Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

酞菁光敏剂与聚(酰氨基胺)树枝状大分子的共轭:改善HepG2细胞的溶解度,解聚和光敏性

卷 19, 期 4, 2019

页: [312 - 320] 页: 9

弟呕挨: 10.2174/1568009618666180706164046

价格: $65

摘要

目的:为提高溶解度,减少聚集,ZnPcC4与氨基端基(G3-PAMAM-NH2)的第三代聚酰氨基胺树枝状大分子共轭,作为一种新型光动力疗法(PDT)药物载体系统。 方法:通过构建反应合成酞菁。使用EDC和NHS作为偶联剂,从ZnPcC4与G3-PAMAM-NH2的缀合获得纳米药物。通过UV-Vis和MS表征ZnPcC4 @ G3-PAMAM-NH2缀合物。通过化学发光法测量ZnPcC4 @ G3-PAMAM-NH2在水中的1O2量子产率。通过MTT试验研究了所研究的光敏剂在肝细胞癌细胞系HepG2中的体外PDT反应。 结果:在ZnPcC4 / G3-PAMAM-NH2原料比为100/1时,ZnPcC4共轭物在水溶液中具有改善的溶解性和降低的聚集倾向。在该最佳摩尔比下,ZnPcC4-G3-PAMAM-NH2抑制HepG2细胞,在红外光照射下具有1.67μg/ mL的半数最大抑制浓度。对照,包括黑暗条件,或培养基以及G3-PAMAM-NH2暴露,没有表现出抑制反应。 结论:酞菁光敏剂

关键词: 聚(酰氨基胺)树枝状大分子,四羧基酞菁锌,HepG2细胞,光动力疗法,活性氧,肝细胞癌。

图形摘要

[1]
Brown, S.B.; Brown, E.A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol., 2004, 5(8), 497-508.
[2]
Dichiara, M.; Prezzavento, O.; Marrazzo, A.; Pittala, V.; Salerno, L.; Rescifina, A.; Amata, E. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents. Eur. J. Med. Chem., 2017, 142, 459-485.
[3]
Yeung, H.Y.; Lo, P.C.; Ng, D.K.; Fong, W.P. Anti-tumor immunity of bam sipc-mediated vascular photodynamic therapy in a balb/c mouse model. Cell. Mol. Immunol., 2017, 14, 223-234.
[4]
Milla Sanabria, L.; Rodriguez, M.E.; Cogno, I.S.; Rumie Vittar, N.B.; Pansa, M.F.; Lamberti, M.J.; Rivarola, V.A. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim. Biophys. Acta, 2013, 1835(1), 36-45.
[5]
Macdonald, I.J.; Dougherty, T.J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines, 2001, 5(02), 105-129.
[6]
Jiang, Z.; Shao, J.; Yang, T.; Wang, J.; Jia, L. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy. J. Pharm. Biomed. Anal., 2014, 87, 98-104.
[7]
Shao, J.; Xue, J.; Dai, Y.; Liu, H.; Chen, N.; Jia, L.; Huang, J. Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitiser Photocyanine: ROS production, apoptosis, cell cycle arrest. Eur. J. Cancer, 2012, 48(13), 2086-2096.
[8]
Shao, J.; Dai, Y.; Zhao, W.; Xie, J.; Xue, J.; Ye, J.; Jia, L. Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II) phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells. Cancer Lett., 2013, 330(1), 49-56.
[9]
Ishii, K. Functional singlet oxygen generators based on phthalocyanines. Coord. Chem. Rev., 2012, 256(15-16), 1556-1568.
[10]
Jia, X.; Jia, L. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy. Curr. Drug Metab., 2012, 13, 1119-1122.
[11]
Gao, Y.; Xie, J.J.; Chen, H.J.; Gu, S.G.; Zhao, R.L.; Shao, J.W.; Jia, L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv., 2014, 32, 761-777.
[12]
Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Stefi, A.L.; Kollia, Z.; Gariil, V.E.; Bourkoula, A.; Petrou, P.S.; Kakabakos, S.; Semashko, W.; Niamutdinov, A.S.; Cefalas, A.C. Selective aggregation of PAMAM dendrimer nanocariers and PAMAM/ZnPc nanodrugs on human atheromatous carotid tissues: A photodynamic therapy for atherosclerosis. Nanoscale Res. Lett., 2015, 10, 210.
[13]
Zhang, X.F.; Xi, Q.A.; Zhao, J. Fluorescent and triplet state photoactive J-type phthalocyanine nano assemblies: Controlled formation and photosensitizing properties. J. Mater. Chem., 2010, 20(32), 6726-6733.
[14]
Xie, J.J.; Zhao, R.L.; Gu, S.E.; Dong, H.Y.; Wang, J.C.; Lu, Y.S.; Sinko, P.J.; Yu, T.; Xie, F.W.; Wan, L.; Shao, J.W.; Jia, L. The architecture and biological function of dual antibody-coated dendrimers: Enhanced control of circulating tumor cells and their hetero-adhesion to endothelial cells for metastasis prevention. Theranostics, 2014, 4, 1250-1263.
[15]
Liang, X.J.; Meng, H.; Wang, Y.Z.; He, H.Y.; Meng, J.; Lu, J.; Wang, P.C.; Zhao, Y.L.; Gao, X.Y.; Sun, B.Y.; Chen, C.Y.; Xing, G.M.; Shen, D.W.; Gottesman, M.M.; Wu, Y.; Yin, J.J.; Jia, L. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc. Natl. Acad. Sci. , 2010, 107, 7449-7454.
[16]
Wang, J.; Jiang, Z.; Chen, N.S.; Huang, J.L. Investigation of photoinduced sensitized chemiluminescence by sulfonated phthalocyanines using flow injection technology. Mikrochim. Acta, 2006, 153(1-2), 79-85.
[17]
Zhang, X.F.; Qian, X.; Zhao, J. Fluorescent and triplet state photoactive J-type phthalocyanine nano assemblies: Controlled formation and photosensitizing properties. J. Mater. Chem., 2010, 20, 6726-6733.
[18]
Spiller, W.; Kliesch, H.; Wöhrle, D.; Hackbarth, S.; Röder, B.; Schnurpfeil, G. Singlet oxygen quantum yields of different photo-sensitizers in polar solvents and micellar solutions. J. Porphyr. Phthalocyanines, 1998, 2(2), 145-158.
[19]
Shinohara, H.; Tsaryova, O.; Schnurpfeil, G.; Wöhrle, D. Differently substituted phthalocyanines: Comparison of calculated energy levels, singlet oxygen quantum yields, photo-oxidative stabilities, photocatalytic and catalytic activities. J. Photochem. Photobiol. Chem., 2006, 184(1), 50-57.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy