.
[http://dx.doi.org/10.1016/j.carres.2016.03.022] [PMID: 27085906]
[47]
Ekholm, F.S.; Pynnönen, H.; Vilkman, A.; Pitkänen, V.; Helin, J.; Saarinen, J.; Satomaa, T. Introducing glycolinkers for the functionalization of cytotoxic drugs and applications in antibody-drug conjugation chemistry. ChemMedChem, 2016, 11(22), 2501-2505.
[http://dx.doi.org/10.1002/cmdc.201600372] [PMID: 27786414]
[48]
Yagi, M.; Kouno, T.; Aoyagi, Y.; Murai, H. The structure of moraoline, a piperidine alkaloid from Morus species, Nippon Nougei kagaku kaishi 1976, 50, 571-572.
[49]
Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. Nitrogen-in-the-ring pyranoses and furanoses: structural basis of inhibition of mammalian glycosidases. J. Med. Chem., 1994, 37(22), 3701-3706.
[http://dx.doi.org/10.1021/jm00048a006] [PMID: 7966130]
[50]
Pastuszak, I.; Molyneux, R.J.; James, L.F.; Elbein, A.D. Lentiginosine, a dihydroxyindolizidine alkaloid that inhibits amyloglucosidase. Biochemistry, 1990, 29(7), 1886-1891.
[http://dx.doi.org/10.1021/bi00459a032] [PMID: 2331469]
[51]
Davis, D.; Schwarz, P.; Hernández, T.; Mitchell, M.; Warnock, B.; Elbein, A.D. Isolation and characterization of swainsonine from texas locoweed (Astragalus emoryanus). Plant Physiol., 1984, 76(4), 972-975.
[http://dx.doi.org/10.1104/pp.76.4.972] [PMID: 16663983]
[52]
Hohenschutz, L. D: Bell, A.E.; Jewess, P.J.; Leworthy, D.P.; Pryce, R.J.; Arnold, E.; Clardy, J. Castanospermine, a 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum australe. Phytochemistry, 1981, 20, 811-814.
[http://dx.doi.org/10.1016/0031-9422(81)85181-3]
[53]
Wrodnigg, T.M.; Steiner, A.J.; Ueberbacher, B.J. Natural and synthetic iminosugars as carbohydrate processing enzyme inhibitors for cancer therapy. Anticancer. Agents Med. Chem., 2008, 8(1), 77-85.
[http://dx.doi.org/10.2174/187152008783330851] [PMID: 18220507 ]
[54]
Wang, R-J.; Yang, C-H.; Hu, M-L. 1-Deoxynojirimycin inhibits metastasis of B16F10 melanoma cells by attenuating the activity and expression of matrix metalloproteinases-2 and -9 and altering cell surface glycosylation. J. Agric. Food Chem., 2010, 58(16), 8988-8993.
[http://dx.doi.org/10.1021/jf101401b] [PMID: 23654233 ]
[55]
E, S.; Yamamoto, K.; Sakamoto, K.; Mizowaki, Y.; Iwagaki, Y.; Kimura, T.; Nakagawa, K.; Miyazawa, T.; Tsuduki, T. Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice. J. Clin. Biochem. Nutr., 2017, 61, 47-52.
[http://dx.doi.org/10.3164/jcbn.16-94]
[56]
Dal Piaz, F.; Vassallo, A.; Chini, M.G.; Cordero, F.M.; Cardona, F.; Pisano, C.; Bifulco, G.; De Tommasi, N.; Brandi, A. Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of hsp90. PLoS One, 2012, 7(8)e43316
[http://dx.doi.org/10.1371/journal.pone.0043316] [PMID: 22916240 ]
[57]
Macchi, B.; Minutolo, A.; Grelli, S.; Cardona, F.; Cordero, F.M.; Mastino, A.; Brandi, A. The novel proapoptotic activity of nonnatural enantiomer of Lentiginosine. Glycobiology, 2010, 20(5), 500-506.
[http://dx.doi.org/10.1093/glycob/cwp202] [PMID: 20053629]
[58]
Minutolo, A.; Grelli, S.; Marino-Merlo, F.; Cordero, F.M.; Brandi, A.; Macchi, B.; Mastino, A. D (-)lentiginosineinduced apoptosis involves the intrinsic pathway and is p53-independent. Cell Death Dis., 2012.3e358.
[http://dx.doi.org/10.1038/cddis.2012.97 ] [PMID: 22833097]
[59]
Cordero, F.M.; Bonanno, P.; Khairnar, B.B.; Cardona, F.; Brandi, A.; Macchi, B.; Minutolo, A.; Grelli, S.; Mastino, A. (-)-(1R,2R,7S,8aR)-1,2,7-Trihydroxyindolizidine ((-)-7S-OH-Lentiginosine): Synthesis and proapoptotic activity. ChemPlusChem, 2012, 77, 224-233.
[http://dx.doi.org/10.1002/cplu.201100069]
[60]
You, N.; Liu, W.; Wang, T.; Ji, R.; Wang, X.; Gong, Z.; Dou, K.; Tao, K. Swainsonine inhibits growth and potentiates the cytotoxic effect of paclitaxel in hepatocellular carcinoma in vitro and in vivo. Oncol. Rep., 2012, 28(6), 2091-2100.
[http://dx.doi.org/10.3892/or.2012.2035] [PMID: 22993037]
[61]
Sun, J.Y.; Yang, H.; Miao, S.; Li, J.P.; Wang, S.W.; Zhu, M.Z.; Xie, Y.H.; Wang, J.B.; Liu, Z.; Yang, Q. Suppressive effects of swainsonine on C6 glioma cell in vitro and in vivo. Phytomedicine, 2009, 16(11), 1070-1074.
[http://dx.doi.org/10.1016/j.phymed.2009.02.012] [PMID: 19427771 ]
[62]
Ma, J.; Wang, L.; Li, J.; Zhang, G.; Tao, H.; Li, X.; Sun, D.; Hu, Y. Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting Twist1. Oncol. Res., 2018, 26(8), 1207-1213.
[http://dx.doi.org/10.3727/096504017X15046134836575] [PMID: 28899457]
[63]
Zhu, Q.Q.; Ma, C.; Wang, Q.; Song, Y.; Lv, T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol., 2016, 37(1), 185-197.
[http://dx.doi.org/10.1007/s13277-015-4450-7] [PMID: 26602382 ]
[64]
Yu, X.; Zhao, Y.; Wang, L.; Chen, X.; Su, Z.; Zhang, H.; Yuan, Q.; Wang, S. Sialylated β1, 6 branched N-glycans modulate the adhesion, invasion and metastasis of hepatocarcinoma cells. Biomed. Pharmacother., 2016, 84, 1654-1661.
[http://dx.doi.org/10.1016/j.biopha.2016.10.085] [PMID: 27847205 ]
[65]
Santos, F.M.; Latorre, A.O.M.; Hueza, I.M.; Sanches, D.S.; Lippi, L.L.; Gardner, D.R.; Spinosa, H.S. Increased antitumor efficacy by the combined administration of swainsonine and cisplatin in vivo. Phytomedicine, 2011, 18(12), 1096-1101.
[http://dx.doi.org/10.1016/j.phymed.2011.06.005] [PMID: 21763115]
[66]
Singh, D.; Kaur, G. The antileukaemic cell cycle regulatory activities of swainsonine purified from Metarhizium anisopliae fermentation broth. Nat. Prod. Res., 2014, 28(22), 2044-2047.
[http://dx.doi.org/10.1080/14786419.2014.919287] [PMID: 24865187 ]
[67]
Gueder, N.; Allan, G.; Telliez, M-S.; Hague, F.; Fernández, J.M.; Sánchez-Fernández, E.M.; Ortiz-Mellet, C.; Ahidouch, A.; Ouadid-Ahidouch, H. sp2 -Iminosugar α-glucosidase inhibitor 1-C-octyl-2-oxa-3-oxocastanos-permine specifically affected breast cancer cell migration through Stim1, β1-integrin, and FAK signaling pathways. J. Cell. Physiol., 2017, 232(12), 3631-3640.
[http://dx.doi.org/10.1002/jcp.25832] [PMID: 28145580 ]
[68]
Liu, Z.; Jenkinson, S.F.; Vermaas, T.; Adachi, I.; Wormald, M.R.; Hata, Y.; Kurashima, Y.; Kaji, A.; Yu, C-Y.; Kato, A.; Fleet, G.W.J. 3-Fluoroazetidinecarboxylic acids and trans,trans-3,4-difluoroproline as peptide scaffolds: inhibition of pancreatic cancer cell growth by a fluoroazetidine iminosugar. J. Org. Chem., 2015, 80(9), 4244-4258.
[http://dx.doi.org/10.1021/acs.joc.5b00463] [PMID: 25859886 ]
[69]
Zhu, J.; Zhou, Y.; Wang, G-N.; Tai, G.; Ye, X-S. Cell cycle arrest, apoptosis and autophagy induced by iminosugars on K562 cells. Eur. J. Pharmacol., 2014, 731, 65-72.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.013] [PMID: 24657462 ]
[70]
Elías-Rodríguez, P.; Moreno-Clavijo, E.; Carrión-Jiménez, S.; Carmona, A.T.; Moreno-Vargas, A.J.; Caffa, I.; Montecucco, F.; Cea, M.; Nencioni, A.; Robina, I. Synthesis and cancer growth inhibitory activities of 2-fatty-alkylated pyrrolidine-3,4-diol derivatives. ARKIVOC 3, 2014, 197-214.
[71]
Steimer, F.; Carmona, A.T.; Moreno-Vargas, A.J.; Caffa, I.; Cea, M.; Montecucco, F.; Nencioni, A.; Vogel, P.; Robina, I. Synthesis of pyrrolidine 3,4-diol derivatives with anticancer activity on pancreatic tumor cells. Heterocycles, 2014, 88, 1445-1464.
[http://dx.doi.org/10.3987/COM-13-S(S)111]
[72]
Allan, G.; Ouadid-Ahidouch, H.; Sánchez-Fernández, E.M.; Rísquez-Cuadro, R.; Fernandez, J.M.; Ortiz-Mellet, C.; Ahidouch, A. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells. PLoS One, 2013, 8(10)e76411
[http://dx.doi.org/10.1371/journal.pone.0076411] [PMID: 24124558 ]
[73]
Zhou, Y.; Zhao, Y.; O’ Boyle, K.M.; Murphy, P.V. Hybrid angiogenesis inhibitors: synthesis and biological evaluation of bifunctional compounds based on 1-deoxynojirimycin and aryl-1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2008, 18(3), 954-958.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.034] [PMID: 18166456 ]
[74]
Zhao, Y.; Zhou, Y.; O’ Boyle, K.M.; Murphy, P.V. Biological study of the angiogenesis inhibitor N-(8-(3-ethynyl-phenoxy)octyl-1-deoxynojirimycin. Chem. Biol. Drug Des., 2010, 75(6), 570-577.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00968.x] [PMID: 20565474 ]
[75]
Zhao, Y.; Liu, W.; Zhou, Y.; Zhang, X.; Murphy, P.V. N-(8-(3-ethynylphenoxy)octyl-1-deoxynojirimycin suppresses growth and migration of human lung cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(24), 7540-7543.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.065] [PMID: 21036045]
[76]
Olsen, J.I.; Plata, G.B.; Padrón, J.M.; López, Ó.; Bols, M.; Fernández-Bolaños, J.G. Selenoureido-iminosugars: A new family of multitarget drugs. Eur. J. Med. Chem., 2016, 123, 155-160.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.021] [PMID: 27474931]
[77]
Padró, M.; Castillo, J.A.; Gómez, L.; Joglar, J.; Clapés, P.; de Bolós, C. Cytotoxicity and enzymatic activity inhibition in cell lines treated with novel iminosugar derivatives. Glycoconj. J., 2010, 27(2), 277-285.
[http://dx.doi.org/10.1007/s10719-009-9276-3] [PMID: 20041292 ]
[78]
Bello, C.; Dal Bello, G.; Cea, M.; Nahimana, A.; Aubry, D.; Garuti, A.; Motta, G.; Moran, E.; Fruscione, F.; Pronzato, P.; Grossi, F.; Patrone, F.; Ballestrero, A.; Dupuis, M.; Sordat, B.; Zimmermann, K.; Loretan, J.; Wartmann, M.; Duchosal, M.A.; Nencioni, A.; Vogel, P. Anti-cancer activity of 5-O-alkyl 1,4-imino-1,4-dideoxyribitols. Bioorg. Med. Chem., 2011, 19(24), 7720-7727.
[http://dx.doi.org/10.1016/j.bmc.2011.07.053] [PMID: 22079865 ]
[79]
Sánchez-Fernández, E.M.; Rísquez-Cuadro, R.; Chasseraud, M.; Ahidouch, A.; Ortiz Mellet, C.; Ouadid-Ahidouch, H.; García Fernández, J.M. Synthesis of N-, S-, and C-glycoside castanospermine analogues with selective neutral α-glucosidase inhibitory activity as antitumour agents. Chem. Commun. (Camb.), 2010, 46(29), 5328-5330.
[http://dx.doi.org/10.1039/c0cc00446d] [PMID: 20552113]
[80]
Hottin, A.; Scandolera, A.; Duca, L.; Wright, D.W.; Davies, G.J.; Behr, J.B. A second-generation ferrocene-iminosugar hybrid with improved fucosidase binding properties. Bioorg. Med. Chem. Lett., 2016, 26(6), 1546-1549.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.017] [PMID: 26897594 ]
[81]
Hottin, A.; Wright, D.W.; Steenackers, A.; Delannoy, P.; Dubar, F.; Biot, C.; Davies, G.J.; Behr, J-B. α-L-fucosidase inhibition by pyrrolidine-ferrocene hybrids: rationalization of ligand-binding properties by structural studies. Chemistry, 2013, 19(29), 9526-9533.
[http://dx.doi.org/10.1002/chem.201301001] [PMID: 23740878 ]
[82]
Hottin, A.; Dubar, F.; Steenackers, A.; Delannoy, P.; Biot, C.; Behr, J-B. Iminosugar-ferrocene conjugates as potential anticancer agents. Org. Biomol. Chem., 2012, 10(29), 5592-5597.
[http://dx.doi.org/10.1039/c2ob25727k] [PMID: 22717621 ]
[83]
Czubatka-Bienkowska, A.; Macieja, A.; Sarnik, J.; Witczak, Z.J.; Poplawski, T. The oxidative induction of DNA lesions in cancer cells by 5-thio-D-glucose and 6-thio-D-fructopyranose and their genotoxic effects. Part 3. Bioorg. Med. Chem. Lett., 2017, 27(5), 1210-1214.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.011] [PMID: 28094181 ]
[84]
Satapathy, R.; Dash, B.P.; Bode, B.P.; Byczynski, E.A.; Hosmane, S.N.; Bux, S.; Hosmane, N.S. New classes of carborane-appended 5-thio-D-glucopyranose derivatives. Dalton Trans., 2012, 41(29), 8982-8988.
[http://dx.doi.org/10.1039/c2dt30874f] [PMID: 22722329 ]
[85]
Marepally, S.R.; Yao, M-L.; Kabalka, G.W. Boronated carbohydrate derivatives as potential boron neutron capture therapy reagents. Future Med. Chem., 2013, 5(6), 693-704.
[http://dx.doi.org/10.4155/fmc.13.39] [PMID: 23617431 ]
[86]
Löwenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med., 1999, 341(14), 1051-1062.
[http://dx.doi.org/10.1056/NEJM199909303411407] [PMID: 10502596 ]
[87]
Derissen, E.J.B.; Beijnen, J.H.; Schellens, J.H.M. Concise drug review: azacitidine and decitabine. Oncologist, 2013, 18(5), 619-624.
[http://dx.doi.org/10.1634/theoncologist.2012-0465] [PMID: 23671007 ]
[88]
Kumar, P.; Hornum, M.; Nielsen, L.J.; Enderlin, G.; Andersen, N.K.; Len, C.; Hervé, G.; Sartori, G.; Nielsen, P. High-affinity RNA targeting by oligonucleotides displaying aromatic stacking and amino groups in the major groove. Comparison of triazoles and phenyl substituents. J. Org. Chem., 2014, 79(7), 2854-2863.
[http://dx.doi.org/10.1021/jo4025896] [PMID: 24611639 ]
[89]
Jahnz-Wechmann. Framski, G.R.; Januszczyk, P.A.; Boryski, J. Base-modified nucleosides: etheno derivatives. Front Chem., 2016, 4, 19.
[90]
Toti, K.S.; Osborne, D.; Ciancetta, A.; Boison, D.; Jacobson, K.A. South (S)- and North (N)-methanocarba-7-deazaadenosine analogues as inhibitors of human adenosine kinase. J. Med. Chem., 2016, 59(14), 6860-6877.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00689] [PMID: 27410258 ]
[91]
Thomas, K.; Haapalainen, A.M.; Burgos, E.S.; Evans, G.B.; Tyler, P.C.; Gulab, S.; Guan, R.; Schramm, V.L. Femtomolar inhibitors bind to 5′-methylthioadenosine nucleosidases with favorable enthalpy and entropy. Biochemistry, 2012, 51(38), 7541-7550.
[http://dx.doi.org/10.1021/bi3009938] [PMID: 22931458 ]
[92]
Chapdelaine, D.; Cardinal-David, B.; Prévost, M.; Gagnon, M.; Thumin, I.; Guindon, Y. A stereoselective approach to nucleosides and 4′-thioanalogues from acyclic precursors. J. Am. Chem. Soc., 2009, 131(47), 17242-17245.
[http://dx.doi.org/10.1021/ja905452f] [PMID: 19902939 ]
[93]
Jinha, Y.; Zhao, L. X: Park, J.; Lee, H.W.; Sahu, P.K.; Cui, M.; Moss, S.M.; Hammes, E.; Warnick, E.; Gao, Z.-G.; Noh, M.; Choi, S.; Ahn, H.-C.; Choi, J.; Jacobson, K.A.; Jeong, L.S. N6-Substituted 5′-N-methylcarbamoyl-4′-selenoadenosines as potent and selective A3 adenosine receptor agonists with unusual sugar puckering and nucleobase orientation. J. Med. Chem., 2017, 60, 3422-3437.
[94]
Cong, L.; Zhou, W.; Jin, D.; Wang, J.; Chen, X. Synthesis and antitumor activity of 5′-deoxy-4′-thio-L-nucleosides. Chem. Biol. Drug Des., 2010, 75(6), 619-627.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00967.x] [PMID: 20337785 ]
[95]
Alexander, V.; Song, J.; Yu, J.; Choi, J.H.; Kim, J-H.; Lee, S.K.; Choi, W.J.; Jeong, L.S. Synthesis and biological evaluation of 2′-substituted-4′-selenoribofuranosyl pyrimi-dines as antitumor agents. Arch. Pharm. Res., 2015, 38(6), 966-972.
[http://dx.doi.org/10.1007/s12272-014-0466-6] [PMID: 25239109 ]
[96]
Kim, J-H.; Yu, J.; Alexander, V.; Choi, J.H.; Song, J.; Lee, H.W.; Kim, H.O.; Choi, J.; Lee, S.K.; Jeong, L.S. Structure-activity relationships of 2′-modified-4′-selenoarabino-furanosyl-pyrimidines as anticancer agents. Eur. J. Med. Chem., 2014, 83, 208-225.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.031] [PMID: 24956556]
[97]
Jeong, L.S.; Tosh, D.K.; Choi, W.J.; Lee, S.K.; Kang, Y-J.; Choi, S.; Lee, J.H.; Lee, H.; Lee, H.W.; Kim, H.O. Discovery of a new template for anticancer agents: 2′-deoxy-2′-fluoro-4′-selenoarabinofuranosyl-cytosine (2′-F-4′-seleno-ara-C). J. Med. Chem., 2009, 52(17), 5303-5306.
[http://dx.doi.org/10.1021/jm900852b] [PMID: 19691349 ]
[98]
Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Loiseau, S.; Filippini, D.; Hirlemann, M-H.; Volle, J-N.; Virieux, D.; Lecouvey, M.; Pirat, J-L.; Bakalara, N. Oxaphosphinanes: new therapeutic perspectives for glioblastoma. J. Med. Chem., 2012, 55(5), 2196-2211.
[http://dx.doi.org/10.1021/jm201428a] [PMID: 22268526 ]
[99]
Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Decoux, M.; Loiseau, S.; Rolland, M.; Lecouvey, M.; Hugnot, J-P.; Volle, J-N.; Virieux, D.; Pirat, J-L.; Bakalara, N. C-glycoside mimetics inhibit glioma stem cell proliferation, migration, and invasion. J. Med. Chem., 2014, 57(20), 8293-8306.
[http://dx.doi.org/10.1021/jm500522y] [PMID: 25211466]
[100]
Babouri, R.; Rolland, M.; Sainte-Catherine, O.; Kabouche, Z.; Lecouvey, M.; Bakalara, N.; Volle, J-N.; Virieux, D.; Pirat, J-L. α-Halogenated oxaphosphinanes: Synthesis, unexpected reactions and evaluation as inhibitors of cancer cell proliferation. Eur. J. Med. Chem., 2015, 104, 33-41.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.027] [PMID: 26433617]
[101]
Mrozowski, R.M.; Vemula, R.; Wu, B.; Zhang, Q.; Schroeder, B.R.; Hilinski, M.K.; Clark, D.E.; Hecht, S.M.; O’Doherty, G.A.; Lannigan, D.A. Improving the affinity of SL0101 for RSK using structure-based design. ACS Med. Chem. Lett., 2012, 4(2), 175-179.
[http://dx.doi.org/10.1021/ml300298v] [PMID: 23519677 ]
[102]
Li, M.; Li, Y.; Ludwik, K.A.; Sandusky, Z.M.; Lannigan, D.A.; O’Doherty, G.A.; O’Doherty, G.A. Stereoselective synthesis and evaluation of C6″-substituted 5a-carbasugar analogues of SL0101 as inhibitors of RSK1/2. Org. Lett., 2017, 19(9), 2410-2413.
[http://dx.doi.org/10.1021/acs.orglett.7b00945] [PMID: 28441024]
[103]
Ludwik, K.A. Campbell, J.P.; Li, M.; Li, Y.; Sandusky, Z.M.; Pasic, L.; Sowder, M.E: Brenin, D.R: Pietenpol, J.A: O’Doherty, G.A: Lannigan, D.A. Developmentof a RSK inhibitor as a novel therapy for triple-negative breast cancer. Mol. Cancer Ther., 2016, 15(11), 2598-2608.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0106] [PMID: 27528706]
[104]
Mrozowski, R.M.; Sandusky, Z.M.; Vemula, R.; Wu, B.; Zhang, Q.; Lannigan, D.A.; O’Doherty, G.A. De novo synthesis and biological evaluation of C6″-substituted C4″-amide analogues of SL0101. Org. Lett., 2014, 16(22), 5996-5999.
[http://dx.doi.org/10.1021/ol503012k] [PMID: 25372628]
[105]
Shan, M.; O’Doherty, G.A. Synthesis of SL0101 carbasugar analogues: carbasugars via Pd-catalyzed cyclitolization and post-cyclitolization transformations. Org. Lett., 2010, 12(13), 2986-2989.
[http://dx.doi.org/10.1021/ol101009q] [PMID: 20518547 ]
[106]
Dlugosz, A.; Janecka, A. Novobiocin analogs as potential anticancer agents. Mini Rev. Med. Chem., 2017, 17(9), 728-733.
[http://dx.doi.org/10.2174/1389557516666161223155525] [PMID: 28019639]
[107]
Zhao, H.; Donnelly, A.C.; Kusuma, B.R.; Brandt, G.E.; Brown, D.; Rajewski, R.A.; Vielhauer, G.; Holzbeierlein, J.; Cohen, M.S.; Blagg, B.S. Engineering an antibiotic to fight cancer: optimization of the novobiocin scaffold to produce anti-proliferative agents. J. Med. Chem., 2011, 54(11), 3839-3853.
[http://dx.doi.org/10.1021/jm200148p] [PMID: 21553822 ]
[108]
Donnelly, A.C.; Mays, J.R.; Burlison, J.A.; Nelson, J.T.; Vielhauer, G.; Holzbeierlein, J.; Blagg, B.S. The design, synthesis, and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit antiproliferative activity. J. Org. Chem., 2008, 73(22), 8901-8920.
[http://dx.doi.org/10.1021/jo801312r] [PMID: 18939877 ]
[109]
Svastová, E.; Hulíková, A.; Rafajová, M.; Zat’ovicová, M.; Gibadulinová, A.; Casini, A.; Cecchi, A.; Scozzafava, A.; Supuran, C.T.; Pastorek, J.; Pastoreková, S. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett., 2004, 577(3), 439-445.
[http://dx.doi.org/10.1016/j.febslet.2004.10.043] [PMID: 15556624 ]
[110]
Winum, J-Y.; Colinas, P.A.; Supuran, C.T. Glycosidic carbonic anhydrase IX inhibitors: a sweet approach against cancer. Bioorg. Med. Chem., 2013, 21(6), 1419-1426.
[http://dx.doi.org/10.1016/j.bmc.2012.10.043] [PMID: 23199483 ]
[111]
Supuran, C.T. Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med. Chem., 2011, 3(9), 1165-1180.
[http://dx.doi.org/10.4155/fmc.11.69] [PMID: 21806379 ]
[112]
Touisni, N.; Maresca, A.; McDonald, P.C.; Lou, Y.; Scozzafava, A.; Dedhar, S.; Winum, J.Y.; Supuran, C.T. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J. Med. Chem., 2011, 54(24), 8271-8277.
[http://dx.doi.org/10.1021/jm200983e] [PMID: 22077347 ]
[113]
Moeker, J.; Mahon, B.P.; Bornaghi, L.F.; Vullo, D.; Supuran, C.T.; McKenna, R.; Poulsen, S.A. Structural insights into carbonic anhydrase IX isoform specificity of carbohydrate-based sulfamates. J. Med. Chem., 2014, 57(20), 8635-8645.
[http://dx.doi.org/10.1021/jm5012935] [PMID: 25254302 ]
[114]
Lopez, M.; Trajkovic, J.; Bornaghi, L.F.; Innocenti, A.; Vullo, D.; Supuran, C.T.; Poulsen, S.A. Design, synthesis, and biological evaluation of novel carbohydrate-based sulfamates as carbonic anhydrase inhibitors. J. Med. Chem., 2011, 54(5), 1481-1489.
[http://dx.doi.org/10.1021/jm101525j] [PMID: 21314129 ]
[115]
Morris, J.C.; Chiche, J.; Grellier, C.; Lopez, M.; Bornaghi, L.F.; Maresca, A.; Supuran, C.T.; Pouysségur, J.; Poulsen, S.A. Targeting hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII inhibitors. J. Med. Chem., 2011, 54(19), 6905-6918.
[http://dx.doi.org/10.1021/jm200892s] [PMID: 21851094]
[116]
Arévalo, M.J.; López, Ó.; Gil, M.V. Click Reactions in Organic Synthesis; Chandrasekaran, S., Ed.; Wiley-VCH: Weinheim, 2016, pp. 77-97.
[http://dx.doi.org/10.1002/9783527694174.ch3]
[117]
Gil, M.V.; Arévalo, M.J.; López, Ó. Click Chemistry - What’s in a name? Triazole synthesis and beyond. Synthesis, 2007, 1589-1620.
[http://dx.doi.org/10.1055/s-2007-966071]
[118]
Ndombera, F.T.; VanHecke, G.C.; Nagi, S.; Ahn, Y-H. Carbohydrate-based inducers of cellular stress for targeting cancer cells. Bioorg. Med. Chem. Lett., 2016, 26(5), 1452-1456.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.063] [PMID: 26832785 ]
[119]
Upadhyaya, K. Hamidullah; Singh, K.; Arun, A.; Shukla, M.; Srivastava, N.; Ashraf, R.; Sharma, A.; Mahar, R.; Shukla, S.K.; Sarkar, J.; Ramachandran, R.; Lal, J.; Konwar, R.; Tripathi, R.P. Identification of gallic acid based glycoconjugates as a novel tubulin polymerization inhibitors. Org. Biomol. Chem., 2016, 14(4), 1338-1358.
[http://dx.doi.org/10.1039/C5OB02113H] [PMID: 26659548 ]
[120]
Yan, W-J.; Wang, Q.; Yuan, C-H.; Wang, F.; Ji, Y.; Dai, F.; Jin, X-L.; Zhou, B. Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigation. Free Radic. Biol. Med., 2016, 97, 109-123.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.05.021] [PMID: 27233942]
[121]
Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem. Res. Toxicol., 2017, 30(1), 13-37.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00256] [PMID: 27617882]
[122]
Pelageev, D.N.; Dyshlovoy, S.A.; Pokhilo, N.D.; Denisenko, V.A.; Borisova, K.L.; Keller-von Amsberg, G.; Bokemeyer, C.; Fedorov, S.N.; Honecker, F.; Anufriev, V.P. Quinone-carbohydrate nonglucoside conjugates as a new type of cytotoxic agents: synthesis and determination of in vitro activity. Eur. J. Med. Chem., 2014, 77, 139-144.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.006] [PMID: 24631733 ]
[123]
Campos, V.R.; Cunha, C.A.C.; Silva, W.A. Ferreira, V.F.; de Sousa, C.S. Fernandes, P.D.; Moreira, V.N.; da Rocha, D.R.; Dias, F.R.F.; Montenegro, R.C.; de Souza, M.C.B:V.; da C. S. Boechat, F.; Franco, C.F.J.; Resende, J.A.L.C. Synthesis of a new class of naphthoquinone glycoconjugates and evaluation of their potential as antitumoral agents. RSC Advances, 2015, 5, 96222-96229.
[http://dx.doi.org/10.1039/C5RA19192K]
[124]
Campos, V.R.; dos Santos, E.A. Ferreira, V.F. Montenegro, R.C.; de Souza, M.C.B.V.; Costa-Lotufo, L.V: de Moraes, M.O.; Regufe, A.K.P.; Jordão, A.K.; Pinto, A.C: Resendee, J.A.L.C.; Cunha. A.C. Synthesis of carbohydrate-based naphthoquinones and their substituted phenylhydrazono derivatives as anticancer agents. RSC Advances, 2012, 2, 11438-11448.
[http://dx.doi.org/10.1039/c2ra21514d]
[125]
Martínez De Pinillos Bayona, A.; Mroz, P.; Thunshelle, C.; Hamblin, M.R. Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers. Chem. Biol. Drug Des., 2017, 89(2), 192-206.
[http://dx.doi.org/10.1111/cbdd.12792] [PMID: 28205400 ]
[126]
Singh, S.; Aggarwal, A.; Bhupathiraju, N.V.S.D.K.; Arianna, G.; Tiwari, K.; Drain, C.M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev., 2015, 115(18), 10261-10306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00244] [PMID: 26317756 ]
[128]
Kim, J.; Cho, H.R.; Jeon, H.; Kim, D.; Song, C.; Lee, N.; Choi, S.H.; Hyeon, T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc., 2017, 139(32), 10992-10995.
[http://dx.doi.org/10.1021/jacs.7b05559] [PMID: 28737393 ]
[129]
Gilson, R. C: Black, K.C.L.; Lane, D.D.; Achilefu, S. Hybrid TiO2-Ruthenium nano-photosensitizer synergistically produces reactive oxygen species in both hypoxic and normoxic conditions. Angew. Chem. Int. Ed., 2017, 56, 107-117.
[http://dx.doi.org/10.1002/anie.201704458]
[130]
Chiba, M.; Ichikawa, Y.; Kamiya, M.; Komatsu, T.; Ueno, T.; Hanaoka, K.; Nagano, T.; Lange, N.; Urano, Y. An activatable photosensitizer targeted to γ-glutamyltrans-peptidase. Angew. Chem. Int. Ed. Engl., 2017, 56(35), 10418-10422.
[http://dx.doi.org/10.1002/anie.201704793] [PMID: 28639393]
[131]
Deni, E.; Zamarrón, A.; Bonaccorsi, P.; Carmen Carreño, M.; Juarranz, Á.; Puntoriero, F.; Sciortino, M.T.; Ribagorda, M.; Barattucci, A. Glucose-functionalized amino-OPEs as biocompatible photosensitizers in PDT. Eur. J. Med. Chem., 2016, 111, 58-71.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.041] [PMID: 26854378 ]
[132]
Kanamori, T.; Sawamura, T.; Tanaka, T.; Sotokawa, I.; Mori, R.; Inada, K.; Ohkubo, A.; Ogura, S-I.; Murayama, Y.; Otsuji, E.; Yuasa, H. Coating lanthanide nanoparticles with carbohydrate ligands elicits affinity for HeLa and RAW264.7 cells, enhancing their photodamaging effect. Bioorg. Med. Chem., 2017, 25(2), 743-749.
[http://dx.doi.org/10.1016/j.bmc.2016.11.050] [PMID: 27939346 ]
[133]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179 ]
[134]
García, G.; Hammerer, F.; Poyer, F.; Achelle, S.; Teulade-Fichou, M-P.; Maillard, P. Carbohydrate-conjugated porphyrin dimers: synthesis and photobiological evaluation for a potential application in one-photon and two-photon photodynamic therapy. Bioorg. Med. Chem., 2013, 21(1), 153-165.
[http://dx.doi.org/10.1016/j.bmc.2012.10.042] [PMID: 23218779 ]
[135]
Hammerer, F.; Achelle, S.; Baldeck, P.; Maillard, P.; Teulade-Fichou, M-P. Influence of carbohydrate biological vectors on the two-photon resonance of porphyrin oligomers. J. Phys. Chem. A, 2011, 115(24), 6503-6508.
[http://dx.doi.org/10.1021/jp202436x] [PMID: 21585209]
[136]
Hammerer, F.; Garcia, G.; Chen, S.; Poyer, F.; Achelle, S.; Fiorini-Debuisschert, C.; Teulade-Fichou, M-P.; Maillard, P. Synthesis and characterization of glycoconjugated porphyrin triphenylamine hybrids for targeted two-photon photodynamic therapy. J. Org. Chem., 2014, 79(3), 1406-1417.
[http://dx.doi.org/10.1021/jo402658h] [PMID: 24433138 ]
[137]
Horne, T.K.; Cronjé, M.J. Novel carbohydrate-substituted metallo-porphyrazine comparison for cancer tissue-type specificity during PDT. J. Photochem. Photobiol. B, 2017, 173, 412-422.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.013] [PMID: 28662468 ]
[138]
Ribeiro Pereira, P.M.; Silva, S.; Bispo, M.; da Rocha Zuzarte, M.; Gomes, C.; Girão, H.; Cavaleiro, J.A.S.; Fontes Ribeiro, C.A.; Tome, J.P.C.; Fernandes, R. Preclinical study on mitochondria-targeted photodynamic therapy using a galactodendritic chlorin for bladder cancer. Bioconjug. Chem., 2016, 27, 2762-2769.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00519]
[139]
Murakami, G.; Nanashima, A.; Nonaka, T.; Tominaga, T.; Wakata, K.; Sumida, Y.; Akashi, H.; Okazaki, S.; Kataoka, H.; Nagayasu, T. Photodynamic therapy using novel glucose-conjugated chlorin increases apoptosis of cholangiocellular carcinoma in comparison with Talaporfin sodium. Anticancer Res., 2016, 36(9), 4493-4501.
[http://dx.doi.org/10.21873/anticanres.10995] [PMID: 27630287 ]
[140]
Ballut, S.; Makky, A.; Chauvin, B.; Michel, J-P.; Kasselouri, A.; Maillard, P.; Rosilio, V. Tumor targeting in photodynamic therapy. From glycoconjugated photosensitizers to glycodendrimeric one. Concept, design and properties. Org. Biomol. Chem., 2012, 10(23), 4485-4495.
[http://dx.doi.org/10.1039/c2ob25181g] [PMID: 22569817]
[141]
Daly, R.; Vaz, G.; Davies, A.M.; Senge, M.O.; Scanlan, E.M. Synthesis and biological evaluation of a library of glycoporphyrin compounds. Chemistry, 2012, 18(46), 14671-14679.
[http://dx.doi.org/10.1002/chem.201202064] [PMID: 23018896 ]
[142]
Cornia, M.; Menozzi, M.; Ragg, E.; Mazzini, S.; Scarafoni, A.; Zanardi, F.; Casiraghi, G. Synthesis and utility of novel C-meso-glycosylated metalloporphyrins. Tetrahedron, 2000, 56, 3977-3983.
[http://dx.doi.org/10.1016/S0040-4020(00)00295-7]
[143]
Choi, C-F.; Huang, J-D.; Lo, P-C.; Fong, W-P.; Ng, D.K.P. Glycosylated zinc(II) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Org. Biomol. Chem., 2008, 6(12), 2173-2181.
[http://dx.doi.org/10.1039/b802212g] [PMID: 18528579 ]
[144]
Wang, C.; Liu, L.; Cao, H.; Zhang, W. Intracellular GSH-activated galactoside photosensitizers for targeted photodynamic therapy and chemotherapy. Biomater. Sci., 2017, 5(2), 274-284.
[http://dx.doi.org/10.1039/C6BM00482B] [PMID: 27942618 ]
[145]
Tanaka, M.; Kataoka, H.; Yano, S.; Sawada, T.; Akashi, H.; Inoue, M.; Suzuki, S.; Inagaki, Y.; Hayashi, N.; Nishie, H.; Shimura, T.; Mizoshita, T.; Mori, Y.; Kubota, E.; Tanida, S.; Takahashi, S.; Joh, T. Immunogenic cell death due to a new photodynamic therapy (PDT) with glycoconjugated chlorin (G-chlorin). Oncotarget, 2016, 7(30), 47242-47251.
[http://dx.doi.org/10.18632/oncotarget.9725] [PMID: 27363018 ]
[146]
Achelle, S.; Couleaud, P.; Baldeck, P.; Teulade-Fichou, M-P.; Maillard, P. Carbohydrate-porphyrin conjugates with two-photon absorption properties as potential photosensitizing agents for photodynamic therapy. Eur. J. Org. Chem., 2011, 1271-1279.
[http://dx.doi.org/10.1002/ejoc.201001209]
[147]
Staegemann, M.H.; Gitter, B.; Dernedde, J.; Kuehne, C.; Haag, R.; Wiehe, A. Mannose-functionalized hyperbranched polyglycerol loaded with zinc porphyrin: investigation of the multivalency effect in antibacterial photodynamic therapy. Chemistry, 2017, 23(16), 3918-3930.
[http://dx.doi.org/10.1002/chem.201605236] [PMID: 28029199 ]
[148]
Ikeda, A.; Satake, S.; Mae, T.; Ueda, M.; Sugikawa, K.; Shigeto, H.; Funabashi, H.; Kuroda, A. Photodynamic activities of porphyrin derivative-cyclodextrin complexes by photoirradiation. ACS Med. Chem. Lett., 2017, 8(5), 555-559.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00098] [PMID: 28523110 ]
[149]
Zhang, Q.; Cai, Y.; Wang, X-J.; Xu, J-L.; Ye, Z.; Wang, S.; Seeberger, P.H.; Yin, J. Targeted photodynamic killing of breast cancer cells employing heptamannosylated β-cyclodextrin-mediated nanoparticle formation of an adamantane-functionalized BODIPY photosensitizer. ACS Appl. Mater. Interfaces, 2016, 8(49), 33405-33411.
[http://dx.doi.org/10.1021/acsami.6b13612] [PMID: 27960381]
[150]
Tanaka, M.; Kataoka, H.; Mabuchi, M.; Sakuma, S.; Takahashi, S.; Tujii, R.; Akashi, H.; Ohi, H.; Yano, S.; Morita, A.; Joh, T. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res., 2011, 31(3), 763-769.
[PMID: 21498693]
[151]
Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials (Basel), 2013, 6(3), 817-840.
[http://dx.doi.org/10.3390/ma6030817] [PMID: 28809342]
[152]
Pereira, P.M.R.; Silva, S.; Cavaleiro, J.A.S.; Ribeiro, C.A.F.; Tomé, J.P.C.; Fernandes, R. Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy. PLoS One, 2014, 9(4)e95529
[http://dx.doi.org/10.1371/journal.pone.0095529] [PMID: 24763311]
[153]
Zhang, Q.; Cai, Y.; Li, Q.Y.; Hao, L.N.; Ma, Z.; Wang, X.J.; Yin, J. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chem, 2017, 23(57), 14307-14315.
[http://dx.doi.org/10.1002/chem.201702935] [PMID: 28753238]
[154]
Pereira1, P.M.R.; Berisha, N.; Bhupathiraju, N.V.S.D.K.; Fernandes, R.; Tomé, J.P.C.; Drain, C.M. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers PLoS One, 2017, 12e0177737.
[http://dx.doi.org/ 10.1371/journal.pone.0177737]
[155]
Fernández-Bolaños, J.G.; Maya, I.; Oliete, A. Carbohydrate chemistry-Chemical and biological approaches-Specialist periodical reports; Rauter, A.P.; Lindhorst, T.K., Eds. Royal Society of Chem., , 2012; 38, p. 303.337
[156]
Bojarová, P.; Křen, V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater. Sci., 2016, 4(8), 1142-1160.
[http://dx.doi.org/10.1039/C6BM00088F] [PMID: 27075026 ]
[157]
Aykaç, A.; Martos-Maldonado, M.C.; Casas-Solvas, J.M.; Quesada-Soriano, I.; García-Maroto, F.; García-Fuentes, L.; Vargas-Berenguel, A. β-Cyclodextrin-bearing gold glyconanoparticles for the development of site specific drug delivery systems. Langmuir, 2014, 30(1), 234-242.
[http://dx.doi.org/10.1021/la403454p] [PMID: 24313322 ]
[158]
Candiota, A.P.; Acosta, M.; Simões, R.V.; Delgado-Goñi, T.; Lope-Piedrafita, S.; Irure, A.; Marradi, M.; Bomati-Miguel, O.; Miguel-Sancho, N.; Abasolo, I.; Schwartz, S., Jr; Santamaría, J.; Penadés, S.; Arús, C. A new ex vivo method to evaluate the performance of candidate MRI contrast agents: a proof-of-concept study. J. Nanobiotechnology, 2014, 12, 12.
[http://dx.doi.org/10.1186/1477-3155-12-12] [PMID: 24708566]
[159]
Frigell, J.; García, I.; Gómez-Vallejo, V.; Llop, J.; Penadés, S. 68 Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J. Am. Chem. Soc., 2014, 136(1), 449-457.
[http://dx.doi.org/10.1021/ja411096m] [PMID: 24320878 ]
[160]
Bernardi, A.; Jiménez-Barbero, J.; Casnati, A.; De Castro, C.; Darbre, T.; Fieschi, F.; Finne, J.; Funken, H.; Jaeger, K-E.; Lahmann, M.; Lindhorst, T.K.; Marradi, M.; Messner, P.; Molinaro, A.; Murphy, P.V.; Nativi, C.; Oscarson, S.; Penadés, S.; Peri, F.; Pieters, R.J.; Renaudet, O.; Reymond, J-L.; Richichi, B.; Rojo, J.; Sansone, F.; Schäffer, C.; Turnbull, W.B.; Velasco-Torrijos, T.; Vidal, S.; Vincent, S.; Wennekes, T.; Zuilhof, H.; Imberty, A. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev., 2013, 42(11), 4709-4727.
[http://dx.doi.org/10.1039/C2CS35408J] [PMID: 23254759 ]
[161]
Li, W.; Yang, X.; He, L.; Wang, K.; Wang, Q.; Huang, J.; Liu, J.; Wu, B.; Xu, C. Self-assembled DNA nanocentipede as multivalent drug carrier for targeted delivery. ACS Appl. Mater. Interfaces, 2016, 8(39), 25733-25740.
[http://dx.doi.org/10.1021/acsami.6b08210] [PMID: 27622459 ]
[162]
Kim, S-Y.; Heo, M.B.; Hwang, G-S.; Jung, Y.; Choi, D.Y.; Park, Y-M.; Lim, Y.T. Multivalent polymer nanocomplex targeting endosomal receptor of immune cells for enhanced antitumor and systemic memory response. Angew. Chem. Int. Ed. Engl., 2015, 54(28), 8139-8143.
[http://dx.doi.org/10.1002/anie.201501380] [PMID: 26014442 ]
[163]
Besford, Q.A.; Wojnilowicz, M.; Suma, T.; Bertleff-Zieschang, N.; Caruso, F.; Cavalieri, F. Lactosylated glycogen nanoparticles for targeting prostate cancer cells. ACS Appl. Mater. Interfaces, 2017, 9(20), 16869-16879.
[http://dx.doi.org/10.1021/acsami.7b02676] [PMID: 28362077]
[164]
El Brahmi, N.; El Kazzouli, S.; Mignani, S.M.; Essassi, M.; Aubert, G.; Laurent, R.; Caminade, A-M.; Bousmina, M.M.; Cresteil, T.; Majoral, J-P. Original multivalent copper(II)-conjugated phosphorus dendrimers and corresponding mononuclear copper(II) complexes with antitumoral activities. Mol. Pharm., 2013, 10(4), 1459-1464.
[http://dx.doi.org/10.1021/mp4000184] [PMID: 23410260]
[165]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[http://dx.doi.org/10.1021/nn9005686] [PMID: 19702292]
[166]
Cao, S.; Pei, Z.; Xu, Y.; Pei, Y. Glyco-nanovesicles with activatable near-infrared probes for real-time monitoring of drug release and targeted delivery. Chem. Mater., 2016, 28, 4501-4506.
[http://dx.doi.org/10.1021/acs.chemmater.6b01857]
[167]
Gray, B.P.; Li, S.; Brown, K.C. From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug. Chem., 2013, 24(1), 85-96.
[http://dx.doi.org/10.1021/bc300498d] [PMID: 23186007]
[168]
Yuan, H.; Jiang, W.; von Roemeling, C.A.; Qie, Y.; Liu, X.; Chen, Y.; Wang, Y.; Wharen, R.E.; Yun, K.; Bu, G.; Knutson, K.L.; Kim, B.Y.S. Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol., 2017, 12(8), 763-769.
[http://dx.doi.org/10.1038/nnano.2017.69] [PMID: 28459470 ]
[169]
Gou, Y.; Zhang, Y.; Zhang, Z.; Wang, J.; Zhou, Z.; Liang, H.; Yang, F. Design of an anticancer copper(II) prodrug based on the Lys199 residue of the active targeting human serum albumin nanoparticle carrier. Mol. Pharm., 2017, 14(6), 1861-1873.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01074] [PMID: 28471669]
[170]
Marradi, M.; Chiodo, F.; García, I.; Penadés, S. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem. Soc. Rev., 2013, 42(11), 4728-4745.
[http://dx.doi.org/10.1039/c2cs35420a] [PMID: 23288339]
[171]
Irure, A.; Marradi, M.; Arnáiz, B.; Genicio, N.; Padro, D.; Penadés, S. Sugar/gadolinium-loaded gold nanoparticles for labelling and imaging cells by magnetic resonance imaging. Biomater. Sci., 2013, 1, 658-668.
[http://dx.doi.org/10.1039/c3bm60032g]
[172]
Adokoh, C.K.; Quan, S.; Hitt, M.; Darkwa, J.; Kumar, P.; Narain, R. Synthesis and evaluation of glycopolymeric decorated gold nanoparticles functionalized with gold-triphenyl phosphine as anti-cancer agents. Biomacromolecules, 2014, 15(10), 3802-3810.
[http://dx.doi.org/10.1021/bm5010977] [PMID: 25162942]
[173]
Calderon-González, R.; Terán-Navarro, H.; García, I.; Marradi, M.; Salcines-Cuevas, D.; Yañez-Diaz, S.; Solís-Angulo, A.; Frande-Cabanes, E.; Fariñas, M.C.; Garcia-Castaño, A.; Gómez-Román, J.; Penadés, S.; Rivera, F.; Freire, J.; Álvarez-Domínguez, C. Gold glyconanoparticles coupled to listeriolysin O 91-99 peptide serve as adjuvant therapy against melanoma. Nanoscale, 2017, 9(30), 10721-10732.
[http://dx.doi.org/10.1039/C7NR02494K] [PMID: 28714508]
[174]
Zhou, J.; Hao, N.; De Zoyza, T.; Yan, M.; Ramström, O. Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery. Chem. Commun. (Camb.), 2015, 51(48), 9833-9836.
[http://dx.doi.org/10.1039/C5CC02907D] [PMID: 25989158]
[175]
Torti, S.V.; Torti, F.M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[http://dx.doi.org/10.1038/nrc3495] [PMID: 23594855]
[176]
Akam, E.A.; Tomat, E. Targeting iron in colon cancer via glycoconjugation of thiosemicarbazone prochelators. Bioconjug. Chem., 2016, 27(8), 1807-1812.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00332] [PMID: 27471913]
[177]
Padmanabhan, H.; Brookes, M.J.; Iqbal, T. Iron and colorectal cancer: evidence from in vitro and animal studies. Nutr. Rev., 2015, 73(5), 308-317.
[http://dx.doi.org/10.1093/nutrit/nuu015] [PMID: 26011904]
[178]
Galanski, M.; Arion, V.B.; Jakupec, M.A.; Keppler, B.K. Recent developments in the field of tumor-inhibiting metal complexes. Curr. Pharm. Des., 2003, 9(25), 2078-2089.
[http://dx.doi.org/10.2174/1381612033454180] [PMID: 14529417 ]
[179]
Storr, T.; Thompson, K.H.; Orvig, C. Design of targeting ligands in medicinal inorganic chemistry. Chem. Soc. Rev., 2006, 35(6), 534-544.
[http://dx.doi.org/10.1039/b514859f] [PMID: 16729147 ]
[180]
Szablewski, L. Expression of glucose transporters in cancers. Biochim. Biophys. Acta, 2013, 1835(2), 164-169.
[http://dx.doi.org/10.1016/j.bbcan.2012.12.004] [PMID: 23266512 ]
[181]
Yano, S.; Ohi, H.; Ashizaki, M.; Obata, M.; Mikata, Y.; Tanaka, R.; Nishioka, T.; Kinoshita, I.; Sugai, Y.; Okura, I.; Ogura, S.; Czaplewska, J.A.; Gottschaldt, M.; Schubert, U.S.; Funabiki, T.; Morimoto, K.; Nakai, M. Syntheses, characterization, and antitumor activities of platinum(II) and palladium(II) complexes with sugar-conjugated triazole ligands. Chem. Biodivers., 2012, 9(9), 1903-1915.
[http://dx.doi.org/10.1002/cbdv.201100426] [PMID: 22976979]
[182]
Patra, M.; Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J.A. Potent glucose-platinum conjugate exploits glucose transporters and preferentially accumulates in cancer cells. Angew. Chem. Int. Ed. Engl., 2016, 55(7), 2550-2554.
[http://dx.doi.org/10.1002/anie.201510551] [PMID: 26749149]
[183]
Patra, M.; Awuah, S.G.; Lippard, S.J. Chemical approach to positional isomers of glucose-platinum conjugates reveals specific cancer targeting through glucose-transporter-mediated uptake in vitro and in vivo. J. Am. Chem. Soc., 2016, 138(38), 12541-12551.
[http://dx.doi.org/10.1021/jacs.6b06937] [PMID: 27570149]
[184]
Liu, R.; Li, H.; Gao, X.; Mi, Q.; Zhao, H.; Gao, Q. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1. Biochem. Biophys. Res. Commun., 2017, 487(1), 34-40.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.004] [PMID: 28385528]
[185]
Wang, Q.; Huang, Z.; Ma, J.; Lu, X.; Zhang, L.; Wang, X.; George Wang, P. Design, synthesis and biological evaluation of a novel series of glycosylated platinum(iv) complexes as antitumor agents. Dalton Trans., 2016, 45(25), 10366-10374.
[http://dx.doi.org/10.1039/C6DT01562J] [PMID: 27252024]
[186]
Ma, J.; Wang, Q.; Yang, X.; Hao, W.; Huang, Z.; Zhang, J.; Wang, X.; Wang, P.G. Glycosylated platinum(iv) prodrugs demonstrated significant therapeutic efficacy in cancer cells and minimized side-effects. Dalton Trans., 2016, 45(29), 11830-11838.
[http://dx.doi.org/10.1039/C6DT02207C] [PMID: 27373800 ]
[187]
Ma, J.; Yang, X.; Hao, W.; Huang, Z.; Wang, X.; Wang, P.G. Mono-functionalized glycosylated platinum(IV) complexes possessed both pH and redox dual-responsive properties: Exhibited enhanced safety and preferentially accumulated in cancer cells in vitro and in vivo. Eur. J. Med. Chem., 2017, 128, 45-55.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.032] [PMID: 28147308 ]
[188]
Ma, J.; Wang, Q.; Huang, Z.; Yang, X.; Nie, Q.; Hao, W.; Wang, P.G.; Wang, X. Glycosylated platinum(IV) complexes as substrates for glucose transporters (GLUTs) and organic cation transporters (OCTs) exhibited cancer targeting and human serum albumin binding properties for drug delivery. J. Med. Chem., 2017, 60(13), 5736-5748.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00433] [PMID: 28603992 ]
[189]
Chaves, J.D.; Damasceno, J.L.; Paula, M.C.; de Oliveira, P.F.; Azevedo, G.C.; Matos, R.C.; Lourenço, M.C.S.; Tavares, D.C.; Silva, H.; Fontes, A.P.; de Almeida, M.V. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates. Biometals, 2015, 28(5), 845-860.
[http://dx.doi.org/10.1007/s10534-015-9870-8] [PMID: 26091950 ]
[190]
Hanif, M.; Meier, S.M.; Nazarov, A.A.; Risse, J.; Legin, A.; Casini, A.; Jakupec, M.A.; Keppler, B.K.; Hartinger, C.G. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes. Front Chem., 2013, 1, 27.
[http://dx.doi.org/10.3389/fchem.2013.00027] [PMID: 24790955 ]
[191]
Florindo, P.; Marques, I.J.; Nunes, C.D.; Fernandes, A.C. Synthesis, characterization and cytotoxicity of cyclopentadienyl ruthenium(II) complexes containing carbohydrate-derived ligands. ‎. J. Organomet. Chem., 2014, 760, 240-247.
[http://dx.doi.org/10.1016/j.jorganchem.2013.09.004]
[192]
Florindo, P.R.; Pereira, D.M.; Borralho, P.M.; Rodrigues, C.M.P.; Piedade, M.F.M.; Fernandes, A.C. Cyclopentadienyl-ruthenium(II) and iron(II) organometallic compounds with carbohydrate derivative ligands as good colorectal anticancer agents. J. Med. Chem., 2015, 58(10), 4339-4347.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00403] [PMID: 25923600 ]
[193]
Hanif, M.; Nazarov, A.A.; Hartinger, C.G.; Kandioller, W.; Jakupec, M.A.; Arion, V.B.; Dyson, P.J.; Keppler, B.K. Osmium(II)--versus ruthenium(II)--arene carbohydrate-based anticancer compounds: similarities and differences. Dalton Trans., 2010, 39(31), 7345-7352.
[http://dx.doi.org/10.1039/c003085f] [PMID: 20601976]
[194]
Lameijer, L.N.; Hopkins, S.L.; Brevé, T.G.; Askes, S.H.C.; Bonnet, S.D. -versus L-glucose conjugation: mitochondrial targeting of a light-activated dual-mode-of-action ruthenium-based anticancer prodrug. Chemistry, 2016, 22(51), 18484-18491.
[http://dx.doi.org/10.1002/chem.201603066] [PMID: 27859843 ]
[195]
Khan, R.A.; Yadav, S.; Hussain, Z.; Arjmand, F.; Tabassum, S. Carbohydrate linked organotin(IV) complexes as human topoisomerase Iα inhibitor and their antiproliferative effects against the human carcinoma cell line. Dalton Trans., 2014, 43(6), 2534-2548.
[http://dx.doi.org/10.1039/C3DT51973B] [PMID: 24310209]
[196]
Banik, B.; Somyajit, K.; Hussain, A.; Nagaraju, G.; Chakravarty, A.R. Carbohydrate-appended photocytotoxic (imidazophenanthroline)-oxovanadium(IV) complexes for cellular targeting and imaging. Dalton Trans., 2014, 43(3), 1321-1331.
[http://dx.doi.org/10.1039/C3DT52087K] [PMID: 24193217]
[197]
Heimburg-Molinaro, J.; Lum, M.; Vijay, G.; Jain, M.; Almogren, A.; Rittenhouse-Olson, K. Cancer vaccines and carbohydrate epitopes. Vaccine, 2011, 29(48), 8802-8826.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.009] [PMID: 21964054 ]
[198]
Hossain, M.K.; Wall, K.A. Immunological evaluation of recent MUC1 glycopeptide cancer vaccines. Vaccines (Basel), 2016, 4(3), 25.
[http://dx.doi.org/10.3390/vaccines4030025] [PMID: 27472370]
[199]
Fernández-Tejada, A.; Cañada, F.J.; Jiménez-Barbero, J. Recent developments in synthetic carbohydrate-based diagnostics, vaccines, and therapeutics. Chemistry, 2015, 21(30), 10616-10628.
[http://dx.doi.org/10.1002/chem.201500831] [PMID: 26095198]
[200]
Nishat, S.; Andreana, P.R. Entirely carbohydrate-based vaccines: an emerging field for specific and selective immune responses. Vaccines (Basel), 2016, 4(2), 19.
[http://dx.doi.org/10.3390/vaccines4020019] [PMID: 27213458 ]
[201]
Coelho, H.; Matsushita, T.; Artigas, G.; Hinou, H.; Cañada, F.J.; Lo-Man, R.; Leclerc, C.; Cabrita, E.J.; Jiménez-Barbero, J.; Nishimura, S.; Garcia-Martín, F.; Marcelo, F. The quest for anticancer vaccines: deciphering the fine-epitope specificity of cancer-related monoclonal antibodies by combining microarray screening and saturation transfer difference NMR. J. Am. Chem. Soc., 2015, 137(39), 12438-12441.
[http://dx.doi.org/10.1021/jacs.5b06787] [PMID: 26366611 ]
[202]
Wagner, S.; Mersch, C.; Hoffmann-Röder, A. Fluorinated glycosyl amino acids for mucin-like glycopeptide antigen analogues. Chem, 2010, 16(24), 7319-7330.
[http://dx.doi.org/10.1002/chem.200903294] [PMID: 20461825]
[203]
Hoffmann-Röder, A.; Kaiser, A.; Wagner, S.; Gaidzik, N.; Kowalczyk, D.; Westerlind, U.; Gerlitzki, B.; Schmitt, E.; Kunz, H. Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. Angew. Chem. Int. Ed. Engl., 2010, 49(45), 8498-8503.
[http://dx.doi.org/10.1002/anie.201003810] [PMID: 20878823]
[204]
Johannes, M.; Reindl, M.; Gerlitzki, B.; Schmitt, E.; Hoffmann-Röder, A. Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4′-deoxy-4′-fluoro-Thomsen-Friedenreich epitope. Beilstein J. Org. Chem., 2015, 11, 155-161.
[http://dx.doi.org/10.3762/bjoc.11.15] [PMID: 25670999]
[205]
Martínez-Sáez, N.; Supekar, N.T.; Wolfert, M.A.; Bermejo, I.A.; Hurtado-Guerrero, R.; Asensio, J.L.; Jiménez-Barbero, J.; Busto, J.H.; Avenoza, A.; Boons, G-J.; Peregrina, J.M.; Corzana, F. Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chem. Sci. (Camb.), 2016, 7(3), 2294-2301.
[http://dx.doi.org/10.1039/C5SC04039F] [PMID: 29910919 ]
[206]
Rojas-Ocáriz, V.; Compañón, I.; Aydillo, C.; Castro-Loṕez, J.; Jiménez-Barbero, J.; Hurtado-Guerrero, R.; Avenoza, A.; Zurbano, M.M.; Peregrina, J.M.; Busto, J.H.; Corzana, F. Design of α-S-neoglycopeptides derived from MUC1 with a flexible and solvent-exposed sugar moiety. J. Org. Chem., 2016, 81(14), 5929-5941.
[http://dx.doi.org/10.1021/acs.joc.6b00833] [PMID: 27305427]
[207]
Cai, H.; Huang, Z-H.; Shi, L.; Zou, P.; Zhao, Y-F.; Kunz, H.; Li, Y-M. Synthesis of Tn/T antigen MUC1 glycopeptide BSA conjugates and their evaluation as vaccines. Eur. J. Org. Chem., 2011, 3685-3689
[http://dx.doi.org/10.1002/ejoc.201100304]
[208]
Sun, S.; Zheng, X-J.; Huo, C-X.; Song, C.; Li, Q.; Ye, X.S. Synthesis and evaluation of glycoconjugates comprising N-acyl-modified Thomsen-Friedenreich antigens as anticancer vaccines. ChemMedChem, 2016, 11(10), 1090-1096.
[http://dx.doi.org/10.1002/cmdc.201600094] [PMID: 27075633 ]
[209]
Zheng, X-J.; Yang, F.; Zheng, M.; Huo, C-X.; Zhang, Y.; Ye, X-S. Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Org. Biomol. Chem., 2015, 13(22), 6399-6406.
[http://dx.doi.org/10.1039/C5OB00405E] [PMID: 25982227]
[210]
Nativi, C.; Renaudet, O. Recent progress in antitumoral synthetic vaccines. ACS Med. Chem. Lett., 2014, 5(11), 1176-1178.
[http://dx.doi.org/10.1021/ml5003794] [PMID: 25408824]
[211]
Abdel-Aal, A.B.; Lakshminarayanan, V.; Thompson, P.; Supekar, N.; Bradley, J.M.; Wolfert, M.A.; Cohen, P.A.; Gendler, S.J.; Boons, G-J. Immune and anticancer responses elicited by fully synthetic aberrantly glycosylated MUC1 tripartite vaccines modified by a TLR2 or TLR9 agonist. ChemBioChem, 2014, 15(10), 1508-1513.
[http://dx.doi.org/10.1002/cbic.201402077] [PMID: 24890740]
[212]
Qin, Q.; Yin, Z.; Bentley, P.; Huang, X. Carbohydrate antigen delivery by water soluble copolymers as potential anti-cancer vaccines. MedChemComm, 2014, 5(8), 1126-1129.
[http://dx.doi.org/10.1039/C4MD00103F] [PMID: 25396038 ]
[213]
Qin, Q.; Yin, Z.; Wu, X.; Haas, K.M.; Huang, X. Valency and density matter: Deciphering impacts of immunogen structures on immune responses against a tumor associated carbohydrate antigen using synthetic glycopolymers. Bio., 2016, 101, 189-198.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.050] [PMID: 27294537 ]
[214]
Fernández-Tejada, A.; Tan, D.S.; Gin, D.Y. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Acc. Chem. Res., 2016, 49, 1741-1756.
[http://dx.doi.org/10.1021/acs.accounts.6b00242] [PMID: 27568877 ]
[215]
Yin, X-G.; Chen, X-Z.; Sun, W-M.; Geng, X.S.; Zhang, X-K.; Wang, J.; Ji, P-P.; Zhou, Z-Y.; Baek, D.J.; Yang, G-F.; Liu, Z.; Guo, J. IgG Antibody response elicited by a fully synthetic two-component carbohydrate-based cancer vaccine candidate with α-galactosylceramide as built-in adjuvant. Org. Lett., 2017, 19(3), 456-459.
[http://dx.doi.org/10.1021/acs.orglett.6b03591] [PMID: 28121454 ]
[216]
Lin, T.; Chen, Z.; Usha, R.; Stauffacher, C.V.; Dai, J-B.; Schmidt, T.; Johnson, J.E. The refined crystal structure of cowpea mosaic virus at 2.8 A resolution. Virology, 1999, 265(1), 20-34.
[http://dx.doi.org/10.1006/viro.1999.0038] [PMID: 10603314 ]
[217]
Miermont, A.; Barnhill, H.; Strable, E.; Lu, X.; Wall, K.A.; Wang, Q.; Finn, M.G.; Huang, X. Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines. Chem, 2008, 14(16), 4939-4947.
[http://dx.doi.org/10.1002/chem.200800203] [PMID: 18431733 ]
[218]
Yin, Z.; Chowdhury, S.; McKay, C.; Baniel, C.; Wright, W.S.; Bentley, P.; Kaczanowska, K.; Gildersleeve, J.C.; Finn, M.G.; BenMohamed, L.; Huang, X. Significant Impact of Immunogen Design on the Diversity of Antibodies Generated by Carbohydrate-Based Anticancer Vaccine. ACS Chem. Biol., 2015, 10(10), 2364-2372.
[http://dx.doi.org/10.1021/acschembio.5b00406] [PMID: 26262839 ]
[219]
Yin, Z.; Dulaney, S.; McKay, C.S.; Baniel, C.; Kaczanowska, K.; Ramadan, S.; Finn, M.G.; Huang, X. Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies. ChemBioChem, 2016, 17(2), 174-180.
[http://dx.doi.org/10.1002/cbic.201500499] [PMID: 26538065 ]
[220]
Palitzsch, B.; Hartmann, S.; Stergiou, N.; Glaffig, M.; Schmitt, E.; Kunz, H. A fully synthetic four-component antitumor vaccine consisting of a mucin glycopeptide antigen combined with three different T-helper-cell epitopes. Angew. Chem. Int. Ed. Engl., 2014, 53(51), 14245-14249.
[http://dx.doi.org/10.1002/anie.201406843] [PMID: 25318465 ]
[221]
Palitzsch, B.; Gaidzik, N.; Stergiou, N.; Stahn, S.; Hartmann, S.; Gerlitzki, B.; Teusch, N.; Flemming, P.; Schmitt, E.; Kunz, H. A Synthetic glycopeptide vaccine for the induction of a monoclonal antibody that differentiates between normal and tumor mammary cells and enables the diagnosis of human pancreatic cancer. Angew. Chem. Int. Ed. Engl., 2016, 55(8), 2894-2898.
[http://dx.doi.org/10.1002/anie.201509935] [PMID: 26800384 ]
[222]
Richichi, B.; Thomas, B.; Fiore, M.; Bosco, R.; Qureshi, H.; Nativi, C.; Renaudet, O.; BenMohamed, L. A cancer therapeutic vaccine based on clustered Tn-antigen mimetics induces strong antibody-mediated protective immunity. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11917-11920.
[http://dx.doi.org/10.1002/anie.201406897] [PMID: 25168881 ]
[223]
Young, S.W.S.; Stenzel, M.; Yang, J-L. Nanoparticle-siRNA: A potential cancer therapy? Crit. Rev. Oncol. Hematol., 2016, 98, 159-169.
[http://dx.doi.org/10.1016/j.critrevonc.2015.10.015] [PMID: 26597018 ]
[224]
Liu, K.; Jiang, X.; Hunziker, P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale, 2016, 8(36), 16091-16156.
[http://dx.doi.org/10.1039/C6NR04489A] [PMID: 27714108 ]
[225]
Aranaz, I.; Harris, R.; Heras, A. Chitosan Amphiphilic derivatives. Chemistry and applications. Curr. Org. Chem., 2010, 14, 308-330.
[http://dx.doi.org/10.2174/138527210790231919]
[226]
Franconetti, A.; Domínguez-Rodríguez, P.; Lara-García, D.; Prado-Gotor, R.; Cabrera-Escribano, F. Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation. Appl. Catal. A Gen., 2016, 517, 176-186.
[http://dx.doi.org/10.1016/j.apcata.2016.03.012]
[227]
Jatunov, S.; Franconetti, A.; Prado-Gotor, R.; Heras, A.; Mengíbar, M.; Cabrera-Escribano, F. Fluorescent imino and secondary amino chitosans as potential sensing biomaterials. Carbohydr. Polym., 2015, 123, 288-296.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.061] [PMID: 25843861]
[228]
Franconetti, A.; Contreras-Bernal, L.; Prado-Gotor, R.; Cabrera-Escribano, F. Synthesis of hyperpolarizable biomaterials at molecular level based on pyridinium-chitosan complexes. RSC Advances, 2015, 5, 74274-74283.
[http://dx.doi.org/10.1039/C5RA09397J]
[229]
Prado-Gotor, R.; López-Pérez, G.; Martín, M.J.; Cabrera-Escribano, F.; Franconetti, A. Use of gold nanoparticles as crosslink agent to form chitosan nanocapsules: study of the direct interaction in aqueous solutions. J. Inorg. Biochem., 2014, 135, 77-85.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.03.005] [PMID: 24681548]
[230]
Fu, S.; Xia, J.; Wu, J. Functional chitosan nanoparticles in cancer treatment. J. Biomed. Nanotechnol., 2016, 12(8), 1585-1603.
[http://dx.doi.org/10.1166/jbn.2016.2228] [PMID: 29341581]
[231]
Ragelle, H.; Vandermeulen, G.; Préat, V. Chitosan-based siRNA delivery systems. J. Control. Release, 2013, 172(1), 207-218.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.005] [PMID: 23965281]
[232]
Stigliano, C.; Aryal, S.; de Tullio, M.D.; Nicchia, G.P.; Pascazio, G.; Svelto, M.; Decuzzi, P. siRNA-chitosan complexes in poly(lactic-co-glycolic acid) nanoparticles for the silencing of aquaporin-1 in cancer cells. Mol. Pharm., 2013, 10(8), 3186-3194.
[http://dx.doi.org/10.1021/mp400224u] [PMID: 23789777 ]
[233]
Chen, M.; Gao, S.; Dong, M.; Song, J.; Yang, C.; Howard, K.A.; Kjems, J.; Besenbacher, F. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano, 2012, 6(6), 4835-4844.
[http://dx.doi.org/10.1021/nn300106t] [PMID: 22621383]
[234]
Raftery, R.; O’Brien, F.J.; Cryan, S-A. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules, 2013, 18(5), 5611-5647.
[http://dx.doi.org/10.3390/molecules18055611] [PMID: 23676471]
[235]
Quan, S.; Kumar, P.; Narain, R. Cationic galactose-conjugated copolymers for epidermal growth factor (EGFR) knockdown in cervical adenocarcinoma. ACS Biomater. Sci. Eng., 2016, 2, 853-859.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00085]
[236]
Conde, J.; Tian, F.; Hernandez, Y.; Bao, C.; Baptista, P.V.; Cui, D.; Stoeger, T.; de la Fuente, J.M. RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. Nanoscale, 2015, 7(19), 9083-9091.
[http://dx.doi.org/10.1039/C4NR05742B] [PMID: 25924183 ]
[237]
Evans, J.C.; McCarthy, J.; Torres-Fuentes, C.; Cryan, J.F.; Ogier, J.; Darcy, R.; Watson, R.W.; O’Driscoll, C.M. Cyclodextrin mediated delivery of NF-κB and SRF siRNA reduces the invasion potential of prostate cancer cells in vitro. Gene Ther., 2015, 22(10), 802-810.
[http://dx.doi.org/10.1038/gt.2015.50] [PMID: 26005860 ]
[238]
Arima, H.; Yoshimatsu, A.; Ikeda, H.; Ohyama, A.; Motoyama, K.; Higashi, T.; Tsuchiya, A.; Niidome, T.; Katayama, Y.; Hattori, K.; Takeuchi, T. Folate-PEG-appended dendrimer conjugate with α-cyclodextrin as a novel cancer cell-selective siRNA delivery carrier. Mol. Pharm., 2012, 9(9), 2591-2604.
[http://dx.doi.org/10.1021/mp300188f] [PMID: 22873579 ]
[239]
Kaushal, N.; Durmaz, Y.Y.; Bao, L.; Merajver, S.D.; ElSayed, M.E.H. “Smart” nanoparticles enhance the cytoplasmic delivery of anti- RhoC silencing RNA and inhibit the migration and invasion of aggressive breast cancer cells. Mol. Pharm., 2015, 12(7), 2406-2417.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00114] [PMID: 26020100 ]
[240]
Yang, W.; Yu, C.; Wu, C.; Yao, S.Q.; Wu, S. Cell-penetrating poly(disulfide)-based star polymers for simultaneous intracellular delivery of miRNAs and small molecule drugs. Polym. Chem., 2017, 8, 4043-4051.
[http://dx.doi.org/10.1039/C7PY00666G]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy