Review Article

多孔无机和杂种药物传递系统:对抗药物耐药性和植物学应用的未来前景

卷 26, 期 33, 2019

页: [6107 - 6131] 页: 25

弟呕挨: 10.2174/0929867325666180706111909

价格: $65

conference banner
摘要

背景:多孔微颗粒和纳米颗粒具有封装大量治疗剂的能力,使其成为有望用于各种应用的运载工具。这篇综述旨在强调用于药物递送的无机和杂化(无机/有机)颗粒的最新发展,并特别强调与抗药性癌症作斗争。我们进一步走了一步,讨论了超出药物传递的传递应用,因为通常会在很短的滞后时间后将药物传递转化为植物传递。 方法:我们进行了相关同行评审出版物的搜索。使用标准工具评估了相关论文的质量。本文描述了纸张的特性,并讨论了相关的材料和治疗特性。 结果:我们从药物输送和治疗学方面讨论了四类多孔颗粒。我们特别专注于二氧化硅,碳酸钙,金属-酚醛网络和金属有机骨架颗粒。讨论了其他相关的生物医学相关应用,我们在相关文献中强调了出色的治疗效果。 结论:这篇综述的结果证实了研究和利用多孔颗粒进行治疗的重要性。此外,我们表明,多孔颗粒的性质使它们有望用于药物输送,也使其成为农业工业应用的有希望的候选者。

关键词: 纳米药物,药物输送,多孔颗粒,杂化,植物输送,无机。

[1]
Cui, J.; Richardson, J.J.; Björnmalm, M.; Faria, M.; Caruso, F. Nanoengineered templated polymer particles: Navigating the biological realm. Acc. Chem. Res., 2016, 49(6), 1139-1148.
[http://dx.doi.org/10.1021/acs.accounts.6b00088] [PMID: 27203418]
[2]
Volodkin, D.V.; Petrov, A.I.; Prevot, M.; Sukhorukov, G.B. Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation. Langmuir, 2004, 20(8), 3398-3406.
[http://dx.doi.org/10.1021/la036177z] [PMID: 15875874]
[3]
Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin. Drug Deliv., 2015, 12(10), 1649-1660.
[http://dx.doi.org/10.1517/17425247.2015.1049530] [PMID: 26005036]
[4]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[5]
Kong, F.; Zhang, H.; Zhang, X.; Liu, D.; Chen, D.; Zhang, W.; Zhang, L.; Santos, H.A.; Hai, M. Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications. Adv. Funct. Mater., 2016, 26(34), 6158-6169.
[http://dx.doi.org/10.1002/adfm.201602715]
[6]
Venkatraman, S. Has nanomedicine lived up to its promise? Nanotechnology, 2014, 25(37)372501
[http://dx.doi.org/10.1088/0957-4484/25/37/372501] [PMID: 25148691]
[7]
Park, K. Drug delivery of the future: Chasing the invisible gorilla. J. Control. Release, 2016, 240, 2-8.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.048] [PMID: 26519857]
[8]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[9]
Miller, G.; van Schaik, D.; Adelaide, R. Nanotechnology in Food and Agriculture; Radio Adelaide, 2008.
[10]
González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.J.; Corredor, E.; Testillano, P.S.; Risueño, M.C.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; Pérez-de-Luque, A. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot., 2008, 101(1), 187-195.
[http://dx.doi.org/10.1093/aob/mcm283] [PMID: 17998213]
[11]
Davis, M.E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891), 813-821.
[http://dx.doi.org/10.1038/nature00785] [PMID: 12075343]
[12]
Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci., 2012, 170(1-2), 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[13]
Roth, W.J.; Nachtigall, P.; Morris, R.E.; Wheatley, P.S.; Seymour, V.R.; Ashbrook, S.E.; Chlubná, P.; Grajciar, L.; Položij, M.; Zukal, A.; Shvets, O.; Cejka, J. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem., 2013, 5(7), 628-633.
[http://dx.doi.org/10.1038/nchem.1662] [PMID: 23787755]
[14]
He, Q.; Shi, J.; Zhao, J.; Chen, Y.; Chen, F. Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism. J. Mater. Chem., 2009, 19(36), 6498-6503.
[http://dx.doi.org/10.1039/b907266g]
[15]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[16]
Sukhorukov, G.B.; Volodkin, D.V.; Günther, A.M.; Petrov, A.I.; Shenoy, D.B.; Möhwald, H. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem., 2004, 14(14), 2073-2081.
[http://dx.doi.org/10.1039/B402617A]
[17]
Ejima, H.; Richardson, J.J.; Caruso, F. Phenolic film engineering for template-mediated microcapsule preparation. Polym. J., 2014, 46(8), 452.
[http://dx.doi.org/10.1038/pj.2014.32]
[18]
Ejima, H.; Richardson, J.J.; Caruso, F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today, 2017, 12, 136-148.
[http://dx.doi.org/10.1016/j.nantod.2016.12.012]
[19]
Chu, Y.; Hou, J.; Boyer, C.; Richardson, J.J.; Liang, K.; Xu, J. Biomimetic synthesis of coordination network materials: Recent advances in MOFs and MPNs. Applied Materials Today, 2018, 10, 93-105.
[http://dx.doi.org/10.1016/j.apmt.2017.12.009]
[20]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[21]
Möller, K.; Bein, T. Talented mesoporous silica nanoparticles. Chem. Mater., 2017, 29(1), 371-388.
[http://dx.doi.org/10.1021/acs.chemmater.6b03629]
[22]
Wang, Y.; Caruso, F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater., 2005, 17(5), 953-961.
[http://dx.doi.org/10.1021/cm0483137]
[23]
Wang, Y.; Yu, A.; Caruso, F. Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. Angew. Chem. Int. Ed. Engl., 2005, 44(19), 2888-2892.
[http://dx.doi.org/10.1002/anie.200462135] [PMID: 15818632]
[24]
He, Q.; Shi, J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem., 2011, 21(16), 5845-5855.
[http://dx.doi.org/10.1039/c0jm03851b]
[25]
Wang, Y.; Angelatos, A.S.; Dunstan, D.E.; Caruso, F. Infiltration of macromolecules into nanoporous silica particles. Macromolecules, 2007, 40(21), 7594-7600.
[http://dx.doi.org/10.1021/ma071125s]
[26]
He, Q.; Zhang, Z.; Gao, F.; Li, Y.; Shi, J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small, 2011, 7(2), 271-280.
[http://dx.doi.org/10.1002/smll.201001459] [PMID: 21213393]
[27]
Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater., 2014, 26(1), 435-451.
[http://dx.doi.org/10.1021/cm402592t]
[28]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Padilla, D.; Durfee, P.N.; Brown, P.A.; Hanna, T.N.; Liu, J.; Phillips, B.; Carter, M.B.; Carroll, N.J.; Jiang, X.; Dunphy, D.R.; Willman, C.L.; Petsev, D.N.; Evans, D.G.; Parikh, A.N.; Chackerian, B.; Wharton, W.; Peabody, D.S.; Brinker, C.J. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater., 2011, 10(5), 389-397.
[http://dx.doi.org/10.1038/nmat2992] [PMID: 21499315]
[29]
Giri, S.; Trewyn, B.G.; Stellmaker, M.P.; Lin, V.S.Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. Engl., 2005, 44(32), 5038-5044.
[http://dx.doi.org/10.1002/anie.200501819] [PMID: 16038000]
[30]
Luo, Z.; Cai, K.; Hu, Y.; Zhao, L.; Liu, P.; Duan, L.; Yang, W. Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 640-643.
[http://dx.doi.org/10.1002/anie.201005061] [PMID: 21226142]
[31]
Chen, C.; Geng, J.; Pu, F.; Yang, X.; Ren, J.; Qu, X. Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: dual stimuli-responsive vehicles for intracellular drug delivery. Angew. Chem. Int. Ed. Engl., 2011, 50(4), 882-886.
[http://dx.doi.org/10.1002/anie.201005471] [PMID: 21246683]
[32]
Climent, E.; Martínez-Máñez, R.; Sancenón, F.; Marcos, M.D.; Soto, J.; Maquieira, A.; Amorós, P. Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. Angew. Chem. Int. Ed. Engl., 2010, 49(40), 7281-7283.
[http://dx.doi.org/10.1002/anie.201001847] [PMID: 20737526]
[33]
Chang, Y.T.; Liao, P.Y.; Sheu, H.S.; Tseng, Y.J.; Cheng, F.Y.; Yeh, C.S. Near-infrared light-responsive intracellular drug and siRNA release using au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater., 2012, 24(25), 3309-3314.
[http://dx.doi.org/10.1002/adma.201200785] [PMID: 22648937]
[34]
Schlossbauer, A.; Warncke, S.; Gramlich, P.M.; Kecht, J.; Manetto, A.; Carell, T.; Bein, T. A programmable DNA-based molecular valve for colloidal mesoporous silica. Angew. Chem. Int. Ed. Engl., 2010, 49(28), 4734-4737.
[http://dx.doi.org/10.1002/anie.201000827] [PMID: 20540129]
[35]
Zhang, P.; Cheng, F.; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min, Q.; Zhu, J.J. DNA-hybrid-gated multifunctional mesoporous silica nanocarriers for dual-targeted and microRNA-responsive controlled drug delivery. Angew. Chem. Int. Ed. Engl., 2014, 53(9), 2371-2375.
[http://dx.doi.org/10.1002/anie.201308920] [PMID: 24470397]
[36]
Du, L.; Liao, S.; Khatib, H.A.; Stoddart, J.F.; Zink, J.I. Controlled-access hollow mechanized silica nanocontainers. J. Am. Chem. Soc., 2009, 131(42), 15136-15142.
[http://dx.doi.org/10.1021/ja904982j] [PMID: 19799420]
[37]
Zhang, Q.; Liu, F.; Nguyen, K.T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Multifunctional mesoporous silica nanoparticles for cancer‐targeted and controlled drug delivery. Adv. Funct. Mater., 2012, 22(24), 5144-5156.
[http://dx.doi.org/10.1002/adfm.201201316]
[38]
You, Y-Z.; Kalebaila, K.K.; Brock, S.L.; Oupicky, D. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem. Mater., 2008, 20(10), 3354-3359.
[http://dx.doi.org/10.1021/cm703363w]
[39]
Liu, R.; Zhao, X.; Wu, T.; Feng, P. Tunable redox-responsive hybrid nanogated ensembles. J. Am. Chem. Soc., 2008, 130(44), 14418-14419.
[http://dx.doi.org/10.1021/ja8060886] [PMID: 18841893]
[40]
Chang, B.; Chen, D.; Wang, Y.; Chen, Y.; Jiao, Y.; Sha, X.; Yang, W. Bioresponsive controlled drug release based on mesoporous silica nanoparticles coated with reductively sheddable polymer shell. Chem. Mater., 2013, 25(4), 574-585.
[http://dx.doi.org/10.1021/cm3037197]
[41]
de la Torre, C.; Casanova, I.; Acosta, G.; Coll, C.; Moreno, M.J.; Albericio, F.; Aznar, E.; Mangues, R.; Royo, M.; Sancenón, F. Gated mesoporous silica nanoparticles using a double‐role circular peptide for the controlled and target‐preferential release of doxorubicin in CXCR4‐expresing lymphoma cells. Adv. Funct. Mater., 2015, 25(5), 687-695.
[http://dx.doi.org/10.1002/adfm.201403822]
[42]
Park, C.; Yang, B.J.; Jeong, K.B.; Kim, C.B.; Lee, S.; Ku, B-C. Signal-Induced Release of Guests from a Photolatent Metal-Phenolic Supramolecular Cage and Its Hybrid Assemblies. Angew. Chem. Int. Ed. Engl., 2017, 56(20), 5485-5489.
[http://dx.doi.org/10.1002/anie.201701152] [PMID: 28334479]
[43]
Guo, J.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J.J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C.E.; Caruso, F. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. Engl., 2014, 53(22), 5546-5551.
[http://dx.doi.org/10.1002/anie.201311136] [PMID: 24700671]
[44]
Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev., 2015, 115(15), 7794-7839.
[http://dx.doi.org/10.1021/cr500392w] [PMID: 25415447]
[45]
Lu, J.; Choi, E.; Tamanoi, F.; Zink, J.I. Light-activated nanoimpeller-controlled drug release in cancer cells. Small, 2008, 4(4), 421-426.
[http://dx.doi.org/10.1002/smll.200700903] [PMID: 18383576]
[46]
Méndez, J.; Monteagudo, A.; Griebenow, K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug. Chem., 2012, 23(4), 698-704.
[http://dx.doi.org/10.1021/bc200301a] [PMID: 22375899]
[47]
Fang, W.; Yang, J.; Gong, J.; Zheng, N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater., 2012, 22(4), 842-848.
[http://dx.doi.org/10.1002/adfm.201101960]
[48]
Gao, C.; Zheng, H.; Xing, L.; Shu, M.; Che, S. Designable coordination bonding in mesopores as a pH-responsive release system. Chem. Mater., 2010, 22(19), 5437-5444.
[http://dx.doi.org/10.1021/cm100667u]
[49]
Cui, J.; De Rose, R.; Alt, K.; Alcantara, S.; Paterson, B.M.; Liang, K.; Hu, M.; Richardson, J.J.; Yan, Y.; Jeffery, C.M.; Price, R.I.; Peter, K.; Hagemeyer, C.E.; Donnelly, P.S.; Kent, S.J.; Caruso, F. Engineering poly(ethylene glycol) particles for improved biodistribution. ACS Nano, 2015, 9(2), 1571-1580.
[http://dx.doi.org/10.1021/nn5061578] [PMID: 25712853]
[50]
Wang, Y.; Caruso, F. Nanoporous protein particles through templating mesoporous silica spheres. Adv. Mater., 2006, 18(6), 795-800.
[http://dx.doi.org/10.1002/adma.200501901]
[51]
Cui, J. Probing bio-nano interactions with templated polymer particles. Chem, 2017, 2(5), 606-607.
[http://dx.doi.org/10.1016/j.chempr.2017.04.010]
[52]
Cui, J.; Björnmalm, M.; Liang, K.; Xu, C.; Best, J.P.; Zhang, X.; Caruso, F. Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. Adv. Mater., 2014, 26(43), 7295-7299.
[http://dx.doi.org/10.1002/adma.201402753] [PMID: 25209733]
[53]
Cui, J.; De Rose, R.; Best, J.P.; Johnston, A.P.; Alcantara, S.; Liang, K.; Such, G.K.; Kent, S.J.; Caruso, F. Mechanically tunable, self-adjuvanting nanoengineered polypeptide particles. Adv. Mater., 2013, 25(25), 3468-3472.
[http://dx.doi.org/10.1002/adma.201300981] [PMID: 23661596]
[54]
Cui, J.; Yan, Y.; Wang, Y.; Caruso, F. Templated assembly of pH‐labile polymer‐drug particles for intracellular drug delivery. Adv. Funct. Mater., 2012, 22(22), 4718-4723.
[http://dx.doi.org/10.1002/adfm.201201191]
[55]
Waldbusser, G.G.; Hales, B.; Langdon, C.J.; Haley, B.A.; Schrader, P.; Brunner, E.L.; Gray, M.W.; Miller, C.A.; Gimenez, I. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Chang., 2015, 5(3), 273-280.
[http://dx.doi.org/10.1038/nclimate2479]
[56]
Lee, J.A.; Kim, M.K.; Kim, H-M.; Lee, J.K.; Jeong, J.; Kim, Y-R.; Oh, J-M.; Choi, S-J. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices. Int. J. Nanomedicine, 2015, 10, 2273-2293.
[http://dx.doi.org/ 10.2147/IJN.S79403] [PMID: 25848250]
[57]
Richardson, J.J.; Maina, J.W.; Ejima, H.; Hu, M.; Guo, J.; Choy, M.Y.; Gunawan, S.T.; Lybaert, L.; Hagemeyer, C.E.; De Geest, B.G.; Caruso, F. Versatile loading of diverse cargo into functional polymer capsules. Adv. Sci. (Weinh.), 2015, 2(1-2)1400007
[http://dx.doi.org/10.1002/advs.201400007] [PMID: 27980899]
[58]
Som, A.; Raliya, R.; Tian, L.; Akers, W.; Ippolito, J.E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale, 2016, 8(25), 12639-12647.
[http://dx.doi.org/10.1039/C5NR06162H] [PMID: 26745389]
[59]
Bo-Linn, G.W.; Davis, G.R.; Buddrus, D.J.; Morawski, S.G.; Santa Ana, C.; Fordtran, J.S. An evaluation of the importance of gastric acid secretion in the absorption of dietary calcium. J. Clin. Invest., 1984, 73(3), 640-647.
[http://dx.doi.org/10.1172/JCI111254] [PMID: 6707197]
[60]
Volodkin, D.V.; Larionova, N.I.; Sukhorukov, G.B. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules, 2004, 5(5), 1962-1972.
[http://dx.doi.org/10.1021/bm049669e] [PMID: 15360312]
[61]
Mohd Abd Ghafar, S.L.; Hussein, M.Z.; Abu Bakar Zakaria, Z. Synthesis and characterization of cockle shell-based calcium carbonate aragonite polymorph nanoparticles with surface functionalization. Journal of Nanoparticles, 2017, 2017, 12.
[http://dx.doi.org/ 10.1155/2017/8196172]
[62]
Render, D.; Samuel, T.; King, H.; Vig, M.; Jeelani, S.; Babu, R. J.; Rangari, V. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery. Journal of Nanomaterials,2016 , 2016.
[http://dx.doi.org/10.1155/2016/3170248]
[63]
Zhang, L.; Zhu, W.; Lin, Q.; Han, J.; Jiang, L.; Zhang, Y. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs. Int. J. Nanomedicine, 2015, 10, 3291-3302.
[http://dx.doi.org/10.2147/IJN.S78814] [PMID: 25995635]
[64]
Richardson, J.J.; Björnmalm, M.; Caruso, F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233)aaa2491
[http://dx.doi.org/10.1126/science.aaa2491] [PMID: 25908826]
[65]
Richardson, J.J.; Cui, J.; Björnmalm, M.; Braunger, J.A.; Ejima, H.; Caruso, F. Innovation in layer-by-layer assembly. Chem. Rev., 2016, 116(23), 14828-14867.
[http://dx.doi.org/10.1021/acs.chemrev.6b00627] [PMID: 27960272]
[66]
Svenskaya, Y.; Parakhonskiy, B.; Haase, A.; Atkin, V.; Lukyanets, E.; Gorin, D.; Antolini, R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys. Chem., 2013, 182, 11-15.
[http://dx.doi.org/10.1016/j.bpc.2013.07.006] [PMID: 23932207]
[67]
Wang, C-Q.; Gong, M-Q.; Wu, J-L.; Zhuo, R-X.; Cheng, S-X. Dual-functionalized calcium carbonate based gene delivery system for efficient gene delivery. RSC Advances, 2014, 4(73), 38623-38629.
[http://dx.doi.org/10.1039/C4RA05468G]
[68]
Wyman, T.B.; Nicol, F.; Zelphati, O.; Scaria, P.V.; Plank, C.; Szoka, F.C. Jr Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10), 3008-3017.
[http://dx.doi.org/10.1021/bi9618474] [PMID: 9062132]
[69]
Richardson, J.J.; Choy, M.Y.; Guo, J.; Liang, K.; Alt, K.; Ping, Y.; Cui, J.; Law, L.S.; Hagemeyer, C.E.; Caruso, F. Polymer capsules for plaque-targeted in vivo delivery. Adv. Mater., 2016, 28(35), 7703-7707.
[http://dx.doi.org/10.1002/adma.201601754] [PMID: 27358022]
[70]
Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; van Koeverden, M.P.; Such, G.K.; Cui, J.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science, 2013, 341(6142), 154-157.
[http://dx.doi.org/10.1126/science.1237265] [PMID: 23846899]
[71]
Guo, J.; Richardson, J.J.; Besford, Q.A.; Christofferson, A.J.; Dai, Y.; Ong, C.W.; Tardy, B.L.; Liang, K.; Choi, G.H.; Cui, J.; Yoo, P.J.; Yarovsky, I.; Caruso, F. Influence of ionic strength on the deposition of metal-phenolic networks. Langmuir, 2017, 33(40), 10616-10622.
[http://dx.doi.org/10.1021/acs.langmuir.7b02692] [PMID: 28953397]
[72]
Wei, Q.; Achazi, K.; Liebe, H.; Schulz, A.; Noeske, P.L.M.; Grunwald, I.; Haag, R. Mussel-inspired dendritic polymers as universal multifunctional coatings. Angew. Chem. Int. Ed. Engl., 2014, 53(43), 11650-11655.
[http://dx.doi.org/10.1002/anie.201407113] [PMID: 25200129]
[73]
Yang, L.; Han, L.; Ren, J.; Wei, H.; Jia, L. Coating process and stability of metal-polyphenol film. Colloids Surf. A Physicochem. Eng. Asp., 2015, 484, 197-205.
[http://dx.doi.org/10.1016/j.colsurfa.2015.07.061]
[74]
Guo, J.; Wang, X.; Henstridge, D.C.; Richardson, J.J.; Cui, J.; Sharma, A.; Febbraio, M.A.; Peter, K.; de Haan, J.B.; Hagemeyer, C.E.; Caruso, F. Nanoporous metal-phenolic particles as ultrasound imaging probes for hydrogen peroxide. Adv. Healthc. Mater., 2015, 4(14), 2170-2175.
[http://dx.doi.org/10.1002/adhm.201500528] [PMID: 26331367]
[75]
Dai, Y.; Guo, J.; Wang, T.Y.; Ju, Y.; Mitchell, A.J.; Bonnard, T.; Cui, J.; Richardson, J.J.; Hagemeyer, C.E.; Alt, K.; Caruso, F. Self-assembled nanoparticles from phenolic derivatives for cancer therapy. Adv. Healthc. Mater., 2017, 6(16)
[http://dx.doi.org/10.1002/adhm.201700467] [PMID: 28509442]
[76]
Liu, F.; He, X.; Chen, H.; Zhang, J.; Zhang, H.; Wang, Z. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat. Commun., 2015, 6, 8003.
[http://dx.doi.org/10.1038/ncomms9003] [PMID: 26245151]
[77]
Guo, J.; Tardy, B.L.; Christofferson, A.J.; Dai, Y.; Richardson, J.J.; Zhu, W.; Hu, M.; Ju, Y.; Cui, J.; Dagastine, R.R.; Yarovsky, I.; Caruso, F. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol., 2016, 11(12), 1105-1111.
[http://dx.doi.org/10.1038/nnano.2016.172] [PMID: 27723730]
[78]
Park, J.H.; Kim, K.; Lee, J.; Choi, J.Y.; Hong, D.; Yang, S.H.; Caruso, F.; Lee, Y.; Choi, I.S. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12420-12425.
[http://dx.doi.org/10.1002/anie.201484661] [PMID: 25139382]
[79]
Park, J.H.; Yang, S.H.; Lee, J.; Ko, E.H.; Hong, D.; Choi, I.S. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. Adv. Mater., 2014, 26(13), 2001-2010.
[http://dx.doi.org/10.1002/adma.201304568] [PMID: 24452932]
[80]
Murakami, A. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch. Biochem. Biophys., 2014, 557, 3-10.
[http://dx.doi.org/10.1016/j.abb.2014.04.018] [PMID: 24814373]
[81]
Watson, R.R.; Preedy, V.R.; Zibadi, S. Polyphenols in human health and disease; Academic Press, 2013.
[82]
Guo, J.; Wang, X.; Liao, X.; Zhanga, W.; Shi, B. Skin collagen fiber-biotemplated synthesis of size-tunable silver nanoparticle-embedded hierarchical intertextures with lightweight and highly efficient microwave absorption properties. J. Phys. Chem. C, 2012, 116(14), 8188-8195.
[http://dx.doi.org/10.1021/jp300048e]
[83]
Guo, J.; Huang, X.; Wu, C.; Liao, X.; Shi, B. The further investigation of tanning mechanisms of typical tannages by ultraviolet-visible and near infrared diffused reflectance spectrophotometry. J. Am. Leather Chem. Assoc., 2011, 106(7), 226-231.
[84]
Liang, H.; Li, J.; He, Y.; Xu, W.; Liu, S.; Li, Y.; Chen, Y.; Li, B. Engineering multifunctional films based on metal-phenolic networks for rational pH-responsive delivery and cell imaging. ACS Biomater. Sci. Eng., 2016, 2(3), 317-325.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00363]
[85]
Ping, Y.; Guo, J.; Ejima, H.; Chen, X.; Richardson, J.J.; Sun, H.; Caruso, F. pH-Responsive capsules engineered from metal-phenolic networks for anticancer drug delivery. Small, 2015, 11(17), 2032-2036.
[http://dx.doi.org/10.1002/smll.201403343] [PMID: 25556334]
[86]
Ju, Y.; Cui, J.; Sun, H.; Müllner, M.; Dai, Y.; Guo, J.; Bertleff-Zieschang, N.; Suma, T.; Richardson, J.J.; Caruso, F. Engineered metal-phenolic capsules show tunable targeted delivery to cancer cells. Biomacromolecules, 2016, 17(6), 2268-2276.
[http://dx.doi.org/10.1021/acs.biomac.6b00537] [PMID: 27249228]
[87]
Zhan, K.; Kim, C.; Sung, K.; Ejima, H.; Yoshie, N. Tunicate-inspired gallol polymers for underwater adhesive: a comparative study of catechol and gallol. Biomacromolecules, 2017, 18(9), 2959-2966.
[http://dx.doi.org/10.1021/acs.biomac.7b00921] [PMID: 28853566]
[88]
Kim, C.; Ejima, H.; Yoshie, N. Non-swellable self-healing polymer with long-term stability under seawater. RSC Advances, 2017, 7(31), 19288-19295.
[http://dx.doi.org/10.1039/C7RA01778B]
[89]
Ju, Y.; Dai, Q.; Cui, J.; Dai, Y.; Suma, T.; Richardson, J.J.; Caruso, F. Improving targeting of metal-phenolic capsules by the presence of protein coronas. ACS Appl. Mater. Interfaces, 2016, 8(35), 22914-22922.
[http://dx.doi.org/10.1021/acsami.6b07613] [PMID: 27560314]
[90]
Huang, H.; Li, P.; Liu, C.; Ma, H.; Huang, H.; Lin, Y.; Wang, C.; Yang, Y. pH-Responsive nanodrug encapsulated by tannic acid complex for controlled drug delivery. RSC Advances, 2017, 7(5), 2829-2835.
[http://dx.doi.org/10.1039/C6RA26936B]
[91]
Liang, H.; Zhou, B.; Li, J.; Xu, W.; Liu, S.; Li, Y.; Chen, Y.; Li, B. Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids Surf. B Biointerfaces, 2015, 136, 1224-1233.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.037] [PMID: 26613857]
[92]
Guo, J.; Sun, H.; Alt, K.; Tardy, B.L.; Richardson, J.J.; Suma, T.; Ejima, H.; Cui, J.; Hagemeyer, C.E.; Caruso, F. Boronate-phenolic network capsules with dual response to acidic ph and cis-diols. Adv. Healthc. Mater., 2015, 4(12), 1796-1801.
[http://dx.doi.org/10.1002/adhm.201500332] [PMID: 26088356]
[93]
Zheng, D-W.; Lei, Q.; Zhu, J-Y.; Fan, J-X.; Li, C-X.; Li, C.; Xu, Z.; Cheng, S-X.; Zhang, X-Z. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett., 2017, 17(1), 284-291.
[http://dx.doi.org/10.1021/acs.nanolett.6b04060] [PMID: 28027643]
[94]
Dai, Y.; Yang, D.; Ma, P.; Kang, X.; Zhang, X.; Li, C.; Hou, Z.; Cheng, Z.; Lin, J. Doxorubicin conjugated NaYF(4):Yb(3+)/Tm(3+) nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials, 2012, 33(33), 8704-8713.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.029] [PMID: 22938822]
[95]
Zhou, H-C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43(16), 5415-5418.
[http://dx.doi.org/10.1039/C4CS90059F] [PMID: 25011480]
[96]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149)1230444
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[97]
Shimizu, G.K.; Taylor, J.M.; Kim, S. Chemistry. Proton conduction with metal-organic frameworks. Science, 2013, 341(6144), 354-355.
[http://dx.doi.org/10.1126/science.1239872] [PMID: 23888028]
[98]
Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S. Large-pore apertures in a series of metal-organic frameworks. Science, 2012, 336(6084), 1018-1023.
[http://dx.doi.org/ 10.1126/science.1220131] [PMID: 22628651]
[99]
Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon separations in a metal-organic framework with open iron (II) coordination sites. Science, 2012, 335(6076), 1606-1610.
[http://dx.doi.org/ 10.1126/science.1217544]
[100]
Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; Falcaro, P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun., 2015, 6, 7240.
[http://dx.doi.org/10.1038/ncomms8240] [PMID: 26041070]
[101]
Smaldone, R.A.; Forgan, R.S.; Furukawa, H.; Gassensmith, J.J.; Slawin, A.M.; Yaghi, O.M.; Stoddart, J.F. Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed. Engl., 2010, 49(46), 8630-8634.
[http://dx.doi.org/10.1002/anie.201002343] [PMID: 20715239]
[102]
Wu, M.X.; Yang, Y.W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater., 2017, 29(23)
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[103]
Richardson, J.J.; Liang, K.; Lisi, F.; Björnmalm, M.; Faria, M.; Guo, J.; Falcaro, P. Controlling the growth of metal‐organic frameworks using different gravitational forces. Eur. J. Inorg. Chem., 2016, 2016(27), 4499-4504.
[http://dx.doi.org/10.1002/ejic.201600338]
[104]
Mustafa, A.K.; Gadalla, M.M.; Snyder, S.H. Signaling by gasotransmitters. Sci. Signal., 2009, 2(68), re2.
[http://dx.doi.org/10.1126/scisignal.268re2] [PMID: 19401594]
[105]
Rosselli, M.; Keller, P.J.; Dubey, R.K. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum. Reprod. Update, 1998, 4(1), 3-24.
[http://dx.doi.org/10.1093/humupd/4.1.3] [PMID: 9622410]
[106]
Miller, M.R.; Megson, I.L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol., 2007, 151(3), 305-321.
[http://dx.doi.org/10.1038/sj.bjp.0707224] [PMID: 17401442]
[107]
Carmona, F.J.; Rojas, S.; Romão, C.C.; Navarro, J.A.R.; Barea, E.; Maldonado, C.R. One-pot preparation of a novel CO-releasing material based on a CO-releasing molecule@metal-organic framework system. Chem. Commun. (Camb.), 2017, 53(49), 6581-6584.
[http://dx.doi.org/10.1039/C7CC03605A] [PMID: 28574562]
[108]
Hinks, N.J.; McKinlay, A.C.; Xiao, B.; Wheatley, P.S.; Morris, R.E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater., 2010, 129(3), 330-334.
[http://dx.doi.org/10.1016/j.micromeso.2009.04.031]
[109]
Diring, S.; Wang, D.O.; Kim, C.; Kondo, M.; Chen, Y.; Kitagawa, S.; Kamei, K.; Furukawa, S. Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform. Nat. Commun., 2013, 4, 2684.
[http://dx.doi.org/10.1038/ncomms3684] [PMID: 24158008]
[110]
Fukuhara, K.; Kurihara, M.; Miyata, N. Photochemical generation of nitric oxide from 6-nitrobenzo[a]pyrene. J. Am. Chem. Soc., 2001, 123(36), 8662-8666.
[http://dx.doi.org/10.1021/ja0109038] [PMID: 11535070]
[111]
Diring, S.; Carné-Sánchez, A.; Zhang, J.; Ikemura, S.; Kim, C.; Inaba, H.; Kitagawa, S.; Furukawa, S. Light responsive metal-organic frameworks as controllable CO-releasing cell culture substrates. Chem. Sci. (Camb.), 2017, 8(3), 2381-2386.
[http://dx.doi.org/10.1039/C6SC04824B] [PMID: 28451343]
[112]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[113]
Tan, L-L.; Li, H.; Qiu, Y-C.; Chen, D-X.; Wang, X.; Pan, R-Y.; Wang, Y.; Zhang, S.X-A.; Wang, B.; Yang, Y-W. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches. Chem. Sci. (Camb.), 2015, 6(3), 1640-1644.
[http://dx.doi.org/10.1039/C4SC03749A] [PMID: 30154997]
[114]
Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. Chem. Commun. (Camb.), 2015, 51(41), 8614-8617.
[http://dx.doi.org/10.1039/C5CC02339D] [PMID: 25896867]
[115]
Khaletskaya, K.; Reboul, J.; Meilikhov, M.; Nakahama, M.; Diring, S.; Tsujimoto, M.; Isoda, S.; Kim, F.; Kamei, K.; Fischer, R.A.; Kitagawa, S.; Furukawa, S. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J. Am. Chem. Soc., 2013, 135(30), 10998-11005.
[http://dx.doi.org/10.1021/ja403108x] [PMID: 23672307]
[116]
Zhu, Y-D.; Chen, S-P.; Zhao, H.; Yang, Y.; Chen, X-Q.; Sun, J.; Fan, H-S.; Zhang, X-D. PPy@MIL-100 Nanoparticles as a pH- and Near-IR-Irradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells. ACS Appl. Mater. Interfaces, 2016, 8(50), 34209-34217.
[http://dx.doi.org/10.1021/acsami.6b11378] [PMID: 27998104]
[117]
Zhao, H-X.; Zou, Q.; Sun, S-K.; Yu, C.; Zhang, X.; Li, R-J.; Fu, Y-Y. Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. (Camb.), 2016, 7(8), 5294-5301.
[http://dx.doi.org/10.1039/C6SC01359G] [PMID: 30155180]
[118]
Ray Chowdhuri, A.; Bhattacharya, D.; Sahu, S.K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans., 2016, 45(7), 2963-2973.
[http://dx.doi.org/10.1039/C5DT03736K] [PMID: 26754449]
[119]
Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(26), 16573-16583.
[http://dx.doi.org/10.1021/acsami.6b03988] [PMID: 27305490]
[120]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[121]
Naldini, L. Gene therapy returns to centre stage. Nature, 2015, 526(7573), 351-360.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[122]
Somia, N.; Verma, I.M. Gene therapy: trials and tribulations. Nat. Rev. Genet., 2000, 1(2), 91-99.
[http://dx.doi.org/10.1038/35038533] [PMID: 11253666]
[123]
He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184.
[http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
[124]
Liu, W.L.; Yang, N.S.; Chen, Y.T.; Lirio, S.; Wu, C.Y.; Lin, C.H.; Huang, H.Y. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis. Chemistry, 2015, 21(1), 115-119.
[http://dx.doi.org/10.1002/chem.201405252] [PMID: 25384625]
[125]
Cao, Y.; Wu, Z.; Wang, T.; Xiao, Y.; Huo, Q.; Liu, Y. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification. Dalton Trans., 2016, 45(16), 6998-7003.
[http://dx.doi.org/10.1039/C6DT00677A] [PMID: 26988724]
[126]
Zhao, M.; Zhang, X.; Deng, C. Rational synthesis of novel recyclable Fe3O4@MOF nanocomposites for enzymatic digestion. Chem. Commun. (Camb.), 2015, 51(38), 8116-8119.
[http://dx.doi.org/10.1039/C5CC01908G] [PMID: 25869528]
[127]
Liu, W-L.; Lo, S-H.; Singco, B.; Yang, C-C.; Huang, H-Y.; Lin, C-H. Novel trypsin–FITC@ MOF bioreactor efficiently catalyzes protein digestion. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(7), 928-932.
[http://dx.doi.org/10.1039/c3tb00257h]
[128]
Lykourinou, V.; Chen, Y.; Wang, X-S.; Meng, L.; Hoang, T.; Ming, L-J.; Musselman, R.L.; Ma, S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc., 2011, 133(27), 10382-10385.
[http://dx.doi.org/10.1021/ja2038003] [PMID: 21682253]
[129]
Feng, D.; Liu, T-F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y-P.; Wang, X.; Wang, K. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation; Texas A and M University College Station United States, 2015.
[http://dx.doi.org/10.1038/ncomms6979]
[130]
Kim, Y.; Yang, T.; Yun, G.; Ghasemian, M.B.; Koo, J.; Lee, E.; Cho, S.J.; Kim, K. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13273-13278.
[http://dx.doi.org/10.1002/anie.201506391] [PMID: 26381062]
[131]
Shieh, F-K.; Wang, S-C.; Yen, C-I.; Wu, C-C.; Dutta, S.; Chou, L-Y.; Morabito, J.V.; Hu, P.; Hsu, M-H.; Wu, K.C-W.; Tsung, C.K. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc., 2015, 137(13), 4276-4279.
[http://dx.doi.org/10.1021/ja513058h] [PMID: 25781479]
[132]
Liang, K.; Wang, R.; Boutter, M.; Doherty, C.M.; Mulet, X.; Richardson, J.J. Biomimetic mineralization of metal-organic frameworks around polysaccharides. Chem. Commun. (Camb.), 2017, 53(7), 1249-1252.
[http://dx.doi.org/10.1039/C6CC09680H] [PMID: 28067353]
[133]
Liang, K.; Richardson, J.J.; Cui, J.; Caruso, F.; Doonan, C.J.; Falcaro, P. Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv. Mater., 2016, 28(36), 7910-7914.
[http://dx.doi.org/10.1002/adma.201602335] [PMID: 27414706]
[134]
Liang, K.; Richardson, J.J.; Doonan, C.J.; Mulet, X.; Ju, Y.; Cui, J.; Caruso, F.; Falcaro, P. An Enzyme-coated metal-organic framework shell for synthetically adaptive cell survival. Angew. Chem. Int. Ed. Engl., 2017, 56(29), 8510-8515.
[http://dx.doi.org/10.1002/anie.201704120] [PMID: 28582605]
[135]
Liang, K.; Carbonell, C.; Styles, M.J.; Ricco, R.; Cui, J.; Richardson, J.J.; Maspoch, D.; Caruso, F.; Falcaro, P. Biomimetic replication of microscopic metal-organic framework patterns using printed protein patterns. Adv. Mater., 2015, 27(45), 7293-7298.
[http://dx.doi.org/10.1002/adma.201503167] [PMID: 26478451]
[136]
Richardson, J.J.; Liang, K. Nano‐biohybrids: in vivo synthesis of metal–organic frameworks inside living plants. Small, 2018, 14(3)
[http://dx.doi.org/ 10.1002/smll.201702958] [PMID: 29168918]
[137]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C-X.; Mitter, N.; Yu, C.; Middelberg, A.P. Nanoparticle vaccines. Vaccine, 2014, 32(3), 327-337.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.069] [PMID: 24295808]
[138]
Zhang, Y.; Wang, F.; Ju, E.; Liu, Z.; Chen, Z.; Ren, J.; Qu, X. Metal‐organic‐framework‐based vaccine platforms for enhanced systemic immune and memory response. Adv. Funct. Mater., 2016, 26(35), 6454-6461.
[http://dx.doi.org/10.1002/adfm.201600650]
[139]
Alsaiari, S.K.; Patil, S.; Alyami, M.; Alamoudi, K. Aleisa, f.; Merzaban, J.; Li, M.; Khashab, N. M. Endosomal escape and delivery of crispr/cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc., 2018, 140(1), 143-146.
[http://dx.doi.org/ 10.1021/jacs.7b11754] [PMID: 29272114]
[140]
Hu, C-M.J.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol., 2012, 83(8), 1104-1111.
[http://dx.doi.org/10.1016/j.bcp.2012.01.008] [PMID: 22285912]
[141]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[142]
Chen, S.; Zhao, D.; Li, F.; Zhuo, R-X.; Cheng, S-X. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Advances, 2012, 2(5), 1820-1826.
[http://dx.doi.org/10.1039/c1ra00527h]
[143]
Shen, J.; He, Q.; Gao, Y.; Shi, J.; Li, Y. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale, 2011, 3(10), 4314-4322.
[http://dx.doi.org/10.1039/c1nr10580a] [PMID: 21892492]
[144]
Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
[http://dx.doi.org/10.1021/nn100690m] [PMID: 20731437]
[145]
Gao, Y.; Chen, Y.; Ji, X.; He, X.; Yin, Q.; Zhang, Z.; Shi, J.; Li, Y. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano, 2011, 5(12), 9788-9798.
[http://dx.doi.org/10.1021/nn2033105] [PMID: 22070571]
[146]
He, Q.; Gao, Y.; Zhang, L.; Zhang, Z.; Gao, F.; Ji, X.; Li, Y.; Shi, J. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 2011, 32(30), 7711-7720.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.066] [PMID: 21816467]
[147]
Pan, L.; Liu, J.; He, Q.; Wang, L.; Shi, J. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials, 2013, 34(11), 2719-2730.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.040] [PMID: 23337327]
[148]
Wu, J-L.; Wang, C-Q.; Zhuo, R-X.; Cheng, S-X. Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf. B Biointerfaces, 2014, 123, 498-505.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.047] [PMID: 25315499]
[149]
Gong, M-Q.; Wu, J-L.; Chen, B.; Zhuo, R-X.; Cheng, S-X. Self-assembled polymer/inorganic hybrid nanovesicles for multiple drug delivery to overcome drug resistance in cancer chemotherapy. Langmuir, 2015, 31(18), 5115-5122.
[http://dx.doi.org/10.1021/acs.langmuir.5b00542] [PMID: 25927163]
[150]
Chen, Q.; Xu, M.; Zheng, W.; Xu, T.; Deng, H.; Liu, J. Se/Ru-decorated porous metal-organic framework nanoparticles for the delivery of pooled sirnas to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl. Mater. Interfaces, 2017, 9(8), 6712-6724.
[http://dx.doi.org/10.1021/acsami.6b12792] [PMID: 28191840]
[151]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[http://dx.doi.org/10.1021/ja508679h] [PMID: 25407895]
[152]
Wang, P.; Lombi, E.; Zhao, F-J.; Kopittke, P.M. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci., 2016, 21(8), 699-712.
[http://dx.doi.org/10.1016/j.tplants.2016.04.005] [PMID: 27130471]
[153]
Mattos, B.D.; Tardy, B.L.; Magalhães, W.L.E.; Rojas, O.J. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. J. Control. Release, 2017, 262, 139-150.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.025] [PMID: 28739450]
[154]
Michaud, M.A. Slow release fertilizer composition; Google Patents, 1982.
[155]
Scarfato, P.; Avallone, E.; Incarnato, L.; Di Maio, L. Development and evaluation of halloysite nanotube-based carrier for biocide activity in construction materials protection. Appl. Clay Sci., 2016, 132, 336-342.
[http://dx.doi.org/10.1016/j.clay.2016.06.027]
[156]
Tan, D.; Yuan, P.; Annabi-Bergaya, F.; Dong, F.; Liu, D.; He, H. A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Appl. Clay Sci., 2015, 114, 190-196.
[http://dx.doi.org/10.1016/j.clay.2015.05.024]
[157]
Chen, J.; Wang, W.; Xu, Y.; Zhang, X. Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J. Agric. Food Chem., 2011, 59(1), 307-311.
[http://dx.doi.org/10.1021/jf103640t] [PMID: 21141897]
[158]
Popat, A.; Liu, J.; Hu, Q.; Kennedy, M.; Peters, B.; Lu, G.Q.; Qiao, S.Z. Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale, 2012, 4(3), 970-975.
[http://dx.doi.org/10.1039/C2NR11691J] [PMID: 22200056]
[159]
Wanyika, H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J. Nanopart. Res., 2013, 15(8), 1831.
[http://dx.doi.org/10.1007/s11051-013-1831-y]
[160]
Janatova, A.; Bernardos, A.; Smid, J.; Frankova, A.; Lhotka, M.; Kourimská, L.; Pulkrabek, J.; Kloucek, P. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind. Crops Prod., 2015, 67, 216-220.
[http://dx.doi.org/10.1016/j.indcrop.2015.01.019]
[161]
Yi, Z.; Hussain, H.I.; Feng, C.; Sun, D.; She, F.; Rookes, J.E.; Cahill, D.M.; Kong, L. Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Appl. Mater. Interfaces, 2015, 7(18), 9937-9946.
[http://dx.doi.org/10.1021/acsami.5b02131] [PMID: 25902154]
[162]
Wibowo, D.; Zhao, C-X.; Peters, B.C.; Middelberg, A.P. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem., 2014, 62(52), 12504-12511.
[http://dx.doi.org/10.1021/jf504455x] [PMID: 25479362]
[163]
Bao, W.; Wang, J.; Wang, Q.; O’Hare, D.; Wan, Y. Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells. Sci. Rep., 2016, 6, 26738.
[http://dx.doi.org/10.1038/srep26738] [PMID: 27221055]
[164]
Torney, F.; Trewyn, B.G.; Lin, V.S.Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2007, 2(5), 295-300.
[http://dx.doi.org/10.1038/nnano.2007.108] [PMID: 18654287]
[165]
Hom, C.; Lu, J.; Tamanoi, F. Silica nanoparticles as a delivery system for nucleic acid-based reagents. J. Mater. Chem., 2009, 19(35), 6308-6316.
[http://dx.doi.org/10.1039/b904197d] [PMID: 20740060]
[166]
Galbraith, D.W. Nanobiotechnology: silica breaks through in plants. Nat. Nanotechnol., 2007, 2(5), 272-273.
[http://dx.doi.org/10.1038/nnano.2007.118] [PMID: 18654282]
[167]
Wu, S-H.; Mou, C-Y.; Lin, H-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 2013, 42(9), 3862-3875.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[168]
Schwab, F.; Zhai, G.; Kern, M.; Turner, A.; Schnoor, J.L.; Wiesner, M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review. Nanotoxicology, 2016, 10(3), 257-278.
[http://dx.doi.org/ 10.3109/17435390.2015.1048326] [PMID: 26067571]
[169]
Hussain, H.I.; Yi, Z.; Rookes, J.E.; Kong, L.X.; Cahill, D.M. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J. Nanopart. Res., 2013, 15(6), 1676.
[http://dx.doi.org/10.1007/s11051-013-1676-4]
[170]
Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Lett., 2017, 9(2), 23.
[http://dx.doi.org/10.1007/s40820-016-0125-1] [PMID: 30464998]
[171]
Chang, F-P.; Kuang, L-Y.; Huang, C-A.; Jane, W-N.; Hung, Y.; Hsing, Y-C.; Mou, C-Y. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(39), 5279-5287.
[http://dx.doi.org/10.1039/c3tb20529k]
[172]
Mattos, B.D.; Gomes, G.R.; de Matos, M.; Ramos, L.P.; Magalhães, W.L.E. Consecutive production of hydroalcoholic extracts, carbohydrates derivatives and silica nanoparticles from equisetum arvense. Waste Biomass Valoriz., 2017.
[http://dx.doi.org/ 10.1007/s12649-017-9993-y]
[173]
Martin-Ortigosa, S.; Peterson, D.J.; Valenstein, J.S.; Lin, V.S.Y.; Trewyn, B.G.; Lyznik, L.A.; Wang, K. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol., 2014, 164(2), 537-547.
[http://dx.doi.org/10.1104/pp.113.233650] [PMID: 24376280]
[174]
Carmona, V.B.; Oliveira, R.M.; Silva, W.T.L.; Mattoso, L.H.C.; Marconcini, J.M. Nanosilica from rice husk: Extraction and characterization. Ind. Crops Prod., 2013, 43, 291-296.
[http://dx.doi.org/10.1016/j.indcrop.2012.06.050]
[175]
Mattos, B.D.; Rojas, O.J.; Magalhães, W.L.E. Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. J. Clean. Prod., 2017, 142, 4206-4213.
[http://dx.doi.org/10.1016/j.jclepro.2016.11.183]
[176]
Mattos, B.D.; Magalhães, W.L.E. Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. J. Nanopart. Res., 2016, 18(9), 274.
[http://dx.doi.org/10.1007/s11051-016-3586-8]
[177]
Cai, D.; Wang, L.; Zhang, G.; Zhang, X.; Wu, Z. Controlling pesticide loss by natural porous micro/nano composites: straw ash-based biochar and biosilica. ACS Appl. Mater. Interfaces, 2013, 5(18), 9212-9216.
[http://dx.doi.org/10.1021/am402864r] [PMID: 24001024]
[178]
Singh, B.; Sharma, D.K.; Kumar, R.; Gupta, A. Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl. Clay Sci., 2009, 45(1), 76-82.
[http://dx.doi.org/10.1016/j.clay.2009.03.001]
[179]
Halajnia, A.; Oustan, S.; Najafi, N.; Khataee, A.R.; Lakzian, A. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl. Clay Sci., 2013, 80, 305-312.
[http://dx.doi.org/10.1016/j.clay.2013.05.002]
[180]
Koilraj, P.; Antonyraj, C.A.; Gupta, V.; Reddy, C.R.K.; Kannan, S. Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer. Appl. Clay Sci., 2013, 86, 111-118.
[http://dx.doi.org/10.1016/j.clay.2013.07.004]
[181]
Bao, W.; Wan, Y.; Baluška, F. Nanosheets for delivery of biomolecules into plant cells. Trends Plant Sci., 2017, 22(6), 445-447.
[http://dx.doi.org/10.1016/j.tplants.2017.03.014] [PMID: 28416163]
[182]
Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans., 2013, 42(37), 13649-13657.
[http://dx.doi.org/10.1039/c3dt51479j] [PMID: 23903996]
[183]
Xiao, G.; Chen, W.; Tian, F.; Richardson, J.J.; Tardy, B.L.; Liu, M.; Joshi, N.S.; Guo, J. Thermal transition of bimetallic metal-phenolic networks to biomass-derived hierarchically porous nanofibers. Chem. Asian J., 2018, 13(8), 972-976.
[http://dx.doi.org/10.1002/asia.201800284] [PMID: 29470840]
[184]
Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 2014, 43(16), 5982-5993.
[http://dx.doi.org/10.1039/C4CS00103F] [PMID: 24769551]
[185]
Tardy, B.L.; Richardson, J.J.; Guo, J.; Lehtonen, J.; Ago, M.; Rojas, O.J. Lignin nano-and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. Green Chem., 2018, 20(6), 1335-1344.
[http://dx.doi.org/10.1039/C8GC00064F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy