[1]
Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment - A review. Chemosphere, 2015, 138, 281-291.
[2]
Magureanu, M.; Mandache, N.B.; Parvulescu, V.I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res., 2015, 81, 124-136.
[3]
Patneedi, C.B.; Durga, P.; Chanti, B.R. Impact of pharmaceutical wastes on human life and environment. J. Chem., 2015, 8(1), 67-70.
[4]
Taylor, D.; Senac, T. Human pharmaceutical products in the environment - The “problem” in perspective. Chemosphere, 2014, 115, 95-99.
[5]
Adachi, F.; Yamamoto, A.; Takakura, K-I.; Kawahara, R. Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Sci. Total Environ., 2013, 444, 508-514.
[6]
Lu, Z.; Na, G.; Gao, H.; Wang, L.; Bao, C.; Yao, Z. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Sci. Total Environ., 2015, 527-528, 429-438.
[7]
Wang, J.; Mao, D.; Mu, Q.; Luo, Y. The fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants. Sci. Total Environ., 2015, 526, 366-373.
[8]
Batt, A.L.; Bruce, I.B.; Aga, D.S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ. Pollut., 2006, 142, 295-302.
[9]
Brown, K.D.; Kulis, J.; Thomson, B.; Chapman, T.H.; Mawhinney, D.B. Occurrence of antibiotics in the hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ., 2006, 366, 772-783.
[10]
Mompelat, S.; Le Bot, B.; Thomas, O. Occurrence, and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int., 2009, 35, 803-814.
[11]
Speltini, A.; Sturini, M.; Maraschi, F.; Viti, S.; Sbarbada, D.; Profumo, A. Fluoroquinolone residues in compost by green enhanced microwave-assisted extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2015, 1410, 44-50.
[12]
Picó, Y.; Andreu, V. Fluoroquinolones in soil-risks and challenges. Anal. Bioanal. Chem., 2007, 387, 1287-1299.
[13]
Van Doorslaer, X.; Dewulf, J.; Van Langenhove, H.; Demeestere, K. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Sci. Total Environ., 2014, 500-501, 250-269.
[14]
Andreozzi, R.; Raffaele, M.; Nicklas, P. Pharmaceuticals in STP effluents and their solar photodegradation in the aquatic environment. Chemosphere, 2003, 50(10), 1319-1330.
[15]
Rosendahl, I.; Siemens, J.; Kindler, R.; Groeneweg, J.; Zimmermann, J.; Czerwinski, S.; Lamshöft, M.; Laabs, V.; Wilke, B-M.; Vereecken, H.; Amelung, W. Persistence of the fluoroquinolone antibiotic difloxacin in soil and lacking effects on nitrogen turnover. J. Environ. Qual., 2012, 41, 1275-1283.
[16]
Calisto, V.; Esteves, V.I. Psychiatric pharmaceuticals in the environment. Chemosphere, 2009, 77, 1257-1274.
[17]
Le-Minh, N.; Khan, S.J.; Drewes, J.E.; Stuetz, R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res., 2010, 44(15), 4295-4323.
[18]
Barros, W.R.P.; Borges, M.P.; Steter, J.R.; Forti, J.C.; Rocha, R.S.; Lanza, M.R.V. Degradation of dipyrone by electrogenerated H2O2 Combined with Fe2+ using a modified gas diffusion electrode. J. Electrochem. Soc., 2014, 161(14), H867-H873.
[19]
Eleotério, I.C.; Forti, J.C.; Andrade, A.R. Electrochemical treatment of wastewater of veterinary industry containing antibiotics. Electrocatalysis, 2013, 4, 283-289.
[20]
Fornazaria, A.L. de T. Aquino Neto, S.; Andrade, A.R.; Miwa, D.W.; Motheo A.J.; Malpassa, G.R.P. Materiais de composição Ti/PbxTi1-XO2 para degradação eletroquímica foto-assistida de poluentes orgânicos. Quim. Nova, 2016, 39(5), 535-541.
[21]
Hu, Y.; Nagai, Y.; Rahmawaty, D. Characteristics of the photocatalytic oxidation of methane into methanol on V-Containing MCM-41 Catalysts. Catal. Lett., 2008, 124, 80-84.
[22]
Wang, C.B.; Herman, R.G.; Shi, C.; Roberts, J.E.V. 2O5-SiO2 xerogels for methane oxidation to oxygenates: preparation, characterization, and catalytic properties. Appl. Catal. A., 2003, 247(2), 321-333.
[23]
Zhang, Q.; He, D.; Han, Z.; Zhang, X.; Zhu, Q. Controlled partial oxidation of methane to methanol/formaldehyde over Mo-V-Cr-Bi-Si oxide catalysts. Fuel, 2002, 81, 1599-1603.
[24]
Indarto, A. A review of direct methane conversion to methanol by a dielectric barrier discharge. IEEE Trans. Dielectr. Electr. Insul., 2008, 15, 1038-1043.
[25]
Holmen, A. Direct conversion of methane to fuels and chemicals. Catal. Today, 2009, 142, 2-8.
[26]
Khokhar, M.D.; Shukla, R.S.; Jasra, R.V. Selective oxidation of methane by molecular oxygen catalyzed by a bridged binuclear ruthenium complex at moderate pressures and ambient temperature. J. Mol. Catal A. Chem., 2009, 299, 108-116.
[27]
Coteiro, R.D.; Andrade, A.R. Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0.3M0.7O2 (M = Ti or Sn) anodes: preparation route versus degradation efficiency. J. Appl. Electrochem., 2007, 37, 691-698.
[28]
Forti, J.C.; Olivi, P.; Andrade, A.R. Characterisation of DSA®-type coatings with nominal composition Ti/Ru0.3Ti(0.7−x)SnxO2 prepared via a polymeric precursor. Electrochim. Acta, 2001, 47, 913-920.
[29]
Forti, J.C.; Ribeiro, J.; Lanza, M.R.V.; Andrade, A.R.; Bertazzoli, R. Electrochemical Characterization of DSA®-Type Electrodes Using Niobium Substrate. Electrocatalysis, 2010, 1, 129-138.
[30]
Forti, J.C.; Andrade, A.R. Formaldehyde oxidation on a DSA-type electrode modified by Pt or PbO2 electrodeposition. J. Electrochem. Soc., 2007, 154(1), E19-E24.
[31]
Colombo, R.; Ferreira, T.C.R.; Ferreira, R.A.; Lanza, M.R.V. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis. J. Environ. Manage., 2016, 167, 206-213.
[32]
Trasatti, S. Electrochemistry of Novel Materials; Trasatti, S., eds.; Jacek Lipkowski e Philip N. Ross: New York, 1994.
[33]
Lassali, T.A.F.; Castro, C.De; Boodts, J.F.C. Structural, morphological and surface properties as a function of the composition of Ru+Ti+Pt mixed-oxide electrodes. Electrochim. Acta, 1998, 43(16-17), 2515-2525.
[34]
Ribeiro, J.; Alves, P.D.P.; de Andrade, A.R. Effect of the preparation methodology on some physical and electrochemical properties of Ti/IrxSn(1-x)O2 materials. J. Mater. Sci., 2007, 42(22), 9293-9299.
[35]
Panizza, M.; Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta, 2005, 51, 191-199.