Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment

Author(s): Tijana Stanković, Jelena Dinić, Ana Podolski-Renić, Loana Musso, Sonja Stojković Burić, Sabrina Dallavalle* and Milica Pešić*

Volume 26, Issue 33, 2019

Page: [6074 - 6106] Pages: 33

DOI: 10.2174/0929867325666180607094856

Price: $65

Abstract

Background: Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies.

Methods: We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review.

Results: Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors’ role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated.

Conclusion: These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.

Keywords: targeted anticancer therapy, multidrug resistance, P-glycoprotein, tyrosine kinase inhibitors, naturalbased drugs, microtubule interacting agents, topoisomerase inhibitors, hybrid compounds.

[1]
Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143, 1277-1300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[2]
Fu, R.G.; Sun, Y.; Sheng, W.B.; Liao, D.F. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm. Eur. J. Med. Chem., 2017, 136, 195-211.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.016] [PMID: 28494256]
[3]
Wijdeven, R.H.; Pang, B.; Assaraf, Y.G.; Neefjes, J. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 2016, 28, 65-81.
[http://dx.doi.org/0.1016/j.drup.2016.07.001] [PMID: 27620955]
[4]
Palmeira, A.; Sousa, E.; Vasconcelos, M.H.; Pinto, M.M. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr. Med. Chem., 2012, 19(13), 1946-2025.
[http://dx.doi.org/10.2174/092986712800167392] [PMID: 22257057]
[5]
Kim, Y.; Chen, J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science, 2018, 359(6378), 915-919.
[http://dx.doi.org/10.1126/science.aar7389] [PMID: 29371429]
[6]
Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transportermediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[7]
Aller, S.G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P.M.; Trinh, Y.T.; Zhang, Q.; Urbatsch, I.L.; Chang, G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323(5922), 1718-1722.
[http://dx.doi.org/10.1126/science.1168750] [PMID: 19325113]
[8]
Hall, M.D.; Handley, M.D.; Gottesman, M.M. Is resistance useless? Multidrug resistance and collateral sensitivity. Trends Pharmacol. Sci., 2009, 30(10), 546-556.
[http://dx.doi.org/10.1016/j.tips.2009.07.003] [PMID: 19762091]
[9]
Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med., 2005, 353(2), 172-187.
[http://dx.doi.org/10.1056/NEJMra044389] [PMID: 16014887]
[10]
Chen, Y-f.; Fu, L-w. Mechanisms of acquired resistance to tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2011, 1(4), 197-207.
[http://dx.doi.org/10.1016/j.apsb.2011.10.007]
[11]
Brózik, A.; Hegedüs, C.; Erdei, Z.; Hegedus, T.; Özvegy-Laczka, C.; Szakács, G.; Sarkadi, B. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin. Drug Metab. Toxicol., 2011, 7(5), 623-642.
[http://dx.doi.org/10.1517/17425255.2011.562892] [PMID: 21410427]
[12]
Beretta, G.L.; Cassinelli, G.; Pennati, M.; Zuco, V.; Gatti, L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur. J. Med. Chem., 2017, 142, 271-289.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.062] [PMID: 28851502]
[13]
Hegedus, C.; Ozvegy-Laczka, C.; Apáti, A.; Magócsi, M.; Német, K.; Orfi, L.; Kéri, G.; Katona, M.; Takáts, Z.; Váradi, A.; Szakács, G.; Sarkadi, B. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br. J. Pharmacol., 2009, 158(4), 1153-1164.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00383.x] [PMID: 19785662]
[14]
Xavier, C.P.; Pesic, M.; Vasconcelos, M.H. Understanding cancer drug resistance by developing and studying resistant cell line models. Curr. Cancer Drug Targets, 2016, 16(3), 226-237.
[http://dx.doi.org/10.2174/1568009616666151113120705] [PMID: 26563882]
[15]
Li, Y.H.; Wang, P.P.; Li, X.X.; Yu, C.Y.; Yang, H.; Zhou, J.; Xue, W.W.; Tan, J.; Zhu, F. The human kinome targeted by FDA approved multi-target drugs and combination products: a comparative study from the drug-target interaction network perspective. PLoS One, 2016, 11(11)e0165737
[http://dx.doi.org/10.1371/journal.pone.0165737] [PMID: 27828998]
[16]
Shukla, S.; Sauna, Z.E.; Ambudkar, S.V. Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia, 2008, 22(2), 445-447.
[http://dx.doi.org/10.1038/sj.leu.2404897] [PMID: 17690695]
[17]
Chen, B.A.; Shan, X.Y.; Chen, J.; Xia, G.H.; Xu, W.L.; Schmit, M. Effects of imatinib and 5-bromotetrandrine on the reversal of multidrug resistance of the K562/A02 cell line. Chin. J. Cancer, 2010, 29(6), 591-595.
[http://dx.doi.org/10.5732/cjc.009.10540] [PMID: 20507731]
[18]
Dohse, M.; Scharenberg, C.; Shukla, S.; Robey, R.W.; Volkmann, T.; Deeken, J.F.; Brendel, C.; Ambudkar, S.V.; Neubauer, A.; Bates, S.E. Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab. Dispos., 2010, 38(8), 1371-1380.
[http://dx.doi.org/10.1124/dmd.109.031302] [PMID: 20423956]
[19]
Mukai, M.; Che, X.F.; Furukawa, T.; Sumizawa, T.; Aoki, S.; Ren, X.Q.; Haraguchi, M.; Sugimoto, Y.; Kobayashi, M.; Takamatsu, H.; Akiyama, S. Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells. Cancer Sci., 2003, 94(6), 557-563.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01482.x] [PMID: 12824882]
[20]
Sims, J.T.; Ganguly, S.S.; Bennett, H.; Friend, J.W.; Tepe, J.; Plattner, R. Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One, 2013, 8(1)e55509
[http://dx.doi.org/10.1371/journal.pone.0055509] [PMID: 23383209]
[21]
Mlejnek, P.; Kosztyu, P.; Dolezel, P.; Bates, S.E.; Ruzickova, E. Reversal of ABCB1 mediated efflux by imatinib and nilotinib in cells expressing various transporter levels. Chem. Biol. Interact., 2017, 273, 171-179.
[http://dx.doi.org/10.1016/j.cbi.2017.06.012] [PMID: 28623111]
[22]
Yeheskely-Hayon, D.; Regev, R.; Eytan, G.D.; Dann, E.J. The tyrosine kinase inhibitors imatinib and AG957 reverse multidrug resistance in a chronic myelogenous leukemia cell line. Leuk. Res., 2005, 29(7), 793-802.
[http://dx.doi.org/10.1016/j.leukres.2004.12.007] [PMID: 15927675]
[23]
Husaini, R.; Ahmad, M.; Zakaria, Z. Effectiveness of imatinib mesylate over etoposide in the treatment of sensitive and resistant chronic myeloid leukaemia cells in vitro. Exp. Ther. Med., 2017, 13(6), 3209-3216.
[http://dx.doi.org/10.3892/etm.2017.4443] [PMID: 28587395]
[24]
Negi, L.M.; Jaggi, M.; Joshi, V.; Ronodip, K.; Talegaonkar, S. Hyaluronan coated liposomes as the intravenous platform for delivery of imatinib mesylate in MDR colon cancer. Int. J. Biol. Macromol., 2015, 73, 222-235.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.026] [PMID: 25478964]
[25]
Villar, V.H.; Vögler, O.; Martínez-Serra, J.; Ramos, R.; Calabuig-Fariñas, S.; Gutiérrez, A.; Barceló, F.; Martín-Broto, J.; Alemany, R. Nilotinib counteracts P-glycoprotein-mediated multidrug resistance and synergizes the antitumoral effect of doxorubicin in soft tissue sarcomas. PLoS One, 2012, 7(5)e37735
[http://dx.doi.org/10.1371/journal.pone.0037735] [PMID: 22662203]
[26]
Tiwari, A.K.; Sodani, K.; Wang, S.R.; Kuang, Y.H.; Ashby, C.R., Jr; Chen, X.; Chen, Z.S. Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem. Pharmacol., 2009, 78(2), 153-161.
[http://dx.doi.org/10.1016/j.bcp.2009.04.002] [PMID: 19427995]
[27]
Wang, F.; Wang, X.K.; Shi, C.J.; Zhang, H.; Hu, Y.P.; Chen, Y.F.; Fu, L.W. Nilotinib enhances the efficacy of conventional chemotherapeutic drugs in CD34+CD38 stem cells and ABC transporter overexpressing leukemia cells. Molecules, 2014, 19(3), 3356-3375.
[http://dx.doi.org/10.3390/molecules19033356] [PMID: 24651611]
[28]
Zhou, Z.Y.; Wan, L.L.; Yang, Q.J.; Han, Y.L.; Li, D.; Lu, J.; Guo, C. Nilotinib reverses ABCB1/P-glycoprotein-mediated multidrug resistance but increases cardiotoxicity of doxorubicin in a MDR xenograft model. Toxicol. Lett., 2016, 259, 124-132.
[http://dx.doi.org/10.1016/j.toxlet.2016.07.710] [PMID: 27491883]
[29]
Tiwari, A.K.; Sodani, K.; Dai, C.L.; Abuznait, A.H.; Singh, S.; Xiao, Z.J.; Patel, A.; Talele, T.T.; Fu, L.; Kaddoumi, A.; Gallo, J.M.; Chen, Z.S. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett., 2013, 328(2), 307-317.
[http://dx.doi.org/10.1016/j.canlet.2012.10.001] [PMID: 23063650]
[30]
Chen, T.; Wang, C.; Liu, Q.; Meng, Q.; Sun, H.; Huo, X.; Sun, P.; Peng, J.; Liu, Z.; Yang, X.; Liu, K. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway. Cancer Biol. Ther., 2015, 16(1), 106-114.
[http://dx.doi.org/10.4161/15384047.2014.987062] [PMID: 25482933]
[31]
Li, J.; Xu, R.; Lu, X.; He, J.; Jin, S. A simple reduction-sensitive micelles co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance. Int. J. Nanomedicine, 2017, 12, 8043-8056.
[http://dx.doi.org/10.2147/IJN.S148273] [PMID: 29138561]
[32]
Tsubaki, M.; Komai, M.; Itoh, T.; Imano, M.; Sakamoto, K.; Shimaoka, H.; Takeda, T.; Ogawa, N.; Mashimo, K.; Fujiwara, D.; Mukai, J.; Sakaguchi, K.; Satou, T.; Nishida, S. By inhibiting Src, verapamil and dasatinib overcome multidrug resistance via increased expression of Bim and decreased expressions of MDR1 and survivin in human multidrug-resistant myeloma cells. Leuk. Res., 2014, 38(1), 121-130.
[http://dx.doi.org/10.1016/j.leukres.2013.10.017] [PMID: 24239173]
[33]
Sen, R.; Natarajan, K.; Bhullar, J.; Shukla, S.; Fang, H.B.; Cai, L.; Chen, Z.S.; Ambudkar, S.V.; Baer, M.R. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol. Cancer Ther., 2012, 11(9), 2033-2044.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0302] [PMID: 22778153]
[34]
Yang, C.H.; Huang, C.J.; Yang, C.S.; Chu, Y.C.; Cheng, A.L.; Whang-Peng, J.; Yang, P.C. Gefitinib reverses chemotherapy resistance in gefitinib-insensitive multidrug resistant cancer cells expressing ATP-binding cassette family protein. Cancer Res., 2005, 65(15), 6943-6949.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0641] [PMID: 16061679]
[35]
Kitazaki, T.; Oka, M.; Nakamura, Y.; Tsurutani, J.; Doi, S.; Yasunaga, M.; Takemura, M.; Yabuuchi, H.; Soda, H.; Kohno, S. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer, 2005, 49(3), 337-343.
[http://dx.doi.org/10.1016/j.lungcan.2005.03.035] [PMID: 15955594]
[36]
Leggas, M.; Panetta, J.C.; Zhuang, Y.; Schuetz, J.D.; Johnston, B.; Bai, F.; Sorrentino, B.; Zhou, S.; Houghton, P.J.; Stewart, C.F. Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res., 2006, 66(9), 4802-4807.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2915] [PMID: 16651435]
[37]
Wang, Y.J.; Zhang, Y.K.; Zhang, G.N.; Al Rihani, S.B.; Wei, M.N.; Gupta, P.; Zhang, X.Y.; Shukla, S.; Ambudkar, S.V.; Kaddoumi, A.; Shi, Z.; Chen, Z.S. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: In vitro and in vivo study. Cancer Lett., 2017, 396, 145-154.
[http://dx.doi.org/10.1016/j.canlet.2017.03.011] [PMID: 28302530]
[38]
Inoue, Y.; Ikegami, Y.; Sano, K.; Suzuki, T.; Yoshida, H.; Nakamura, Y.; Nakagawa, H.; Ishikawa, T. Gefitinib enhances the antitumor activity of CPT-11 in vitro and in vivo by inhibiting ABCG2 but not ABCB1: a new clue to circumvent gastrointestinal toxicity risk. Chemotherapy, 2013, 59(4), 260-272.
[http://dx.doi.org/10.1159/000357772] [PMID: 24457609]
[39]
Azzariti, A.; Porcelli, L.; Simone, G.M.; Quatrale, A.E.; Colabufo, N.A.; Berardi, F.; Perrone, R.; Zucchetti, M.; D’Incalci, M.; Xu, J.M.; Paradiso, A. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother. Pharmacol., 2010, 65(2), 335-346.
[http://dx.doi.org/10.1007/s00280-009-1039-0] [PMID: 19495754]
[40]
Wang, W.J.; Li, C.F.; Chu, Y.Y.; Wang, Y.H.; Hour, T.C.; Yen, C.J.; Chang, W.C.; Wang, J.M. Inhibition of the EGFR/STAT3/CEBPD axis reverses cisplatin crossresistance with paclitaxel in the urothelial carcinoma of the urinary bladder. Clinical cancer research: an official journal of the American Association for Cancer Research.,, 2017, 23(2), 503-513.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1169] [PMID: 27435393]
[41]
Shi, Z.; Peng, X.X.; Kim, I.W.; Shukla, S.; Si, Q.S.; Robey, R.W.; Bates, S.E.; Shen, T.; Ashby, C.R., Jr; Fu, L.W.; Ambudkar, S.V.; Chen, Z.S. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res., 2007, 67(22), 11012-11020.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2686] [PMID: 18006847]
[42]
Lainey, E.; Sébert, M.; Thépot, S.; Scoazec, M.; Bouteloup, C.; Leroy, C.; De Botton, S.; Galluzzi, L.; Fenaux, P.; Kroemer, G. Erlotinib antagonizes ABC transporters in acute myeloid leukemia. Cell Cycle, 2012, 11(21), 4079-4092.
[http://dx.doi.org/10.4161/cc.22382] [PMID: 23095522]
[43]
Noguchi, K.; Kawahara, H.; Kaji, A.; Katayama, K.; Mitsuhashi, J.; Sugimoto, Y. Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci., 2009, 100(9), 1701-1707.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01213.x] [PMID: 19493273]
[44]
Wang, X.K.; To, K.K.; Huang, L.Y.; Xu, J.H.; Yang, K.; Wang, F.; Huang, Z.C.; Ye, S.; Fu, L.W. Afatinib circumvents multidrug resistance via dually inhibiting ATP binding cassette subfamily G member 2 in vitro and in vivo. Oncotarget, 2014, 5(23), 11971-11985.
[http://dx.doi.org/10.18632/oncotarget.2647] [PMID: 25436978]
[45]
Wang, S.Q.; Liu, S.T.; Zhao, B.X.; Yang, F.H.; Wang, Y.T.; Liang, Q.Y.; Sun, Y.B.; Liu, Y.; Song, Z.H.; Cai, Y.; Li, G.F. Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1. Oncotarget, 2015, 6(28), 26142-26160.
[http://dx.doi.org/10.18632/oncotarget.4536] [PMID: 26317651]
[46]
Zhang, Y.; Wang, C.Y.; Duan, Y.J.; Huo, X.K.; Meng, Q.; Liu, Z.H.; Sun, H.J.; Ma, X.D.; Liu, K.X. Afatinib decreases P-glycoprotein expression to promote adriamycin toxicity of A549T cells. J. Cell. Biochem., 2018, 119(1), 414-423.
[http://dx.doi.org/10.1002/jcb.26194] [PMID: 28590019]
[47]
Liu, H.; Ma, Z.; Wu, B. Structure-activity relationships and in silico models of P-glycoprotein (ABCB1) inhibitors. Xenobiotica; the fate of foreign compounds in biological systems., 2013, 43(11), 1018-1026.
[http://dx.doi.org/10.3109/00498254.2013.791003] [PMID: 23617855]
[48]
Gandhi, Y.A.; Morris, M.E. Structure-activity relationships and quantitative structure-activity relationships for breast cancer resistance protein (ABCG2). AAPS J., 2009, 11(3), 541-552.
[http://dx.doi.org/10.1208/s12248-009-9132-1] [PMID: 19629710]
[49]
Zhao, X.Q.; Xie, J.D.; Chen, X.G.; Sim, H.M.; Zhang, X.; Liang, Y.J.; Singh, S.; Talele, T.T.; Sun, Y.; Ambudkar, S.V.; Chen, Z.S.; Fu, L.W. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol. Pharmacol., 2012, 82(1), 47-58.
[http://dx.doi.org/10.1124/mol.111.076299] [PMID: 22491935]
[50]
Collins, D.M.; Crown, J.; O’Donovan, N.; Devery, A.; O’Sullivan, F.; O’Driscoll, L.; Clynes, M.; O’Connor, R. Tyrosine kinase inhibitors potentiate the cytotoxicity of MDR-substrate anticancer agents independent of growth factor receptor status in lung cancer cell lines. Invest. New Drugs, 2010, 28(4), 433-444.
[http://dx.doi.org/10.1007/s10637-009-9266-0] [PMID: 19499189]
[51]
Dai, C.L.; Tiwari, A.K.; Wu, C.P.; Su, X.D.; Wang, S.R.; Liu, D.G.; Ashby, C.R., Jr; Huang, Y.; Robey, R.W.; Liang, Y.J.; Chen, L.M.; Shi, C.J.; Ambudkar, S.V.; Chen, Z.S.; Fu, L.W. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res., 2008, 68(19), 7905-7914.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0499] [PMID: 18829547]
[52]
Dunne, G.; Breen, L.; Collins, D.M.; Roche, S.; Clynes, M.; O’Connor, R. Modulation of P-gp expression by lapatinib. Invest. New Drugs, 2011, 29(6), 1284-1293.
[http://dx.doi.org/10.1007/s10637-010-9482-7] [PMID: 20607587]
[53]
Minami, T.; Kijima, T.; Otani, Y.; Kohmo, S.; Takahashi, R.; Nagatomo, I.; Hirata, H.; Suzuki, M.; Inoue, K.; Takeda, Y.; Kida, H.; Tachibana, I.; Kumanogoh, A. HER2 as therapeutic target for overcoming ATP-binding cassette transporter-mediated chemoresistance in small cell lung cancer. Mol. Cancer Ther., 2012, 11(4), 830-841.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0884] [PMID: 22389470]
[54]
Li, F.; Danquah, M.; Singh, S.; Wu, H.; Mahato, R.I. Paclitaxel- and lapatinib-loaded lipopolymer micelles overcome multidrug resistance in prostate cancer. Drug Deliv. Transl. Res., 2011, 1(6), 420-428.
[http://dx.doi.org/10.1007/s13346-011-0042-2] [PMID: 25786362]
[55]
Dai, C.; Ma, S.; Wang, F.; Zhao, H.; Wu, X.; Huang, Z.; Chen, Z.; To, K.; Fu, L. Lapatinib promotes the incidence of hepatotoxicity by increasing chemotherapeutic agent accumulation in hepatocytes. Oncotarget, 2015, 6(19), 17738-17752.
[http://dx.doi.org/10.18632/oncotarget.3921] [PMID: 26036634]
[56]
Hsiao, S.H.; Lu, Y.J.; Li, Y.Q.; Huang, Y.H.; Hsieh, C.H.; Wu, C.P. Osimertinib (AZD9291) attenuates the function of multidrug resistance-linked ATP-binding cassette transporter ABCB1 in Vitro. Mol. Pharm., 2016, 13(6), 2117-2125.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00249] [PMID: 27169328]
[57]
Chen, Z.; Chen, Y.; Xu, M.; Chen, L.; Zhang, X.; To, K.K.; Zhao, H.; Wang, F.; Xia, Z.; Chen, X.; Fu, L. Osimertinib (AZD9291) enhanced the efficacy of chemotherapeutic agents in ABCB1- and ABCG2-Overexpressing Cells in vitro, in vivo, and ex vivo. Mol. Cancer Ther., 2016, 15(8), 1845-1858.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0939] [PMID: 27196753]
[58]
Zhang, X.Y.; Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Zeng, L.; Xu, M.; Wang, X.Q.; Yang, D.H.; Chen, Z.S. Osimertinib (AZD9291), a mutant-selective EGFR inhibitor, reverses ABCB1-mediated drug resistance in cancer cells. Molecules, 2016, 21(9), 1236.
[http://dx.doi.org/10.3390/molecules21091236] [PMID: 27649127]
[59]
Chen, S.; Wang, Y.; Ruan, W.; Wang, X.; Pan, C. Reversing multidrug resistance in hepatocellular carcinoma cells by inhibiting extracellular signal-regulated kinase/mitogen-activated protein kinase signaling pathway activity. Oncol. Lett., 2014, 8(5), 2333-2339.
[http://dx.doi.org/10.3892/ol.2014.2521] [PMID: 25295120]
[60]
Huang, Y.S.; Xue, Z.; Zhang, H. Sorafenib reverses resistance of gastric cancer to treatment by cisplatin through down-regulating MDR1 expression. Med. Oncol., 2015, 32(2), 470.
[http://dx.doi.org/10.1007/s12032-014-0470-1] [PMID: 25579168]
[61]
Hoffmann, K.; Franz, C.; Xiao, Z.; Mohr, E.; Serba, S.; Büchler, M.W.; Schemmer, P. Sorafenib modulates the gene expression of multi-drug resistance mediating ATP-binding cassette proteins in experimental hepatocellular carcinoma. Anticancer Res., 2010, 30(11), 4503-4508.
[PMID: 21115899]
[62]
Eum, K.H.; Ahn, S.K.; Kang, H.; Lee, M. Differential inhibitory effects of two Raf-targeting drugs, sorafenib and PLX4720, on the growth of multidrug-resistant cells. Mol. Cell. Biochem., 2013, 372(1-2), 65-74.
[http://dx.doi.org/10.1007/s11010-012-1446-0] [PMID: 22941213]
[63]
Hu, S.; Chen, Z.; Franke, R.; Orwick, S.; Zhao, M.; Rudek, M.A.; Sparreboom, A.; Baker, S.D. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clinical cancer research: an official journal of the American Association for Cancer Research.,, 2009, 15(19), 6062-6069.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0048] [PMID: 19773380]
[64]
Wei, Y.; Ma, Y.; Zhao, Q.; Ren, Z.; Li, Y.; Hou, T.; Peng, H. New use for an old drug: inhibiting ABCG2 with sorafenib. Mol. Cancer Ther., 2012, 11(8), 1693-1702.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0215] [PMID: 22593228]
[65]
Dai, C.L.; Liang, Y.J.; Wang, Y.S.; Tiwari, A.K.; Yan, Y.Y.; Wang, F.; Chen, Z.S.; Tong, X.Z.; Fu, L.W. Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett., 2009, 279(1), 74-83.
[http://dx.doi.org/10.1016/j.canlet.2009.01.027] [PMID: 19232821]
[66]
Shukla, S.; Robey, R.W.; Bates, S.E.; Ambudkar, S.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab. Dispos., 2009, 37(2), 359-365.
[http://dx.doi.org/10.1124/dmd.108.024612] [PMID: 18971320]
[67]
Zhang, Y.; Wang, Q. Sunitinib reverse multidrug resistance in gastric cancer cells by modulating Stat3 and inhibiting P-gp function. Cell Biochem. Biophys., 2013, 67(2), 575-581.
[http://dx.doi.org/10.1007/s12013-013-9544-5] [PMID: 23471661]
[68]
Zhang, K.; Wang, X.; Wang, H. Effect and mechanism of Src tyrosine kinase inhibitor sunitinib on the drug-resistance reversal of human A549/DDP cisplatin-resistant lung cancer cell line. Mol. Med. Rep., 2014, 10(4), 2065-2072.
[http://dx.doi.org/10.3892/mmr.2014.2440] [PMID: 25109654]
[69]
Bani, M.; Decio, A.; Giavazzi, R.; Ghilardi, C. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists. Angiogenesis, 2017, 20(2), 233-241.
[http://dx.doi.org/10.1007/s10456-017-9549-6] [PMID: 28389777]
[70]
Mi, Y.; Lou, L. ZD6474 reverses multidrug resistance by directly inhibiting the function of P-glycoprotein. Br. J. Cancer, 2007, 97(7), 934-940.
[http://dx.doi.org/10.1038/sj.bjc.6603985] [PMID: 17912240]
[71]
Jovelet, C.; Benard, J.; Forestier, F.; Farinotti, R.; Bidart, J.M.; Gil, S. Inhibition of P-glycoprotein functionality by vandetanib may reverse cancer cell resistance to doxorubicin European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences.,, 2012, 46(5), 484-491.
[http://dx.doi.org/10.1016/j.ejps.2012.03.012] [PMID: 22484209]
[72]
Xiang, Q.F.; Zhang, D.M.; Wang, J.N.; Zhang, H.W.; Zheng, Z.Y.; Yu, D.C.; Li, Y.J.; Xu, J.; Chen, Y.J.; Shang, C.Z. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of Pglycoprotein. Liver international : official journal of the International Association for the Study of the Liver.,, 2015, 35(3), 1010-1023..
[http://dx.doi.org/10.1111/liv.12524] [PMID: 24621440]
[73]
Zhang, G.N.; Zhang, Y.K.; Wang, Y.J.; Barbuti, A.M.; Zhu, X.J.; Yu, X.Y.; Wen, A.W.; Wurpel, J.N.D.; Chen, Z.S. Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib. Pharmacol. Res., 2017, 119, 89-98.
[http://dx.doi.org/10.1016/j.phrs.2017.01.024] [PMID: 28131876]
[74]
Xiang, Q.F.; Wang, F.; Su, X.D.; Liang, Y.J.; Zheng, L.S.; Mi, Y.J.; Chen, W.Q.; Fu, L.W. Effect of BIBF 1120 on reversal of ABCB1-mediated multidrug resistance. Cell Oncol. (Dordr.), 2011, 34(1), 33-44.
[http://dx.doi.org/10.1007/s13402-010-0003-7] [PMID: 21290212]
[75]
Zhou, W.J.; Zhang, X.; Cheng, C.; Wang, F.; Wang, X.K.; Liang, Y.J.; To, K.K.; Zhou, W.; Huang, H.B.; Fu, L.W. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br. J. Pharmacol., 2012, 166(5), 1669-1683.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01849.x] [PMID: 22233293]
[76]
Hu, J.; Zhang, X.; Wang, F.; Wang, X.; Yang, K.; Xu, M.; To, K.K.; Li, Q.; Fu, L. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget, 2015, 6(42), 44643-44659.
[http://dx.doi.org/10.18632/oncotarget.5989] [PMID: 26556876]
[77]
Yang, K.; Chen, Y.; To, K.K.; Wang, F.; Li, D.; Chen, L.; Fu, L. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp. Mol. Med., 2017, 49(3)e303
[http://dx.doi.org/10.1038/emm.2016.168] [PMID: 28303028]
[78]
Gao, Y.; Shen, J.; Choy, E.; Mankin, H.; Hornicek, F.; Duan, Z. Inhibition of CDK4 sensitizes multidrug resistant ovarian cancer cells to paclitaxel by increasing apoptosiss. Cell Oncol. (Dordr.), 2017, 40(3), 209-218.
[http://dx.doi.org/10.1007/s13402-017-0316-x] [PMID: 28243976]
[79]
Wu, T.; Chen, Z.; To, K.K.W.; Fang, X.; Wang, F.; Cheng, B.; Fu, L. Effect of abemaciclib (LY2835219) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Biochem. Pharmacol., 2017, 124, 29-42.
[http://dx.doi.org/10.1016/j.bcp.2016.10.015] [PMID: 27816545]
[80]
Michaelis, M.; Rothweiler, F.; Nerreter, T.; Van Rikxoort, M.; Sharifi, M.; Wiese, M.; Ghafourian, T.; Cinatl, J. Differential effects of the oncogenic BRAF inhibitor PLX4032 (vemurafenib) and its progenitor PLX4720 on ABCB1 function. Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.,, 2017, 17(1), 154-168.
[PMID: 24735766]
[81]
Qiu, J.G.; Zhang, Y.J.; Li, Y.; Zhao, J.M.; Zhang, W.J.; Jiang, Q.W.; Mei, X.L.; Xue, Y.Q.; Qin, W.M.; Yang, Y.; Zheng, D.W.; Chen, Y.; Wei, M.N.; Shi, Z. Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget, 2015, 6(17), 15494-15509.
[http://dx.doi.org/10.18632/oncotarget.3820] [PMID: 25915534]
[82]
Zhang, H.; Patel, A.; Wang, Y.J.; Zhang, Y.K.; Kathawala, R.J.; Qiu, L.H.; Patel, B.A.; Huang, L.H.; Shukla, S.; Yang, D.H.; Ambudkar, S.V.; Fu, L.W.; Chen, Z.S. The BTK Inhibitor Ibrutinib (PCI-32765) overcomes paclitaxel resistance in ABCB1- and ABCC10-overexpressing cells and tumors. Mol. Cancer Ther., 2017, 16(6), 1021-1030.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0511] [PMID: 28265007]
[83]
Podolski-Renić, A.; Jadranin, M.; Stanković, T.; Banković, J.; Stojković, S.; Chiourea, M.; Aljančić, I.; Vajs, V.; Tešević, V.; Ruždijić, S.; Gagos, S.; Tanić, N.; Pešić, M. Molecular and cytogenetic changes in multi-drug resistant cancer cells and their influence on new compounds testing. Cancer Chemother. Pharmacol., 2013, 72(3), 683-697.
[http://dx.doi.org/10.1007/s00280-013-2247-1] [PMID: 23934261]
[84]
Milosevic, Z.; Pesic, M.; Stankovic, T.; Dinic, J.; Milovanovic, Z.; Stojsic, J.; Dzodic, R.; Tanic, N.; Bankovic, J. Targeting RAS-MAPK-ERK and PI3K-AKT-mTOR signal transduction pathways to chemosensitize anaplastic thyroid carcinoma. Transl. Res., 2014, 164(5), 411-423.
[http://dx.doi.org/10.1016/j.trsl.2014.06.005] [PMID: 25016932]
[85]
Mori, M.; Vignaroli, G.; Cau, Y.; Dinić, J.; Hill, R.; Rossi, M.; Colecchia, D.; Pešić, M.; Link, W.; Chiariello, M.; Ottmann, C.; Botta, M. Discovery of 14-3-3 protein-protein interaction inhibitors that sensitize multidrug-resistant cancer cells to doxorubicin and the Akt inhibitor GSK690693. ChemMedChem, 2014, 9(5), 973-983.
[http://dx.doi.org/10.1002/cmdc.201400044] [PMID: 24715717]
[86]
Dragoj, M.; Milosevic, Z.; Bankovic, J.; Tanic, N.; Pesic, M.; Stankovic, T. Targeting CXCR4 and FAK reverses doxorubicin resistance and suppresses invasion in non-small cell lung carcinoma. Cell Oncol. (Dordr.), 2017, 40(1), 47-62.
[http://dx.doi.org/10.1007/s13402-016-0304-6] [PMID: 27822706]
[87]
Abdallah, H.M.; Al-Abd, A.M.; El-Dine, R.S.; El-Halawany, A.M. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J. Adv. Res., 2015, 6(1), 45-62.
[http://dx.doi.org/10.1016/j.jare.2014.11.008] [PMID: 25685543]
[88]
Lopez, D.; Martinez-Luis, S. Marine natural products with P-glycoprotein inhibitor properties. Mar. Drugs, 2014, 12(1), 525-546.
[http://dx.doi.org/10.3390/md12010525] [PMID: 24451193]
[89]
Michalak, K.; Wesolowska, O. Polyphenols counteract tumor cell chemoresistance conferred by multidrug resistance proteins. Anticancer. Agents Med. Chem., 2012, 12(8), 880-890.
[http://dx.doi.org/10.2174/187152012802650011] [PMID: 22583399]
[90]
Farabegoli, F.; Papi, A.; Bartolini, G.; Ostan, R.; Orlandi, M. Epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine : international journal of phytotherapy and phytopharmacology.,, 2010, 17(5), 356-362.
[91]
Li, Y.; Zhang, T.; Jiang, Y.; Lee, H.F.; Schwartz, S.J.; Sun, D. (-)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Mol. Pharm., 2009, 6(4), 1152-1159.
[http://dx.doi.org/10.1021/mp900037p] [PMID: 19438225]
[92]
Wesołowska, O.; Wiśniewski, J.; Sroda, K.; Krawczenko, A.; Bielawska-Pohl, A.; Paprocka, M.; Duś, D.; Michalak, K. 8-Prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1. Eur. J. Pharmacol., 2010, 644(1-3), 32-40.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.069] [PMID: 20633549]
[93]
Milligan, S.R.; Kalita, J.C.; Heyerick, A.; Rong, H.; De Cooman, L.; De Keukeleire, D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J. Clin. Endocrinol. Metab., 1999, 84(6), 2249-2252.
[http://dx.doi.org/10.1210/jcem.84.6.5887] [PMID: 10372741]
[94]
Sun, L.; Chen, W.; Qu, L.; Wu, J.; Si, J. Icaritin reverses multidrug resistance of HepG2/ADR human hepatoma cells via downregulation of MDR1 and Pglycoprotein expression. Mol. Med. Rep., 2013, 8(6), 1883-1887.
[http://dx.doi.org/10.3892/mmr.2013.1742] [PMID: 24145579]
[95]
Wu, J.; Du, J.; Fu, X.; Liu, B.; Cao, H.; Li, T.; Su, T.; Xu, J.; Tse, A.K.; Yu, Z.L. Iciartin, a novel FASN inhibitor, exerts anti-melanoma activities through IGF-1R/STAT3 signaling. Oncotarget, 2016, 7(32), 51251-51269.
[http://dx.doi.org/10.18632/oncotarget.9984] [PMID: 27323414]
[96]
Li, C.; Kim, M.; Choi, H.; Choi, J. Effects of baicalein on the pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats: possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by baicalein. Arch. Pharm. Res., 2011, 34(11), 1965-1972.
[http://dx.doi.org/10.1007/s12272-011-1117-9] [PMID: 22139696]
[97]
Jelić, D.; Lower-Nedza, A.D.; Brantner, A.H.; Blažeković, B.; Bian, B.; Yang, J.; Brajša, K.; Vladimir-Knežević, S. Baicalin and baicalein inhibit src tyrosine kinase and production of IL-6. J.of Chem., 2016, 2016(2510621), 6.
[http://dx.doi.org/10.1155/2016/2510621]
[98]
Zhang, S.; Morris, M.E. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm. Res., 2003, 20(8), 1184-1191.
[http://dx.doi.org/10.1023/A:1025044913766] [PMID: 12948016]
[99]
Zhang, S.; Morris, M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther., 2003, 304(3), 1258-1267.
[http://dx.doi.org/10.1124/jpet.102.044412] [PMID: 12604704]
[100]
Li, D.; Hu, J.; Wang, T.; Zhang, X.; Liu, L.; Wang, H.; Wu, Y.; Xu, D.; Wen, F. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells. Sci. Rep., 2016, 6, 37751.
[http://dx.doi.org/10.1038/srep37751] [PMID: 27874084]
[101]
Borska, S.; Chmielewska, M.; Wysocka, T.; Drag-Zalesinska, M.; Zabel, M.; Dziegiel, P. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem. Toxicol., 2012, 50(9), 3375-3383.
[http://dx.doi.org/ 10.1016/j.fct.2012.06.035] [PMID: 22750388]
[102]
Sergent, T.; Dupont, I.; Van der Heiden, E.; Scippo, M.L.; Pussemier, L.; Larondelle, Y.; Schneider, Y.J. CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells. Toxicol. Lett., 2009, 191(2-3), 216-222.
[http://dx.doi.org/10.1016/j.toxlet.2009.09.002] [PMID: 19766177]
[103]
Choi, J.S.; Piao, Y.J.; Kang, K.W. Effects of quercetin on the bioavailability of doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin. Arch. Pharm. Res., 2011, 34(4), 607-613.
[http://dx.doi.org/10.1007/s12272-011-0411-x] [PMID: 21544726]
[104]
Cheong, E.; Ivory, K.; Doleman, J.; Parker, M.L.; Rhodes, M.; Johnson, I.T. Synthetic and naturally occurring COX-2 inhibitors suppress proliferation in a human oesophageal adenocarcinoma cell line (OE33) by inducing apoptosis and cell cycle arrest. Carcinogenesis, 2004, 25(10), 1945-1952.
[http://dx.doi.org/10.1093/carcin/bgh184] [PMID: 15155531]
[105]
Choi, S.J.; Shin, S.C.; Choi, J.S. Effects of myricetin on the bioavailability of doxorubicin for oral drug delivery in rats: possible role of CYP3A4 and P-glycoprotein inhibition by myricetin. Arch. Pharm. Res., 2011, 34(2), 309-315.
[http://dx.doi.org/10.1007/s12272-011-0217-x] [PMID: 21380815]
[106]
Kumamoto, T.; Fujii, M.; Hou, D.X. Akt is a direct target for myricetin to inhibit cell transformation. Mol. Cell. Biochem., 2009, 332(1-2), 33-41.
[http://dx.doi.org/10.1007/s11010-009-0171-9] [PMID: 19504174]
[107]
Lee, E.; Enomoto, R.; Koshiba, C.; Hirano, H. Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells. Ann. N. Y. Acad. Sci., 2009, 1171, 132-136.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04722.x] [PMID: 19723047]
[108]
Polier, G.; Ding, J.; Konkimalla, B.V.; Eick, D.; Ribeiro, N.; Köhler, R.; Giaisi, M.; Efferth, T.; Desaubry, L.; Krammer, P.H.; Li-Weber, M. Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1. Cell Death Dis.,, 2011, 2e182.
[http://dx.doi.org/10.1038/cddis.2011.66] [PMID: 21776020]
[109]
Al-Abd, A.M.; Mahmoud, A.M.; El-Sherbiny, G.A.; El-Moselhy, M.A.; Nofal, S.M.; El-Latif, H.A.; El-Eraky, W.I.; El-Shemy, H.A. Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Prolif., 2011, 44(6), 591-601.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00783.x] [PMID: 22011009]
[110]
Zykova, T.A.; Zhu, F.; Zhai, X.; Ma, W.Y.; Ermakova, S.P.; Lee, K.W.; Bode, A.M.; Dong, Z. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog., 2008, 47(10), 797-805.
[http://dx.doi.org/10.1002/mc.20437] [PMID: 18381589]
[111]
Nabekura, T.; Hiroi, T.; Kawasaki, T.; Uwai, Y. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.,, 2015, 47(140), 145-145.
[http://dx.doi.org/10.1016/j.biopha.2015.01.007] [PMID: 25776492]
[112]
Chen, C.; Wu, C.; Lu, X.; Yan, Z.; Gao, J.; Zhao, H.; Li, S. Coniferyl Ferulate, a Strong Inhibitor of Glutathione STransferase Isolated from Radix Angelicae sinensis, Reverses Multidrug Resistance and Downregulates PGlycoprotein. eCAM,, 2013, 2013, 639083..
[http://dx.doi.org/10.1155/2013/639083] [PMID: 24058374]
[113]
Novaković, M.; Pešić, M.; Trifunović, S.; Vučković, I.; Todorović, N.; Podolski-Renić, A.; Dinić, J.; Stojković, S.; Tešević, V.; Vajs, V.; Milosavljević, S. Diarylheptanoids from the bark of black alder inhibit the growth of sensitive and multi-drug resistant non-small cell lung carcinoma cells. Phytochemistry, 2014, 97, 46-54.
[http://dx.doi.org/10.1016/j.phytochem.2013.11.001] [PMID: 24290194]
[114]
Han, J.M.; Lee, W.S.; Kim, J.R.; Son, J.; Kwon, O.H.; Lee, H.J.; Lee, J.J.; Jeong, T.S. Effect of 5-O-Methylhirsutanonol on nuclear factor-kappaB-dependent production of NO and expression of iNOS in lipopolysaccharide-induced RAW264.7 cells. J. Agric. Food Chem., 2008, 56(1), 92-98.
[http://dx.doi.org/10.1021/jf0721085] [PMID: 18069795]
[115]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[116]
Oliveira, A.S.; Sousa, E.; Vasconcelos, M.H.; Pinto, M. Curcumin: A Natural Lead for Potential New Drug Candidates. Curr. Med. Chem., 2015, 22(36), 4196-4232.
[http://dx.doi.org/10.2174/0929867322666151029104611] [PMID: 26511469]
[117]
Anuchapreeda, S.; Leechanachai, P.; Smith, M.M.; Ambudkar, S.V.; Limtrakul, P.N. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem. Pharmacol., 2002, 64(4), 573-582.
[http://dx.doi.org/10.1016/S0006-2952(02)01224-8] [PMID: 12167476]
[118]
Tang, X.Q.; Bi, H.; Feng, J.Q.; Cao, J.G. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol. Sin., 2005, 26(8), 1009-1016.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00149.x] [PMID: 16038636]
[119]
Lopes-Rodrigues, V.; Sousa, E.; Vasconcelos, M.H. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives. Pharmaceuticals (Basel), 2016, 9(4)E71
[http://dx.doi.org/10.3390/ph9040071] [PMID: 27834897]
[120]
Limtrakul, P.; Anuchapreeda, S.; Buddhasukh, D. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC Cancer, 2004, 4, 13.
[http://dx.doi.org/10.1186/1471-2407-4-13] [PMID: 15090070]
[121]
Lu, W.D.; Qin, Y.; Yang, C.; Li, L.; Fu, Z.X. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo. Clinics (São Paulo), 2013, 68(5), 694-701.
[http://dx.doi.org/10.6061/clinics/2013(05)18] [PMID: 23778405]
[122]
Choi, B.H.; Kim, C.G.; Lim, Y.; Shin, S.Y.; Lee, Y.H. Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NF kappa B pathway. Cancer Lett., 2008, 259(1), 111-118.
[http://dx.doi.org/10.1016/j.canlet.2007.10.003] [PMID: 18006147]
[123]
Andjelkovic, T.; Pesic, M.; Bankovic, J.; Tanic, N.; Markovic, I.D.; Ruzdijic, S. Synergistic effects of the purine analog sulfinosine and curcumin on the multidrug resistant human non-small cell lung carcinoma cell line (NCI-H460/R). Cancer Biol. Ther., 2008, 7(7), 1024-1032.
[http://dx.doi.org/10.4161/cbt.7.7.6036] [PMID: 18414057]
[124]
Lin, J.K. Molecular targets of curcumin. Adv. Exp. Med. Biol., 2007, 595, 227-243.
[http://dx.doi.org/10.1007/978-0-387-46401-5_10] [PMID: 17569214]
[125]
Kasi, P.D.; Tamilselvam, R.; Skalicka-Woźniak, K.; Nabavi, S.F.; Daglia, M.; Bishayee, A.; Pazoki-Toroudi, H.; Nabavi, S.M. Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol., 2016, 37(10), 13017-13028.
[http://dx.doi.org/10.1007/s13277-016-5183-y] [PMID: 27468716]
[126]
Kimura, S.; Ito, C.; Jyoko, N.; Segawa, H.; Kuroda, J.; Okada, M.; Adachi, S.; Nakahata, T.; Yuasa, T.; Filho, V.C.; Furukawa, H.; Maekawa, T. 2005.
[127]
Jin, L.; Tabe, Y.; Kimura, S.; Zhou, Y.; Kuroda, J.; Asou, H.; Inaba, T.; Konopleva, M.; Andreeff, M.; Miida, T. Antiproliferative and proapoptotic activity of GUT-70 mediated through potent inhibition of Hsp90 in mantle cell lymphoma. Br. J. Cancer, 2011, 104(1), 91-100.
[http://dx.doi.org/10.1038/sj.bjc.6606007] [PMID: 21139584]
[128]
Hanafi-Bojd, M.Y.; Iranshahi, M.; Mosaffa, F.; Tehrani, S.O.; Kalalinia, F.; Behravan, J. Farnesiferol A from Ferula persica and galbanic acid from Ferula szowitsiana inhibit P-glycoprotein-mediated rhodamine efflux in breast cancer cell lines. Planta Med., 2011, 77(14), 1590-1593.
[http://dx.doi.org/10.1055/s-0030-1270987] [PMID: 21484672]
[129]
Oh, B.S.; Shin, E.A.; Jung, J.H.; Jung, D.B.; Kim, B.; Shim, B.S.; Yazdi, M.C.; Iranshahi, M.; Kim, S.H. Apoptotic effect of galbanic acid via activation of caspases and inhibition of Mcl-1 in H460 non-small lung carcinoma cells. Phytother. Res., 2015, 29(6), 844-849.
[http://dx.doi.org/10.1002/ptr.5320] [PMID: 25753585]
[130]
Shahverdi, A.R.; Saadat, F.; Khorramizadeh, M.R.; Iranshahi, M.; Khoshayand, M.R. 2006.
[131]
Ohnishi, A.; Matsuo, H.; Yamada, S.; Takanaga, H.; Morimoto, S.; Shoyama, Y.; Ohtani, H.; Sawada, Y. Effect of furanocoumarin derivatives in grapefruit juice on the uptake of vinblastine by Caco-2 cells and on the activity of cytochrome P450 3A4. Br. J. Pharmacol., 2000, 130(6), 1369-1377.
[http://dx.doi.org/10.1038/sj.bjp.0703433] [PMID: 10903978]
[132]
Ge, Z.; Qu, X.; Yu, H.; Zhang, H.; Wang, Z.; Zhang, Z. Antitumor and apoptotic effects of bergaptol are mediated via mitochondrial death pathway and cell cycle arrest in human breast carcinoma cells. Bangladesh J. Pharmacol., 2016, (11), 489-494.
[http://dx.doi.org/10.3329/bjp.v11i2.24644]
[133]
Firestone, G.L.; Sundar, S.N. Anticancer activities of artemisinin and its bioactive derivatives., 2009.
[134]
Mukanganyama, S.; Widersten, M.; Naik, Y.S.; Mannervik, B.; Hasler, J.A. 2002.
[135]
Steglich, B.; Mahringer, A.; Li, Y.; Posner, G.H.; Fricker, G.; Efferth, T. Inhibition of P-glycoprotein by two artemisinin derivatives. Nat. Prod. Bioprospect., 2012, 2(2), 59-64.
[http://dx.doi.org/10.1007/s13659-012-0006-3]
[136]
Aljancić, I.S.; Pesić, M.; Milosavljević, S.M.; Todorović, N.M.; Jadranin, M.; Milosavljević, G.; Povrenović, D.; Banković, J.; Tanić, N.; Marković, I.D.; Ruzdijić, S.; Vajs, V.E.; Tesević, V.V. Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides. J. Nat. Prod., 2011, 74(7), 1613-1620.
[http://dx.doi.org/10.1021/np200241c] [PMID: 21707046]
[137]
Pesic, M.; Bankovic, J.; Aljancic, I.S.; Todorovic, N.M.; Jadranin, M.; Vajs, V.E.; Tesevic, V.V.; Vuckovic, I.; Momcilovic, M.; Markovic, I.D.; Tanic, N.; Ruzdijic, S. 2011.
[138]
Sun, W.; Lv, C.; Zhu, T.; Yang, X.; Wei, S.; Sun, J.; Hong, K.; Zhu, W.; Huang, C. Ophiobolin-O reverses adriamycin resistance via cell cycle arrest and apoptosis sensitization in adriamycin-resistant human breast carcinoma (MCF-7/ADR) cells. Mar. Drugs, 2013, 11(11), 4570-4584.
[http://dx.doi.org/10.3390/md11114570] [PMID: 24240979]
[139]
Yang, T.; Lu, Z.; Meng, L.; Wei, S.; Hong, K.; Zhu, W.; Huang, C. The novel agent ophiobolin O induces apoptosis and cell cycle arrest of MCF-7 cells through activation of MAPK signaling pathways. Bioorg. Med. Chem. Lett., 2012, 22(1), 579-585.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.079] [PMID: 22130129]
[140]
Lv, C.; Qin, W.; Zhu, T.; Wei, S.; Hong, K.; Zhu, W.; Chen, R.; Huang, C. Ophiobolin O isolated from Aspergillus ustus induces G1 arrest of MCF-7 cells through interaction with AKT/GSK3β/cyclin D1 signaling. Mar. Drugs, 2015, 13(1), 431-443.
[http://dx.doi.org/10.3390/md13010431] [PMID: 25603341]
[141]
Li, Y.; Fan, L.; Sun, Y.; Miao, X.; Zhang, F.; Meng, J.; Han, J.; Zhang, D.; Zhang, R.; Yue, Z.; Mei, Q. Paris saponin VII from trillium tschonoskii reverses multidrug resistance of adriamycin-resistant MCF-7/ADR cells via P-glycoprotein inhibition and apoptosis augmentation. J. Ethnopharmacol., 2014, 154(3), 728-734.
[http://dx.doi.org/10.1016/j.jep.2014.04.049] [PMID: 24818584]
[142]
Kim, S.W.; Kwon, H.Y.; Chi, D.W.; Shim, J.H.; Park, J.D.; Lee, Y.H.; Pyo, S.; Rhee, D.K. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3). Biochem. Pharmacol., 2003, 65(1), 75-82.
[http://dx.doi.org/10.1016/S0006-2952(02)01446-6] [PMID: 12473381]
[143]
Kim, S.M.; Lee, S.Y.; Yuk, D.Y.; Moon, D.C.; Choi, S.S.; Kim, Y.; Han, S.B.; Oh, K.W.; Hong, J.T. Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch. Pharm. Res., 2009, 32(5), 755-765.
[http://dx.doi.org/10.1007/s12272-009-1515-4] [PMID: 19471891]
[144]
Junmin, S.; Hongxiang, L.; Zhen, L.; Chao, Y.; Chaojie, W. 2015.
[145]
Xu, T.; Jin, Z.; Yuan, Y.; Wei, H.; Xu, X.; He, S.; Chen, S.; Hou, W.; Guo, Q.; Hua, B. 2016.
[146]
Kim, D.G.; Jung, K.H.; Lee, D.G.; Yoon, J.H.; Choi, K.S.; Kwon, S.W.; Shen, H.M.; Morgan, M.J.; Hong, S.S.; Kim, Y.S. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin. Oncotarget, 2014, 5(12), 4438-4451.
[http://dx.doi.org/10.18632/oncotarget.2034] [PMID: 24970805]
[147]
Nguyen, V.T.; Darbour, N.; Bayet, C.; Doreau, A.; Raad, I.; Phung, B.H.; Dumontet, C.; Di Pietro, A.; Dijoux-Franca, M.G.; Guilet, D. Selective modulation of P-glycoprotein activity by steroidal saponines from Paris polyphylla. Fitoterapia, 2009, 80(1), 39-42.
[http://dx.doi.org/10.1016/j.fitote.2008.09.010] [PMID: 18940238]
[148]
Chen, C.R.; Zhang, J.; Wu, K.W.; Liu, P.Y.; Wang, S.J.; Chen, D.Y.; Ji, Z.N. Gracillin induces apoptosis in HL60 human leukemic cell line via oxidative stress and cell cycle arrest of G1. Pharmazie, 2015, 70(3), 199-204.
[PMID: 25980181]
[149]
Wu, L.; Li, Q.; Liu, Y. Polyphyllin D induces apoptosis in K562/A02 cells through G2/M phase arrest. J. Pharm. Pharmacol., 2014, 66(5), 713-721.
[http://dx.doi.org/10.1111/jphp.12188] [PMID: 24325805]
[150]
Yu, Q.; Li, Q.; Lu, P.; Chen, Q. Polyphyllin D induces apoptosis in U87 human glioma cells through the c-Jun NH2-terminal kinase pathway. J. Med. Food, 2014, 17(9), 1036-1042.
[http://dx.doi.org/10.1089/jmf.2013.2957] [PMID: 25045920]
[151]
Lei, Y.; Tan, J.; Wink, M.; Ma, Y.; Li, N.; Su, G. An isoquinoline alkaloid from the Chinese herbal plant Corydalis yanhusuo W.T. Wang inhibits P-glycoprotein and multidrug resistance-associate protein 1. Food Chem., 2013, 136(3-4), 1117-1121.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.059] [PMID: 23194502]
[152]
Kang, H.; Jang, S.W.; Pak, J.H.; Shim, S. Glaucine inhibits breast cancer cell migration and invasion by inhibiting MMP-9 gene expression through the suppression of NF-κB activation. Mol. Cell. Biochem., 2015, 403(1-2), 85-94.
[http://dx.doi.org/10.1007/s11010-015-2339-9] [PMID: 25670016]
[153]
Shiraishi, N.; Akiyama, S.; Nakagawa, M.; Kobayashi, M.; Kuwano, M. Effect of bisbenzylisoquinoline (biscoclaurine) alkaloids on multidrug resistance in KB human cancer cells. Cancer Res., 1987, 47(9), 2413-2416.
[PMID: 3567927]
[154]
Kato, T.; Suzumura, Y. Potentiation of antitumor activity of vincristine by the biscoclaurine alkaloid cepharanthine. J. Natl. Cancer Inst., 1987, 79(3), 527-532.
[PMID: 3476792]
[155]
Nagaoka, S.; Kawasaki, S.; Karino, Y.; Sasaki, K.; Nakanishi, T. Modification of cellular efflux and cytotoxicity of adriamycin by biscoclaulin alkaloid in vitro. Eur. J. Cancer Clin. Oncol., 1987, 23(9), 1297-1302.
[http://dx.doi.org/10.1016/0277-5379(87)90111-8] [PMID: 3678324]
[156]
Ikeda, R.; Che, X.F.; Yamaguchi, T.; Ushiyama, M.; Zheng, C.L.; Okumura, H.; Takeda, Y.; Shibayama, Y.; Nakamura, K.; Jeung, H.C.; Furukawa, T.; Sumizawa, T.; Haraguchi, M.; Akiyama, S.; Yamada, K. Cepharanthine potently enhances the sensitivity of anticancer agents in K562 cells. Cancer Sci., 2005, 96(6), 372-376.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00057.x] [PMID: 15958061]
[157]
Huang, C.Z.; Wang, Y.F.; Zhang, Y.; Peng, Y.M.; Liu, Y.X.; Ma, F.; Jiang, J.H.; Wang, Q.D. Cepharanthine hydrochloride reverses Pglycoprotein-mediated multidrug resistance in human ovarian carcinoma A2780/Taxol cells by inhibiting the PI3K/Akt signaling pathway. Oncol. Rep., 2017, 38(4), 2558-2564.
[http://dx.doi.org/10.3892/or.2017.5879] [PMID: 28791369]
[158]
Hua, P.; Sun, M.; Zhang, G.; Zhang, Y.; Tian, X.; Li, X.; Cui, R.; Zhang, X. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem. Biophys. Res. Commun., 2015, 460(2), 136-142.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.131] [PMID: 25747710]
[159]
Chen, Z.; Huang, C.; Yang, Y.L.; Ding, Y.; Ou-Yang, H.Q.; Zhang, Y.Y.; Xu, M. Inhibition of the STAT3 signaling pathway is involved in the antitumor activity of cepharanthine in SaOS2 cells. Acta Pharmacol. Sin., 2012, 33(1), 101-108.
[http://dx.doi.org/10.1038/aps.2011.164] [PMID: 22212432]
[160]
Haginaka, J.; Kitabatake, T.; Hirose, I.; Matsunaga, H.; Moaddel, R. Interaction of cepharanthine with immobilized heat shock protein 90α (Hsp90α) and screening of Hsp90α inhibitors. Anal. Biochem., 2013, 434(1), 202-206.
[http://dx.doi.org/10.1016/j.ab.2012.11.010] [PMID: 23219559]
[161]
Choi, S.U.; Park, S.H.; Kim, K.H.; Choi, E.J.; Kim, S.; Park, W.K.; Zhang, Y.H.; Kim, H.S.; Jung, N.P.; Lee, C.O. The bisbenzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein. Anticancer Drugs, 1998, 9(3), 255-261.
[http://dx.doi.org/10.1097/00001813-199803000-00008] [PMID: 9625436]
[162]
Sun, Y.F.; Wink, M. 2014.
[163]
Cho, H.S.; Chang, S.H.; Chung, Y.S.; Shin, J.Y.; Park, S.J.; Lee, E.S.; Hwang, S.K.; Kwon, J.T.; Tehrani, A.M.; Woo, M.; Noh, M.S.; Hanifah, H.; Jin, H.; Xu, C.X.; Cho, M.H. Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J. Vet. Sci., 2009, 10(1), 23-28.
[http://dx.doi.org/10.4142/jvs.2009.10.1.23] [PMID: 19255520]
[164]
Tian, F.; Ding, D.; Li, D. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells. Int. J. Oncol., 2015, 46(6), 2355-2363.
[http://dx.doi.org/10.3892/ijo.2015.2959] [PMID: 25872479]
[165]
Xing, Z.B.; Yao, L.; Zhang, G.Q.; Zhang, X.Y.; Zhang, Y.X.; Pang, D. Fangchinoline inhibits breast adenocarcinoma proliferation by inducing apoptosis. Chem. Pharm. Bull. (Tokyo), 2011, 59(12), 1476-1480.
[http://dx.doi.org/10.1248/cpb.59.1476] [PMID: 22130369]
[166]
Guo, B.; Su, J.; Zhang, T.; Wang, K.; Li, X. Fangchinoline as a kinase inhibitor targets FAK and suppresses FAK-mediated signaling pathway in A549. J. Drug Target., 2015, 23(3), 266-274.
[http://dx.doi.org/10.3109/1061186X.2014.992898] [PMID: 25539072]
[167]
Arora, A.; Seth, K.; Kalra, N.; Shukla, Y. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol. Toxicol. Appl. Pharmacol., 2005, 202(3), 237-243.
[http://dx.doi.org/10.1016/j.taap.2004.06.017] [PMID: 15667829]
[168]
Chinni, S.R.; Li, Y.; Upadhyay, S.; Koppolu, P.K.; Sarkar, F.H. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene, 2001, 20(23), 2927-2936.
[http://dx.doi.org/10.1038/sj.onc.1204365] [PMID: 11420705]
[169]
Wang, X.; Deng, R.; Lu, Y.; Xu, Q.; Yan, M.; Ye, D.; Chen, W. Gambogic acid as a non-competitive inhibitor of ATP-binding cassette transporter B1 reverses the multidrug resistance of human epithelial cancers by promoting ATP-binding cassette transporter B1 protein degradation. Basic Clin. Pharmacol. Toxicol., 2013, 112(1), 25-33.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00921.x] [PMID: 22759348]
[170]
Davenport, J.; Manjarrez, J.R.; Peterson, L.; Krumm, B.; Blagg, B.S.; Matts, R.L. Gambogic acid, a natural product inhibitor of Hsp90. J. Nat. Prod., 2011, 74(5), 1085-1092.
[http://dx.doi.org/10.1021/np200029q] [PMID: 21486005]
[171]
Gu, H.; Rao, S.; Zhao, J.; Wang, J.; Mu, R.; Rong, J.; Tao, L.; Qi, Q.; You, Q.; Guo, Q. Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells. J. Cancer Res. Clin. Oncol., 2009, 135(12), 1777-1782.
[http://dx.doi.org/10.1007/s00432-009-0624-2] [PMID: 19582475]
[172]
Zhu, H.J.; Wang, J.S.; Markowitz, J.S.; Donovan, J.L.; Gibson, B.B.; Gefroh, H.A.; Devane, C.L. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J. Pharmacol. Exp. Ther., 2006, 317(2), 850-857.
[http://dx.doi.org/10.1124/jpet.105.098541] [PMID: 16439618]
[173]
Feinshtein, V.; Erez, O.; Ben-Zvi, Z.; Erez, N.; Eshkoli, T.; Sheizaf, B.; Sheiner, E.; Huleihel, M.; Holcberg, G. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines., 2013.
[174]
Shrivastava, A.; Kuzontkoski, P.M.; Groopman, J.E.; Prasad, A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther., 2011, 10(7), 1161-1172.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1100] [PMID: 21566064]
[175]
Dačević, M.; Isaković, A.; Podolski-Renić, A.; Isaković, A.M.; Stanković, T.; Milošević, Z.; Rakić, L.; Ruždijić, S.; Pešić, M. Purine nucleoside analog--sulfinosine modulates diverse mechanisms of cancer progression in multi-drug resistant cancer cell lines. PLoS One, 2013, 8(1)e54044
[http://dx.doi.org/10.1371/journal.pone.0054044] [PMID: 23326571]
[176]
Pesić, M.; Podolski, A.; Rakić, L.; Ruzdijić, S. Purine analogs sensitize the multidrug resistant cell line (NCI-H460/R) to doxorubicin and stimulate the cell growth inhibitory effect of verapamil. Invest. New Drugs, 2010, 28(4), 482-492.
[http://dx.doi.org/10.1007/s10637-009-9277-x] [PMID: 19533022]
[177]
Pesić, M.; Andjelković, T.; Banković, J.; Marković, I.D.; Rakić, L.; Ruzdijić, S. Sulfinosine enhances doxorubicin efficacy through synergism and by reversing multidrug resistance in the human non-small cell lung carcinoma cell line (NCI-H460/R). Invest. New Drugs, 2009, 27(2), 99-110.
[http://dx.doi.org/10.1007/s10637-008-9140-5] [PMID: 18493718]
[178]
Banković, J.; Andrä, J.; Todorović, N.; Podolski-Renić, A.; Milošević, Z.; Miljković, D.; Krause, J.; Ruždijić, S.; Tanić, N.; Pešić, M. The elimination of P-glycoprotein over-expressing cancer cells by antimicrobial cationic peptide NK-2: the unique way of multi-drug resistance modulation. Exp. Cell Res., 2013, 319(7), 1013-1027.
[http://dx.doi.org/10.1016/j.yexcr.2012.12.017] [PMID: 23298945]
[179]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[180]
Cheung, C.H.; Wu, S.Y.; Lee, T.R.; Chang, C.Y.; Wu, J.S.; Hsieh, H.P.; Chang, J.Y. Cancer cells acquire mitotic drug resistance properties through beta I-tubulin mutations and alterations in the expression of beta-tubulin isotypes. PLoS One, 2010, 5(9)e12564
[http://dx.doi.org/10.1371/journal.pone.0012564] [PMID: 20838440]
[181]
Kavallaris, M.; Verrills, N.M.; Hill, B.T. 2001.
[182]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[183]
Podolski-Renic, A.; Andelkovic, T.; Bankovic, J.; Tanic, N.; Ruzdijic, S.; Pesic, M. The role of paclitaxel in the development and treatment of multidrug resistant cancer cell lines. Biomed. Pharmacother., 2011, 65(5), 345-353.
[http://dx.doi.org/ 10.1016/j.biopha.2011.04.015] [PMID: 21775090]
[184]
Parker, A.L.; Teo, W.S.; McCarroll, J.A.; Kavallaris, M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int. J. Mol. Sci., 2017, 18(7), 1434.
[http://dx.doi.org/10.3390/ijms18071434] [PMID: 28677634]
[185]
Zhang, Q.; Zhai, S.; Li, L.; Li, X.; Zhou, H.; Liu, A.; Su, G.; Mu, Q.; Du, Y.; Yan, B. Anti-tumor selectivity of a novel tubulin and HSP90 dual-targeting inhibitor in non-small cell lung cancer models. Biochem. Pharmacol., 2013, 86(3), 351-360.
[http://dx.doi.org/10.1016/j.bcp.2013.05.019] [PMID: 23743233]
[186]
Jackson, S.E. Hsp90: structure and function. Top. Curr. Chem., 2013, 328, 155-240.
[http://dx.doi.org/10.1007/128_2012_356] [PMID: 22955504]
[187]
Zhang, Q.; Zhai, S.; Li, L.; Li, X.; Jiang, C.; Zhang, C.; Yan, B. P-glycoprotein-evading anti-tumor activity of a novel tubulin and HSP90 dual inhibitor in a non-small-cell lung cancer model. J. Pharmacol. Sci., 2014, 126(1), 66-76.
[http://dx.doi.org/10.1254/jphs.14050FP] [PMID: 25185500]
[188]
Zhang, L.H.; Wu, L.; Raymon, H.K.; Chen, R.S.; Corral, L.; Shirley, M.A.; Narla, R.K.; Gamez, J.; Muller, G.W.; Stirling, D.I.; Bartlett, J.B.; Schafer, P.H.; Payvandi, F. The synthetic compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-alpha production with antitumor activity. Cancer Res., 2006, 66(2), 951-959.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2083] [PMID: 16424030]
[189]
Hideshima, T.; Chauhan, D.; Podar, K.; Schlossman, R.L.; Richardson, P.; Anderson, K.C. Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin. Oncol., 2001, 28(6), 607-612.
[http://dx.doi.org/10.1016/S0093-7754(01)90033-8] [PMID: 11740818]
[190]
Montserrat, E. Chronic lymphoproliferative disorders. Curr. Opin. Oncol., 1997, 9(1), 34-41.
[http://dx.doi.org/10.1097/00001622-199701000-00006] [PMID: 9090492]
[191]
Jin, S.L.; Conti, M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7628-7633.
[http://dx.doi.org/10.1073/pnas.122041599] [PMID: 12032334]
[192]
Sakamoto, M.; Takamura, M.; Ino, Y.; Miura, A.; Genda, T.; Hirohashi, S. Involvement of c-Src in carcinoma cell motility and metastasis. Jpn. J. Cancer Res., 2001, 92(9), 941-946.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb01184.x] [PMID: 11572761]
[193]
Schlessinger, J. New roles for Src kinases in control of cell survival and angiogenesis. Cell, 2000, 100(3), 293-296.
[http://dx.doi.org/10.1016/S0092-8674(00)80664-9] [PMID: 10676810]
[194]
Anbalagan, M.; Carrier, L.; Glodowski, S.; Hangauer, D.; Shan, B.; Rowan, B.G. KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor α positive breast cancer. Breast Cancer Res. Treat., 2012, 132(2), 391-409.
[http://dx.doi.org/10.1007/s10549-011-1513-3] [PMID: 21509526]
[195]
Fallah-Tafti, A.; Foroumadi, A.; Tiwari, R.; Shirazi, A.N.; Hangauer, D.G.; Bu, Y.; Akbarzadeh, T.; Parang, K.; Shafiee, A. Thiazolyl N-benzyl-substituted acetamide derivatives: synthesis, Src kinase inhibitory and anticancer activities. Eur. J. Med. Chem., 2011, 46(10), 4853-4858.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.050] [PMID: 21852023]
[198]
Anbalagan, M.; Ali, A.; Jones, R.K.; Marsden, C.G.; Sheng, M.; Carrier, L.; Bu, Y.; Hangauer, D.; Rowan, B.G. Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts. Mol. Cancer Ther., 2012, 11(9), 1936-1947.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0146] [PMID: 22784709]
[199]
Palma, G.; Frasci, G.; Chirico, A.; Esposito, E.; Siani, C.; Saturnino, C.; Arra, C.; Ciliberto, G.; Giordano, A.; D’Aiuto, M. Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget, 2015, 6(29), 26560-26574.
[http://dx.doi.org/10.18632/oncotarget.5306] [PMID: 26387133]
[200]
Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95.
[http://dx.doi.org/10.1021/cb300648v] [PMID: 23259582]
[201]
Nelson, W.G.; Liu, L.F.; Coffey, D.S. Newly replicated DNA is associated with DNA topoisomerase II in cultured rat prostatic adenocarcinoma cells. Nature, 1986, 322(6075), 187-189.
[http://dx.doi.org/10.1038/322187a0] [PMID: 3014353]
[202]
Gasser, S.M.; Laroche, T.; Falquet, J.; Boy de la Tour, E.; Laemmli, U.K. Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol., 1986, 188(4), 613-629.
[http://dx.doi.org/10.1016/S0022-2836(86)80010-9] [PMID: 3016287]
[203]
Zhang, H.; Wang, J.C.; Liu, L.F. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes. Proc. Natl. Acad. Sci. USA, 1988, 85(4), 1060-1064.
[http://dx.doi.org/10.1073/pnas.85.4.1060] [PMID: 2829214]
[204]
Alagoz, M.; Gilbert, D.C.; El-Khamisy, S.; Chalmers, A.J. DNA repair and resistance to topoisomerase I inhibitors: mechanisms, biomarkers and therapeutic targets. Curr. Med. Chem., 2012, 19(23), 3874-3885.
[http://dx.doi.org/10.2174/092986712802002590] [PMID: 22788763]
[205]
Hamelin, C.; Cousineau, L.; Dion, M.; Yelle, J. Increased DNA topoisomerase I activity in aging human cell chromatin. Biosci. Rep., 1984, 4(10), 861-868.
[http://dx.doi.org/10.1007/BF01138168] [PMID: 6097322]
[206]
Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer, 2009, 9(5), 327-337.
[http://dx.doi.org/10.1038/nrc2608] [PMID: 19377505]
[207]
Liu, L.F.; Rowe, T.C.; Yang, L.; Tewey, K.M.; Chen, G.L. Cleavage of DNA by mammalian DNA topoisomerase II. J. Biol. Chem., 1983, 258(24), 15365-15370.
[PMID: 6317692]
[208]
Lin, C.P.; Ban, Y.; Lyu, Y.L.; Liu, L.F. Proteasome-dependent processing of topoisomerase I-DNA adducts into DNA double strand breaks at arrested replication forks. J. Biol. Chem., 2009, 284(41), 28084-28092.
[http://dx.doi.org/10.1074/jbc.M109.030601] [PMID: 19666469]
[209]
Pizzolato, J.F.; Saltz, L.B. The camptothecins. Lancet, 2003, 361(9376), 2235-2242.
[http://dx.doi.org/10.1016/S0140-6736(03)13780-4] [PMID: 12842380]
[210]
Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[211]
Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev., 2012, 112(7), 3611-3640.
[http://dx.doi.org/10.1021/cr200325f] [PMID: 22397403]
[212]
Filosa, R.; Peduto, A.; Micco, S.D.; Caprariis, Pd.; Festa, M.; Petrella, A.; Capranico, G.; Bifulco, G. Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors. Bioorg. Med. Chem., 2009, 17(1), 13-24.
[http://dx.doi.org/10.1016/j.bmc.2008.11.024] [PMID: 19058969]
[213]
Pilati, P.; Nitti, D.; Mocellin, S. Cancer resistance to type II topoisomerase inhibitors. Curr. Med. Chem., 2012, 19(23), 3900-3906.
[http://dx.doi.org/10.2174/092986712802002473] [PMID: 22788766]
[214]
Pesic, M.; Markovic, J.Z.; Jankovic, D.; Kanazir, S.; Markovic, I.D.; Rakic, L.; Ruzdijic, S. Induced resistance in the human non small cell lung carcinoma (NCI-H460) cell line in vitro by anticancer drugs. J. Chemother., 2006, 18(1), 66-73.
[http://dx.doi.org/10.1179/joc.2006.18.1.66] [PMID: 16572896]
[215]
Eder, J.P.; Chan, V.; Wong, J.; Wong, Y.W.; Ara, G.; Northey, D.; Rizvi, N.; Teicher, B.A. Sequence effect of irinotecan (CPT-11) and topoisomerase II inhibitors in vivo. Cancer Chemother. Pharmacol., 1998, 42(4), 327-335.
[http://dx.doi.org/10.1007/s002800050825] [PMID: 9744779]
[216]
Crump, M.; Lipton, J.; Hedley, D.; Sutton, D.; Shepherd, F.; Minden, M.; Stewart, K.; Beare, S.; Eisenhauer, E. Phase I trial of sequential topotecan followed by etoposide in adults with myeloid leukemia: A national cancer institute of canada clinical trials group study. Leukemia, 1999, 13(3), 343-347.
[http://dx.doi.org/10.1038/sj.leu.2401308] [PMID: 10086724]
[217]
Perrin, D.; van Hille, B.; Barret, J.M.; Kruczynski, A.; Etiévant, C.; Imbert, T.; Hill, B.T.F. 11782, a novel epipodophylloid non-intercalating dual catalytic inhibitor of topoisomerases I and II with an original mechanism of action. Biochem. Pharmacol., 2000, 59(7), 807-819.
[http://dx.doi.org/10.1016/S0006-2952(99)00382-2] [PMID: 10718339]
[218]
Kruczynski, A.; Etiévant, C.; Perrin, D.; Imbert, T.; Colpaert, F.; Hill, B.T. Preclinical antitumour activity of F 11782, a novel dual catalytic inhibitor of topoisomerases. Br. J. Cancer, 2000, 83(11), 1516-1524.
[http://dx.doi.org/10.1054/bjoc.2000.1428] [PMID: 11076662]
[219]
Kruczynski, A.; Ricome, C.; Waud, W.R.; Hill, B.T. In vivo antitumor activity of F 11782, a non-intercalating dual catalytic inhibitor of topoisomerases I and II, against a panel of human tumor xenografts. J. Exp. Ther. Oncol., 2002, 2(4), 219-227.
[http://dx.doi.org/10.1046/j.1359-4117.2002.01037.x] [PMID: 12416026]
[220]
Barret, J-M.; Cadou, M.; Hill, B.T. Inhibition of nucleotide excision repair and sensitisation of cells to DNA cross-linking anticancer drugs by F 11782, a novel fluorinated epipodophylloid. Biochem. Pharmacol., 2002, 63(2), 251-258.
[http://dx.doi.org/10.1016/S0006-2952(01)00835-8] [PMID: 11841800]
[221]
Kluza, J.; Mazinghien, R.; Irwin, H.; Hartley, J.A.; Bailly, C. Relationships between DNA strand breakage and apoptotic progression upon treatment of HL-60 leukemia cells with tafluposide or etoposide. Anticancer Drugs, 2006, 17(2), 155-164.
[http://dx.doi.org/10.1097/00001813-200602000-00006] [PMID: 16428933]
[222]
Martínez-Viturro, M.C.; Domínguez, D. Synthesis of the Antitumoral Agent Batracylin and Related Isoindolo[1,2-b]quinazolin-12(10H)-ones. Tetrahedron Lett., 2007, 48(6), 1023-1026.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.168]
[223]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[224]
Rao, V.A.; Agama, K.; Holbeck, S.; Pommier, Y. Batracylin (NSC 320846), a dual inhibitor of DNA topoisomerases I and II induces histone gamma-H2AX as a biomarker of DNA damage. Cancer Res., 2007, 67(20), 9971-9979.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0804] [PMID: 17942930]
[225]
Pourquier, P. Pommier, Y. Adv. Cancer Res., 2001, 80, 189-216.
[226]
Mistry, P.; Stewart, A.J.; Dangerfield, W.; Baker, M.; Liddle, C.; Bootle, D.; Kofler, B.; Laurie, D.; Denny, W.A.; Baguley, B.; Charlton, P.A. In vitro and in vivo characterization of XR11576, a novel, orally active, dual inhibitor of topoisomerase I and II. Anticancer Drugs, 2002, 13(1), 15-28.
[http://dx.doi.org/10.1097/00001813-200201000-00002] [PMID: 11914637]
[227]
Jobson, A.G.; Willmore, E.; Tilby, M.J.; Mistry, P.; Charlton, P.; Austin, C.A. Effect of phenazine compounds XR11576 and XR5944 on DNA topoisomerases. Cancer Chemother. Pharmacol., 2009, 63(5), 889-901.
[http://dx.doi.org/10.1007/s00280-008-0812-9] [PMID: 18679685]
[228]
Di Nicolantonio, F.P.A.; Mills, L.; Knight, L.A.; Charlton, P.A.; Cree, I.A. The effect of MDR1 on the ex vivo activity of XR5944 (MLN944) and XR11576 (MLN576), two novel DNA targeting agents. Eur. J. Cancer, 2002, 38(7), S32.
[http://dx.doi.org/ 10.1016/S0959-8049(02)80739-0]
[229]
Yi, J-M.; Zhang, X-F.; Huan, X-J.; Song, S-S.; Wang, W.; Tian, Q-T.; Sun, Y-M.; Chen, Y.; Ding, J.; Wang, Y-Q.; Yang, C-H.; Miao, Z-H. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Oncotarget, 2015, 6(11), 8960-8973.
[http://dx.doi.org/10.18632/oncotarget.3264] [PMID: 25840421]
[230]
Cervinka, M.; Cerman, J.; Rudolf, E. Apoptosis in Hep2 cells treated with etoposide and colchicine. Cancer Detect. Prev., 2004, 28(3), 214-226.
[http://dx.doi.org/10.1016/j.cdp.2004.03.002] [PMID: 15225902]
[231]
Podolski-Renic, A.; Bankovic, J.; Dinic, J.; Rios-Luci, C.; Fernandes, M.X.; Ortega, N.; Kovacevic-Grujicic, N.; Martin, V.S.; Padron, J.M.; Pesic, M. DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells. Eur. J. Pharm. Sci., 2017, 105, 159-168.
[http://dx.doi.org/ 10.1016/j.ejps.2017.05.011] [PMID: 28502672]
[232]
Silveira-Dorta, G.; Sousa, I.J.; Ríos-Luci, C.; Martín, V.S.; Fernandes, M.X.; Padrón, J.M. Molecular docking studies of the interaction between propargylic enol ethers and human DNA topoisomerase IIα. Bioorg. Med. Chem. Lett., 2013, 23(19), 5382-5384.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.055] [PMID: 23953196]
[233]
Chang, J.Y.; Hsieh, H.P.; Pan, W.Y.; Liou, J.P.; Bey, S.J.; Chen, L.T.; Liu, J.F.; Song, J.S. Dual inhibition of topoisomerase I and tubulin polymerization by BPR0Y007, a novel cytotoxic agent. Biochem. Pharmacol., 2003, 65(12), 2009-2019.
[http://dx.doi.org/10.1016/S0006-2952(03)00197-7] [PMID: 12787881]
[234]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[235]
Musso, L.; Dallavalle, S.; Zunino, F. Perspectives in the development of hybrid bifunctional antitumour agents. Biochem. Pharmacol., 2015, 96(4), 297-305.
[http://dx.doi.org/10.1016/j.bcp.2015.06.006] [PMID: 26074269]
[236]
Gu, X.; Ren, Z.; Tang, X.; Peng, H.; Ma, Y.; Lai, Y.; Peng, S.; Zhang, Y. Synthesis and biological evaluation of bifendate-chalcone hybrids as a new class of potential P-glycoprotein inhibitors. Bioorg. Med. Chem., 2012, 20(8), 2540-2548.
[http://dx.doi.org/10.1016/j.bmc.2012.02.050] [PMID: 22429509]
[237]
Palmeira, A.; Vasconcelos, M.H.; Paiva, A.; Fernandes, M.X.; Pinto, M.; Sousa, E. Dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones. Biochem. Pharmacol., 2012, 83(1), 57-68.
[http://dx.doi.org/10.1016/j.bcp.2011.10.004] [PMID: 22044878]
[238]
Zhang, W.; Guo, J.; Li, S.; Ma, T.; Xu, D.; Han, C.; Liu, F.; Yu, W.; Kong, L. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci. Rep., 2017, 7, 46352.
[http://dx.doi.org/10.1038/srep46352] [PMID: 28397855]
[239]
Xu, S.; Pei, L.; Wang, C.; Zhang, Y.K.; Li, D.; Yao, H.; Wu, X.; Chen, Z.S.; Sun, Y.; Xu, J. Novel hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer drug candidates. ACS Med. Chem. Lett., 2014, 5(7), 797-802.
[http://dx.doi.org/10.1021/ml500141f] [PMID: 25050168]
[240]
Singh, P.; Paul, K. Studies of interactions between uracil-based hybrid molecules and P-glycoprotein--search for multidrug resistance modulators. Bioorg. Med. Chem., 2006, 14(21), 7183-7186.
[http://dx.doi.org/10.1016/j.bmc.2006.06.060] [PMID: 16843673]
[241]
Huang, X.; Huang, R.; Gou, S.; Wang, Z.; Liao, Z.; Wang, H. Platinum(IV) complexes conjugated with phenstatin analogue as inhibitors of microtubule polymerization and reverser of multidrug resistance. Bioorg. Med. Chem., 2017, 25(17), 4686-4700.
[http://dx.doi.org/10.1016/j.bmc.2017.07.011] [PMID: 28728896]
[242]
Novohradsky, V.; Zerzankova, L.; Stepankova, J.; Vrana, O.; Raveendran, R.; Gibson, D.; Kasparkova, J.; Brabec, V. Antitumor platinum(IV) derivatives of oxaliplatin with axial valproato ligands. J. Inorg. Biochem., 2014, 140, 72-79.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.07.004] [PMID: 25063910]
[243]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[244]
Cincinelli, R.; Musso, L.; Dallavalle, S.; Artali, R.; Tinelli, S.; Colangelo, D.; Zunino, F.; De Cesare, M.; Beretta, G.L.; Zaffaroni, N. Design, modeling, synthesis and biological activity evaluation of camptothecin-linked platinum anticancer agents. Eur. J. Med. Chem., 2013, 63, 387-400.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.022] [PMID: 23517728]
[245]
Cincinelli, R.; Musso, L.; Artali, R.; Guglielmi, M.; Bianchino, E.; Cardile, F.; Colelli, F.; Pisano, C.; Dallavalle, S. Camptothecin-psammaplin A hybrids as topoisomerase I and HDAC dual-action inhibitors. Eur. J. Med. Chem., 2018, 143, 2005-2014.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.021] [PMID: 29150335]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy