[1]
Maurya, D.K.; Devasagayam, T.P.A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol., 2010, 48(12), 3369-3373.
[2]
Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol., 2001, 90(4), 494-507.
[3]
Tomás-Barberán, F.A. Los polifenoles de los alimentos y la salud. Aliment. Nutr. y Salud, 2003, 10, 41-53.
[4]
Speisky, H.; Fuentes, J.; Dorta, E.; Camilo, L-A. Polyphenols: Sources and main characteristics. In:Advances in Technologies for Producing Food-Relevant Polyphenols; Cuevas-Valenzuela, J.; Vergara-Salinas, J.R.; Pérez-Correa, J.R., Eds.; CRC Press: Florida, 2017, p. 335.
[5]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8), 2073S-2085S.
[6]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[7]
Fredes, C. Antioxidantes en berries nativos chilenos. Bol Latinoam Caribe. Planta. Med. y Aromat., 2009, 8(6), 469-478.
[10]
Hoffmann, A.; Farga, C.; Lastra, J.; Veghazi, E. Plantas
Medicinales de Uso Común en Chile.; Santiago, F. C. G., Ed.;
Fundacion Claudio Gay: Santiago, 1992.
[11]
Muñoz, O.; Montes, M.; Wilkomirsky, T. Plantas medicinales de uso en Chile: Química y farmacología; Editorial Universitaria: Santiago, 2001.
[13]
Muñoz, C. Flores silvestres de Chile; Edit. Univ.: Santiago, 1966.
[14]
Muñoz, M.; Muñoz, C.; Godoy, I. Especie nativa con potencial como frutales arbustivos. Investig. y Prog. Agropecu. Carillanca., 1986, 5(3), 32-35.
[15]
Torralbo, L.; Scheuermann, E.; Seguel, I.; Leal, P.; Painen, M.; Alberti, S.; Piña, J. Los berries nativos del sur, sus oportunidades y
desafíos (maqui, calafate, murtilla y rosa mosqueta); Consultoría
Bienes Club para el Programa de Mejoramiento de la
Competitividad (PMC) del Sector Frutícola en la Región de la
Araucanía, 2011.
[16]
ODEPA. Perspectivas para los berries nativos en el mercado internacional. Producción chilena de berries nativos y exportación Santiago, Chile,; , 2013.
[17]
López de Dicastillo, C.; Bustos, F.; Valenzuela, X.; López-Carballo, G.; Vilariño, J.M.; Galotto, M. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Res. Int., 2017, 102, 119-128.
[18]
Rubilar, M.; Jara, C.; Poo, Y.; Acevedo, F.; Gutierrez, C.; Sineiro, J.; Shene, C. Extracts of maqui (Aristotelia chilensis) and murta (Ugni molinae Turcz.): Sources of antioxidant compounds and α-glucosidase/α-amylase inhibitors. J. Agric. Food Chem., 2011, 59(5), 1630-1637.
[19]
Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Huamán-Castilla, N.; Vargas-González, M.; Pedreschi, F.; Pérez-Correa, J.R. The antioxidant and safety properties of spent coffee ground extracts impacted by the combined hot pressurized liquid extraction-resin purification process. Molecules, 2018, 23(1), 1-11.
[20]
Fredes, C.; Yousef, G.G.; Robert, P.; Grace, M.H.; Lila, M.A.; Gómez, M.; Gebauer, M.; Montenegro, G. Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J. Sci. Food Agric., 2014, 94(13), 2639-2648.
[21]
Rodríguez, K.; Ah-Hen, K.S.; Vega-Gálvez, A.; Vásquez, V.; Quispe-Fuentes, I.; Rojas, P.; Lemus-Mondaca, R. Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying. LWT - Food Sci. Technol., 2016, 65, 537-542.
[22]
Bonometti, C. Reproductive aspects in flowers of maqui
[Aristotelia chilensis (Mol.) Stuntz], Austral University of Chile,
2000.
[23]
Miranda-Rottmann, S.; Aspillaga, A.A.; Pérez, D.D.; Vasquez, L.; Martinez, A.L.F.; Leighton, F. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J. Agric. Food Chem., 2002, 50(26), 7542-7547.
[24]
Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D.A. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods, 2014, 7(1), 599-608.
[25]
Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric., 2016, 4235-4242.
[26]
Khalifa, H.O.; Kamimoto, M.; Shimamoto, T.; Shimamoto, T. Antimicrobial effects of blueberry, raspberry, and strawberry aqueous extracts and their effects on virulence gene expression in Vibrio cholerae. Phytother. Res., 2015, 29(11), 1791-1797.
[27]
Cespedes, C.L.; Pavon, N.; Dominguez, M.; Alarcon, J.; Balbontin, C.; Kubo, I.; El-Hafidi, M.; Avila, J.G. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem. Toxicol., 2017, 108, 438-450.
[28]
Céspedes, C.; Alarcon, J.; Avila, J.; Nieto, A. Anti-inflammatory activity of Aristotelia chilensis Mol.(Stuntz)(Elaeocarpaceae). Bol. Latinoam. y del Caribe Plantas Med. y Aromat. del Caribe, 2010, 9(2), 91-99.
[29]
Céspedes, C.L.; El-Hafidi, M.; Pavon, N.; Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem., 2008, 107(2), 820-829.
[30]
Rojo, L.; Ribnicky, D.; Logendra, S.; Poulev, A.; Rojas-Silva, P.; Kuhn, P.; Dorn, R.; Grace, M.; Ann, L.M.; Raskin, I. In vitro and in Vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem. HHS Public Access, 2014, 67(3), 223-230.
[31]
Tanaka, J.; Kadekaru, T.; Ogawa, K.; Hitoe, S.; Shimoda, H.; Hara, H. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light. Food Chem., 2013, 139(1-4), 129-137.
[32]
Montenegro, G. Chile nuestra flora útil; Santiago, Chile: Pontificia Universidad Católica de Chile, 2000.
[33]
Seeram, N.; Adams, L.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.; Heber, D. Blackberry, black raspberry, bluerry, cranberry, red raspberry and strawberry extracts inhibit growth stimulate apoptsis of human cancer in vitro. J. Agric. Food Chem., 2006, 54(2), 9329-9339.
[34]
Alvarez-Suarez, J.M.; Dekanski, D.; Ristić, S.; Radonjić, N.V.; Petronijević, N.D.; Giampieri, F.; Astolfi, P.; González-Paramás, A.M.; Santos-Buelga, C.; Tulipani, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase. PLoS One, 2011, 6(10), e25878.
[35]
Muñoz, O.; Christen, P.; Cretton, S.; Backhouse, N.; Torres, V.; Correa, O.; Costa, E.; Miranda, H.; Delporte, C. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol., 2011, 63(6), 849-859.
[36]
Delporte, C.; Backhouse, N.; Inostroza, V.; Aguirre, M.C.; Peredo, N.; Silva, X.; Negrete, R.; Miranda, H.F. Analgesic activity of Ugni molinae (murtilla) in mice models of acute pain. J. Ethnopharmacol., 2007, 112(1), 162-165.
[37]
Suwalsky, M.; Orellana, P.; Avello, M.; Villena, F. Protective effect of Ugni molinae Turcz against oxidative damage of human erythrocytes. Food Chem. Toxicol., 2007, 45(1), 130-135.
[38]
Gómez-Guillén, M.C.; Ihl, M.; Bifani, V.; Silva, A.; Montero, P. Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocoll., 2007, 21(7), 1133-1143.
[39]
Escribano-Bailón, M.T.; Alcalde-Eon, C.; Muñoz, O.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem. Anal., 2006, 17(1), 8-14.
[40]
Céspedes, C.L.; Valdez-Morales, M.; Avila, J.G.; El-Hafidi, M.; Alarcón, J.; Paredes-López, O. Phytochemical profile and the antioxidant activity of Chilean wild black-berry fruits, Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem., 2010, 119(3), 886-895.
[41]
Brauch, J.E.; Buchweitz, M.; Schweiggert, R.M.; Carle, R. Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem., 2016, 190, 308-316.
[42]
Vidal, J.; Avello, L.; Loyola, C. Microencapsulation of maqui (Aristotelia chilensis Molina Stuntz) leaf extracts to preserve and control antioxidant properties. Chil. J. Agric. Res., 2013, 73, 17-23.
[43]
Junqueira-Gonçalves, M.P.; Yáñez, L.; Morales, C.; Navarro, M.; Contreras, R.A.; Zúñiga, G.E. Isolation and characterization of phenolic compounds and anthocyanins from murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity. Molecules, 2015, 20(4), 5698-5713.
[44]
Brito, A.; Areche, C.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanin characterization, total phenolic quantification and antioxidant features of some chilean edible berry extracts. Molecules, 2014, 19(8), 10936-10955.
[45]
Rubilar, M.; Pinelo, M.; Ihl, M.; Scheuermann, E.; Sineiro, J.; Nuñez, M.J. Murta Leaves (Ugni molinae Turcz) as a source of antioxidant polyphenols. J. Agric. Food Chem., 2006, 54(1), 59-64.
[46]
Ortíz, M.A.; Reza, C.; Gerardo, R.; Madinaveitia, C. Ciencias, F. De; Universidad, Q.; Durango, E. De; Artículo, A. Propiedades funcionales de las antocianinas. Biotecnia, 2011, 13, 16-22.
[47]
Dreiseitel, A.; Schreier, P.; Oehme, A.; Locher, S.; Rogler, G.; Piberger, H.; Hajak, G.; Sand, P.G. Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem. Biophys. Res. Commun., 2008, 372(1), 57-61.
[48]
Roy, M.; Sen, S.; Chakraborti, A.S. Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci., 2008, 82(21-22), 1102-1110.
[49]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[50]
Tsuda, T.; Shiga, K.; Ohshima, K.; Kawakishi, S.; Osawa, T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem. Pharmacol., 1996, 52(7), 1033-1039.
[51]
Wu, X.; Pittman, H.E.; Prior, R.L. Pelargonidin is absorbed and metabolized differently than cyanidin after marionberry consumption in pigs. J. Nutr., 2004, 134, 2603-2610.
[52]
Felgines, C.; Verine, S.; Ra, T.; Gonthier, M-P.; Texier, O.; Scalbert, A.; Lamaison, J-L.; Ré Mé Sy, C. Human nutrition and metabolism strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J. Nutr., 2003, 133, 1296-1301.
[53]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Bioavailability, Polyphenols: Food sources and and bioavailability. Am. J. Clin. Nutr., 2004, 79, 727-747.
[54]
Mullen, W.; Edwards, C.A.; Serafini, M.; Crozier, A. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J. Agric. Food Chem., 2008, 56(3), 713-719.
[55]
Mirshekar, M.; Roghani, M.; Khalili, M.; Baluchnejadmojarad, T.; Moazzen, S.A. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iran. Biomed. J., 2010, 14(1-2), 33.
[56]
Giampieri, F.; Alvarez-Suarez, J.M.; Tulipani, S.; Gonzàles-Paramàs, A.M.; Santos-Buelga, C.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Photoprotective potential of strawberry (Fragaria × ananassa) extract against UV-A irradiation damage on human fibroblasts. J. Agric. Food Chem., 2012, 60(9), 2322-2327.
[57]
Reber, J.D.; Eggett, D.L.; Parker, T.L. Antioxidant capacity interactions and a chemical/structural model of phenolic compounds found in strawberries. Int. J. Food Sci. Nutr., 2011, 62(5), 445-452.
[58]
Rior, R.O.L.P. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS / MS in common foods in the United States : Fruits and Berries. J. Agric. Food Chem., 2005, 53(7), 2589-2599.
[60]
Moriwaki, S.; Suzuki, K.; Muramatsu, M.; Nomura, A.; Inoue, F. Delphinidin, One of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One, 2014, 9(5), e97177.
[61]
Nakamura, S.; Tanaka, J.; Imada, T.; Shimoda, H.; Tsubota, K. Delphinidin 3,5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. J. Funct. Foods, 2014, 10, 346-354.
[62]
Martin, S.; Giannone, G.; Andriantsitohaina, R.; Martinez, M.C. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br. J. Pharmacol., 2003, 139(6), 1095-1102.
[63]
Lamy, S.; Blanchette, M.; Michaud-Levesque, J.; Lafleur, R.; Durocher, Y.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis, 2006, 27(5), 989-996.
[64]
Yun, J-M.; Afaq, F.; Khan, N.; Mukhtar, H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog., 2009, 48(3), 260-270.
[65]
Bin, H.B.; Asim, M.S.; Adhami, V.M.; Murtaza, I.; Mukhtar, H. Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: A new weapon to blunt prostate cancer growth. Cell Cycle, 2008, 7(21), 3320-3326.
[66]
Tsai, P.J.; McIntosh, J.; Pearce, P.; Camden, B.; Jordan, B.R. Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res. Int., 2002, 35(4), 351-356.
[67]
Hou, D.X.; Tong, X.; Terahara, N.; Luo, D.; Fujii, M. Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Arch. Biochem. Biophys., 2005, 440(1), 101-109.
[68]
Hidalgo, J.; Flores, C.; Hidalgo, M.A.; Perez, M.; Yañez, A.; Quiñones, L.; Caceres, D.D.; Burgos, R.A. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Med., 2014, 56(2), 1-7.
[69]
Adrian, M.; Jeandet, P. Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Fitoterapia, 2012, 83(8), 1345-1350.
[70]
Counet, C.; Callemien, D.; Collin, S. Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chem., 2006, 98(4), 649-657.
[71]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275, 1995-1998.
[72]
Wu, C.F.; Yang, J.Y.; Wang, F.; Wang, X.X. Resveratrol: Botanical origin, pharmacological activity and applications. Chin. J. Nat. Med., 2013, 11(1), 1-15.
[73]
Singh, C.K.; Ndiaye, M.A.; Ahmad, N. Resveratrol and cancer: Challenges for clinical translation. Biochim. Biophys. Acta - Mol. Basis Dis., 2015, 1852(6), 1178-1185.
[74]
Anisimova, N.Y.U.; Kiselevsky, M.V.; Sosnov, A.V.; Sadovnikov, S.V.; Stankov, I.N.; Gakh, A.A. -, cis-, and dihydro-resveratrol: A comparative study. Chem. Cent. J., 2011, 5(1), 88.
[75]
Schneider, Y.; Vincent, F.; Duranton, B.; Badolo, L.; Gossé, F.; Bergmann, C.; Seiler, N.; Raul, F. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett., 2000, 158(1), 85-91.
[76]
Zini, R.; Morin, C.; Bertelli, A.A.; Tillement, J.P. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp. Clin. Res., 1999, 25(2-3), 87-97.
[77]
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J. Biol. Chem., 2005, 280(45), 37377-37382.
[79]
Szkudelski, T. The insulin-suppressive effect of resveratrol - An in vitro and in vivo phenomenon. Life Sci., 2008, 82(7-8), 430-435.
[80]
Garvin, S.; Öllinger, K.; Dabrosin, C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett., 2006, 231(1), 113-122.
[81]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[82]
Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 9-15.
[83]
Walle, T.; Hsieh, F.; Delegge, M.H.; Oatis, J.E.; Walle, U.K. High absortion but very low bioavaibility of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[84]
Lennon, P.; Chávez, S.; Ocañas, L.G.; Tadeo, C.; Castañeda, B.; Eduardo, J.T.O.; Verástegui, J.T. Tolerabilidad del resveratrol y efectos sobre parámetros bioquímicos sanguíneos resveratrol tolerability and e ects on blood chemistry parameters. Rev. Mex. Cienc. Farm., 2015, 45(4), 1-7.
[85]
Céspedes, C.; Sampietro, D.; Seigler, D.; Rai, M. Natural Antioxidants and Biocides from Wild Medicinal Plants; CABI: Oxfordshire, 2013.
[86]
Chan, E.W.C.; Lim, Y.Y.; Wong, S.K.; Lim, K.K.; Tan, S.P.; Lianto, F.S.; Yong, M.Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem., 2009, 113(1), 166-172.
[87]
Shene, C.; Reyes, A.K.; Villarroel, M.; Sineiro, J.; Pinelo, M.; Rubilar, M. Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts. Eur. Food Res. Technol., 2009, 228(3), 467-475.
[88]
Augusto, T.R.; Sigisfredo, E.; Salinas, S.; Alencar, S.M.; Aparecida, M.; Regitano, B.; Camargo, A.C. Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Sci. Technol., 2014, 34(4), 667-673.
[89]
Alfaro, S.; Mutis, A.; Palma, R. Influence of genotype and harvest year on polyphenol content and antioxidant activity in murtilla (Ugni molinae Turcz) fruit. J. Soil Sci. Plant Nutr., 2013, 13(1), 67-78.
[90]
Fredes, C.; Montenegro, G.; Zoffoli, J.P.; Gómez, M.; Robert, P. Polyphenol content and antioxidant activity of maqui (Aristotelia chilensis [Molina] Stuntz) during fruit development and maturation in central Chile. Chil. J. Agric. Res., 2012, 72, 2630-2648.
[91]
Peña-Cerda, M.; Arancibia-Radich, J.; Valenzuela-Bustamante, P.; Pérez-Arancibia, R.; Barriga, A.; Seguel, I.; García, L.; Delporte, C. Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem., 2017, 215, 219-227.
[92]
Chacón-Fuentes, M.; Parra, L.; Rodriguez-Saona, C.; Seguel, I.; Ceballos, R.; Quiroz, A. Domestication in murtilla (Ugni molinae) reduced defensive flavonol levels but increased resistance against a native herbivorous insect. Environ. Entomol., 2015, 3(44), 627-637.