[1]
Juzenas P, Chen W, Sun Y-P, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 2008; 60(15): 1600-14.
[2]
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62(11): 1052-63.
[3]
El-Trass A, ElShamy H, El-Mehasseb I, et al. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci 2012; 258: 2997-3001.
[4]
Gopal A, Kant V, Gopalakrishnan A, et al. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 2014; 731: 8-19.
[5]
Rezaeifard A, Jafarpour M, Naeimi A, et al. Highly selective aqueous heterogeneous oxygenation of hydrocarbons catalyzed by recyclable hydrophobic copper (II) phthalocyanine nanoparticles. J Mol Catalysis A: Chem 2012; 357: 141-7.
[6]
Bahadar H, Maqbool F, Niaz K, et al. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[7]
Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch Toxicol 2013; 87: 1181-200.
[8]
Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012; 64(2): 129-37.
[9]
Tsapis N, Bennett D, Jackson B, et al. Trojan particles: Large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 2002; 99(19): 12001-5.
[10]
David Gara PM, Garabano N, Llansola Portoles MJ, et al. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. J Nanopart Res 2012; 14(3): 1-13.
[11]
Li W-R, Xie X-B, Shi Q-S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010; 85(4): 1115-22.
[12]
Dichello GA, Sarker DK. In: Grumezescu A, Ficai A, Eds. Nanostructures in therapeutic medicine, volume 2: Nanostructures for antimicrobial therapy. Netherlands: Elsevier 2016: pp. 272-313.
[13]
Jain PK, Huang X, El-Sayed IH, et al. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41(12): 1578-86.
[14]
Takahashi M, Mohan P, Nakade A, et al. Ag/ FeCo/ Ag Core/Shell/Shell magnetic nanoparticles with plasmonic imaging capability. Langmuir 2015; 31(7): 2228-36.
[15]
Gaucher G, Dufresne M-H, Sant VP, et al. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release 2005; 109(1-3): 169-88.
[16]
Kozlov MY, Melik-Nubarov NS, Batrakova EV, et al. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromol 2000; 33(9): 3305-13.
[17]
Lo C-L, Lin S-J, Tsai H-C, et al. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery. Biomat 2009; 30(23-24): 3961-70.
[18]
Mistry K, Sarker DK. SLNs can serve as the new brachytherapy seed: determining influence of surfactants on particle size of solid lipid microparticles and development of hydrophobised copper nanoparticles for potential insertion. J Chem Eng Proc Technol 2016; 7(3): 1-9.
[19]
Dichello GA, Fukuda T, Maekawa T, et al. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions. Eur J Pharm Sci 2017; 105: 55-63.
[20]
Kim TJ, Chae KS, Chang Y, et al. Gadolinium oxide nanoparticles as potential multi-modal imaging and therapeutic agents. Curr Top Med Chem 2013; 13(4): 422-33.
[21]
Mody VV, Siwale R, Singh A, et al. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2013; 2(4): 282-9.
[22]
Baek Y-W, An Y-J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO and Sb2O3) to Escherichia coli, Bacillus subtilis and Staphylococcus aureus. Sci Total Environ 2011; 409(8): 1063-8.
[23]
Zhang Q, Zhang K, Xu D, et al. CuO Nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties and applications. Prog Mater Sci 2014; 60: 208-337.
[24]
Avgoustakis K, Beletsi A, Panagi Z, et al. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation and in vivo residence in blood properties. J Control Release 2002; 79: 123-35.
[25]
Gamucci O, Bertero A, Gagliardi M, et al. Biomedical nanoparticles: Overview of their surface immune-compatibility. Coatings 2014; 4(1): 139-59.
[26]
Sabella S, Carney RP, Brunetti V, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 2014; 6(12): 7052-61.
[27]
Chang H, Chen X-Q, Jwo C-S, et al. Electrostatic and sterical stabilization of cuo nanofluid prepared by vacuum arc spray nanofluid synthesis system (ASNSS). Mater Trans 2009; 50(8): 2098-103.
[28]
Aruoja V, Dubourgier H-C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 2009; 407(4): 1461-8.
[29]
Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 2015; 95(1): 2-14.
[30]
Kharlamov AN, Tyurnina AE, Veselova VS, et al. Silica-gold nanoparticles for atheroprotective management of plaques: Results of the NANOM-FIM trial. Nanoscale 2015; 7(17): 8003-15.
[31]
Lajunen T, Viitala L, Kontturi L-S, et al. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. J Control Release 2015; 203: 85-98.
[32]
Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today 2010; 5(3): 213-30.
[33]
Locatelli E, Broggi F, Ponti J, et al. Lipophilic silver nanoparticles and their polymeric entrapment into Targeted-PEG-Based micelles for the treatment of glioblastoma. Adv Healthc Mater 2012; 1(3): 342-7.
[34]
Sarker DK. In: Tiwari A, Ramalingam M, Kobayashi h, Turner APF, Eds. Biomedical materials and diagnostic devices, Chapter 13, Part III. New York: Scrivener Publishing 2012: pp. 395-434.
[35]
Sarker DK. Architectures and mechanical properties of drugs and complexes of surface-active compounds at air-water and oil-water interfaces. Curr Drug Discov Technol 2018; 14: 1-24.
[36]
Ponnappan N, Chugh A. Nanoparticle-Mediated delivery of therapeutic drugs. Pharmaceut Med 2015; 29(3): 155-67.
[37]
Howell M, Mallela J, Wang C, et al. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J Control Release 2013; 167(2): 210-8.
[38]
Probst CE, Zrazhevskiy P, Bagalkot V, et al. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 2013; 65(5): 703-18.
[39]
Collins G, Patel A, Dilley A, et al. Molecular modeling directed by an interfacial test apparatus for the evaluation of protein and polymer ingredient function in situ. J Agric Food Chem 2008; 56(10): 3846-55.
[40]
Al-Hanbali O, Rutt KJ, Sarker DK, et al. Concentration dependent structural ordering of Poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J Nanosci Nanotechnol 2006; 6(9): 3126-33.
[41]
Georgiev GA, Sarker DK, Al-Hanbali O, et al. Effects of poly(ethylene glycol) chains conformational transition on the properties of DMPC/DMPE-PEG thin liquid films and monolayers. Colloids Surf B Biointerfaces 2007; 59(2): 184-93.
[42]
Umlong IM, Ismail K. Micellization behavior of sodium dodecyl sulfate in different electrolyte media. Colloids Surf A Physicochem Eng Asp 2007; 299(1): 8-14.
[43]
Corrin ML, Harkins WD. The Effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J Am Chem Soc 1947; 69(3): 683-8.
[44]
Alexandridis P, Hatton TA. Poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp 1995; 96: 1-46.
[45]
Alexandridis P, Holzwarth JF, Hatton TA. Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association. Macromol 1994; 27(9): 2414-25.
[46]
Sharma PK, Reilly MJ, Jones DN, et al. The effect of pharmaceuticals on the nanoscale structure of PEO-PPO-PEO micelles. Colloids Surf B Biointerfaces 2008; 61(1): 53-60.
[47]
Mout R, Moyano DF, Rana S, et al. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 2012; 41(7): 2539-44.
[48]
Beatty SM, Smith JE. Fractional wettability and contact angle dynamics in burned water repellent soils. J Hydrol 2010; 391(1-2): 97-108.
[49]
Marmur A. Soft contact: measurement and interpretation of contact angles. Soft Matter 2006; 2(1): 12-7.
[50]
Bayer IS, Fragouli D, Martorana PJ, et al. Solvent resistant superhydrophobic films from self-emulsifying carnauba wax-alcohol emulsions. Soft Matter 2011; 7: 7939.
[51]
Mańko D, Zdziennicka A, Jańczuk B. Surface tension of polytetrafluoroethylene and its wetting by aqueous solutions of some surfactants and their mixtures. Appl Surf Sci 2017; 392: 117-25.
[52]
Andrieu C, Sykes C, Brochard F. Average spreading parameter on heterogeneous surfaces. Langmuir 1994; 10(7): 2077-80.
[53]
Decker EL, Frank B, Suo Y, et al. Physics of contact angle measurement. Colloids Surf A Physicochem Eng Asp 1999; 156(1-3): 177-89.
[54]
Deguchi S, Mukai S-A, Tsudome M, et al. Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 2006; 18(6): 729-32.
[55]
Striemer CC, Fauchet PM, McGrath JL, et al. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 2007; 445(7129): 749-53.
[56]
Dutta A, Dolui SK. Preparation of colloidal dispersion of CuS nanoparticles stabilized by SDS. Mater Chem Phys 2008; 112(2): 448-52.
[57]
Almgren M, Gimel JC, Wang K, et al. SDS micelles at high ionic strength. a light scattering, neutron scattering, fluorescence quenching, and CryoTEM investigation. J Colloid Interface Sci 1998; 202(2): 222-31.
[58]
Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 1999; 16(1-4): 3-27.
[59]
Alexandridis P, Nivaggioli T, Hatton TA. Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. Langmuir 1995; 11(5): 1468-76.
[60]
Santander-Ortega MJ, Jódar-Reyes AB, Csaba N, et al. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilization mechanisms. J Colloid Interface Sci 2006; 302(2): 522-9.
[61]
Trokhymchuk A, Henderson D. Depletion forces in bulk and in confined domains: From Asakura-Oosawa to recent statistical physics advances. Curr Opin Colloid Interface Sci 2015; 20(1): 32-8.
[62]
Tiraferri A, Chen KL, Sethi R, and Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 2008; 324(1-2): 71-9.
[63]
Govender S, Jacobs EP, Bredenkamp MW, Swart P. A robust approach to studying the adsorption of Pluronic F108 on nonporous membranes. J Colloid Interface Sci 2005; 282(2): 306-13.
[64]
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47(1): 113-31.