[1]
Cammack, R.; Joannou, C.L.; Cui, X-Y.; Torres Martinez, C.; Maraj, S.R.; Hughes, M.N. Nitrite and nitrosyl compounds in food preservation. Biochimica. et Biophysica. Acta. (BBA) -. Bioenergetics, 1999, 1411(2), 475-488.
[2]
Sofos, J.N.; Busta, F.F.; Bhothipaksa, K.; Allen, C.E. Sodium nitrite and sorbic acid effects on clostridium botulinum toxin formation in chicken Frankfurter-Type Emulsions. J. Food Sci., 1979, 44(3), 668-675.
[3]
Christiansen, L.N.; Johnston, R.W.; Kautter, D.A.; Howard, J.W.; Aunan, W.J. Effect of nitrite and nitrate on toxin production by clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat. Appl. Microbiol., 1973, 25(3), 357-362.
[4]
Lijinsky, W. N-Nitrosamines as environmental carcinogens.. In NNitrosamines, American Chemical Society, 1979. , 101, 165-173.
[5]
Magee, P.N. Toxicity of nitrosamines: Their possible Human Health Hazards. Food Chem. Toxicol., 1971, 9(2), 207-218.
[6]
Vittozzi, L. Toxicology of nitrates and nitrites. Food Addit. Contam., 1992, 9(5), 579-585.
[7]
Boink, A.; Speijers, G. In health effects of Nitrates and Nitrites, a review. Int. Soc. Hort. Sci; ISHS: Leuven, Belgium, 2001, pp. 29-36.
[8]
Forman, D.; Al-Dabbagh, S.; Doll, R. Nitrates, nitrites and gastric cancer in Great Britain. Nature, 1985, 313(6004), 620-625.
[9]
Swann, P.F. The toxicology of Nitrate, nitrite and n-Nitroso Compounds. J. Sci. Food Agric., 1975, 26(11), 1761-1770.
[10]
Moorcroft, M.J.; Davis, J.; Compton, R.G. Detection and determination of Nitrate and nitrite: A review. Talanta, 2001, 54(5), 785-803.
[11]
Wang, Q-H.; Yu, L-J.; Liu, Y.; Lin, L.; Lu, R.G.; Zhu, J.P.; He, L.; Lu, Z.L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta, 2017, 165, 709-720.
[12]
Bertotti, M.; Pletcher, D. Amperometric determination of nitrite via reaction with iodide using microelectrodes. Anal. Chim. Acta, 1997, 337(1), 49-55.
[13]
Parsaei, M.; Asadi, Z.; Khodadoust, S. A Sensitive electrochemical sensor for rapid and selective determination of nitrite ion in water samples using modified carbon paste electrode with a newly synthesized Cobalt(II)-Schiff base complex and Magnetite nanospheres. Sens. Actuators B Chem., 2015, 220, 1131-1138.
[14]
Zhang, S.; Li, B.; Sheng, Q.; Zheng, J. Electrochemical sensor for sensitive determination of nitrite based on the CuS-MWCNT nanocomposites. J. Electroanal. Chem., 2016, 769, 118-123.
[15]
Zhou, L.; Wang, J.P.; Gai, L.; Li, D.J.; Li, Y.B. An amperometric sensor based on ionic liquid and carbon nanotube modified composite electrode for the determination of nitrite in milk. Sens. Actuators B Chem., 2013, 181, 65-70.
[16]
Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-printed electrodes for Biosensing: A review (2008-2013). Mikrochim. Acta, 2014, 181(9), 865-891.
[17]
Chang, J.L.; Zen, J.M. Disposable Screen-Printed Edge Band Ultramicroelectrodes for the determination of trace amounts of nitrite ion. Electroanalysis, 2006, 18(10), 941-946.
[18]
Banks, Craig. E.; Foster, Christopher, W.; Kadara, Rashid, O. Screen printing electrochemical Architechures - Briefs in Applied Sciences and Technology. Springer , 2015.
[19]
Adarakatti, P.S.; Malingappa, P. Amino-calixarene-modified graphitic carbon as a novel electrochemical interface for simultaneous measurement of lead and cadmium ions at picomolar level. J. Solid State Electrochem., 2016, 20(12), 3349-3358.
[20]
Tang, Y.C.; Gao, X.Y.; Huang, Y.B.; Yu, Z.; Shao, Y.F.; Zi, Y.Q. Study of Chitosan-TiO2 nanoparticles composite film modified electrode for the electrochemical oxidation behavior of nitrite. Asian J. Chem., 2011, 23, 2053-2056.
[21]
Yang, S.; Liu, X.; Zeng, X.; Xia, B.; Gu, J.; Luo, S.; Mai, N.; Wei, W. Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sens. Actuators B Chem., 2010, 145(2), 762-768.
[22]
Khan, R.; Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Pandey, M.K.; Malhotra, B.D. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta, 2008, 616(2), 207-213.
[23]
Ye, D.; Luo, L.; Ding, Y.; Chen, Q.; Liu, X. A novel Nitrite Sensor based on Graphene/Polypyrrole/Chitosan nanocomposite modified glassy carbon electrode. Analyst, 2011, 136(21), 4563-4569.
[24]
Min , Zhang. F. C., Feng Gan, Electrochemical nitrite nanosensor Based on Au Nanoparticles/Graphene Nanocomposites. Int. J. Electrochem. Sci., 2015, 10, 5905-5913.
[25]
Bharath, G.; Madhu, R.; Chen, S.M.; Veeramani, V.; Mangalaraj, D.; Ponpandian, N. Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4-reduced graphene oxide nanocomposites for sensitive detection of nitrite. J. Mater. Chem. A , 2015, 3(30), 15529-15539.
[26]
Pei, J.; Li, X.Y. Electrochemical study and flow-injection amperometric detection of trace NO2− at CuPtCl6 chemically modified electrode. Talanta, 2000, 51(6), 1107-1115.
[27]
Meng, Z.; Liu, B.; Zheng, J.; Sheng, Q.; Zhang, H. Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Mikrochim. Acta, 2011, 175(3), 251-257.
[28]
Marlinda, A.R.; Pandikumar, A.; Yusoff, N.; Huang, N.M.; Lim, H.N. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Mikrochim. Acta, 2015, 182(5), 1113-1122.
[29]
Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem., 2006, 384(3), 601-619.
[30]
Ikhsan, N.I.; Rameshkumar, P.; Pandikumar, A.; Shahid, M.; Huang, N.M.; Kumar, S.; Lim, H.N. Facile synthesis of graphene oxide-silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta, 2015, 144, 908-914.
[31]
de Lima, C.A.; da Silva, P.S.; Spinelli, A. Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds. Sens. Actuators B Chem., 2014, 196, 39-45.
[32]
Murugadoss, A.; Arun, C.A. ‘green’ chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology, 2008, 19(1), 015603.
[33]
Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. Synthesis and study of silver nanoparticles. J. Chem. Educ., 2007, 84(2), 322.
[34]
Compton, F.W.C.a.R.G. Contrasting Underpotential Depositions of Lead and Cadmium on Silver Macroelectrodes and Silver Nanoparticle Electrode Arrays. Int. J. Electrochem. Sci., 2010, 5, 407-413.
[35]
Rastogi, P.K.; Ganesan, V.; Krishnamoorthi, S. A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J. Mater. Chem A., 2014, 2(4), 933-943.
[36]
Bard, A.J.; Faulkner, L.R. . Electrochemical methods- Fundamentals and applications, 2nd ed.; Wiley: India edition,, 2006.
[37]
Wang, Z.; Liao, F.; Guo, T.; Yang, S.; Zeng, C. Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. J. Electroanal. Chem., 2012, 664, 135-138.
[38]
Pal, M.; Ganesan, V. Electrochemical determination of nitrite using silver nanoparticles modified electrode. Analyst, 2010, 135(10), 2711-2716.
[39]
Piela, B.; Wrona, P.K. Oxidation of nitrites on solid electrodes: I. Determination of the reaction mechanism on the pure electrode surface. J. Electrochem. Soc., 2002, 149(2), E55-E63.
[40]
Manning, P.B.; Coulter, S.T.; Jenness, R. Determination of nitrate and nitrite in milk and dry milk products. J. Dairy Sci., 1968, 51(11), 1725-1730.
[41]
Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard methods for the examination of water and waste water. American Public health Association, American water works association, Water environment Federation, 22 Edition2012.
[42]
Zhang, M.; Cheng, F.; Gan, F. Electrochemical nitrite nanosensor Based on Au Nanoparticles/Graphene Nanocomposites. Int. J. Electrochem. Sci., 2015, 10, 5905-5913.