Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

General Review Article

Maqui (Aristotelia chilensis (Mol.) Stuntz) and murta (Ugni molinae Turcz): Native Chilean sources of polyphenol compounds.

Author(s): Pamela R. Rivera-Tovar, María S. Mariotti-Celis and José Ricardo Pérez-Correa*

Volume 16, Issue 3, 2019

Page: [261 - 276] Pages: 16

DOI: 10.2174/1570193X15666180627120609

Price: $65

Abstract

In recent years, the production, processing and exportation of maqui and murta Chilean berries have increased due to their high Total Polyphenols Content (TPC) and high Antioxidant Capacity (AC). However, the leaves of these berries are agroindustrial discards that present even higher TPC and AC values. Extracts of leaves and berries of maqui and murta with water, methanol and ethanol as solvents showed significant bioactivity, like inhibition of alpha-glucosidase (an enzyme involved in the metabolism of carbohydrates), as well as anti-inflammatory and antidiabetic effects. They are also excellent sources of polyphenols such as oligomers and polymers of delphinidin, pelargonidin, resveratrol, among others that have shown health-promoting bioactivity and good bioavailability. Purified extracts may be useful as supplements for foods and cosmetics, and even as pharmaceutical products. However, it is necessary to control the variability of their TPC, AC and polyphenols profiles caused by genotype, environment, processing, storage and stage of harvesting.

Keywords: Wild berries, antioxidant activity, bioactivity, resveratrol, pelargonidin, delphinidin, phenolic variability.

Graphical Abstract

[1]
Maurya, D.K.; Devasagayam, T.P.A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol., 2010, 48(12), 3369-3373.
[2]
Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol., 2001, 90(4), 494-507.
[3]
Tomás-Barberán, F.A. Los polifenoles de los alimentos y la salud. Aliment. Nutr. y Salud, 2003, 10, 41-53.
[4]
Speisky, H.; Fuentes, J.; Dorta, E.; Camilo, L-A. Polyphenols: Sources and main characteristics. In:Advances in Technologies for Producing Food-Relevant Polyphenols; Cuevas-Valenzuela, J.; Vergara-Salinas, J.R.; Pérez-Correa, J.R., Eds.; CRC Press: Florida, 2017, p. 335.
[5]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8), 2073S-2085S.
[6]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[7]
Fredes, C. Antioxidantes en berries nativos chilenos. Bol Latinoam Caribe. Planta. Med. y Aromat., 2009, 8(6), 469-478.
[8]
Oficina de Estudios y Políticas Agrarias. Servicio público centralizado. http://www.odepa.gob.cl/estadisticas/ comercio-exterior/ (Accessed May 7, 2017).
[10]
Hoffmann, A.; Farga, C.; Lastra, J.; Veghazi, E. Plantas Medicinales de Uso Común en Chile.; Santiago, F. C. G., Ed.; Fundacion Claudio Gay: Santiago, 1992.
[11]
Muñoz, O.; Montes, M.; Wilkomirsky, T. Plantas medicinales de uso en Chile: Química y farmacología; Editorial Universitaria: Santiago, 2001.
[12]
Paquete Tecnológico Maqui Productos Forestales No Madereros en Chile. Available from:. http://www.gestionforestal.cl/pfnm/ pactecmaqui/txt/mercadooferta.htm (Accessed on: September 18, 2016).
[13]
Muñoz, C. Flores silvestres de Chile; Edit. Univ.: Santiago, 1966.
[14]
Muñoz, M.; Muñoz, C.; Godoy, I. Especie nativa con potencial como frutales arbustivos. Investig. y Prog. Agropecu. Carillanca., 1986, 5(3), 32-35.
[15]
Torralbo, L.; Scheuermann, E.; Seguel, I.; Leal, P.; Painen, M.; Alberti, S.; Piña, J. Los berries nativos del sur, sus oportunidades y desafíos (maqui, calafate, murtilla y rosa mosqueta); Consultoría Bienes Club para el Programa de Mejoramiento de la Competitividad (PMC) del Sector Frutícola en la Región de la Araucanía, 2011.
[16]
ODEPA. Perspectivas para los berries nativos en el mercado internacional. Producción chilena de berries nativos y exportación Santiago, Chile,; , 2013.
[17]
López de Dicastillo, C.; Bustos, F.; Valenzuela, X.; López-Carballo, G.; Vilariño, J.M.; Galotto, M. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Res. Int., 2017, 102, 119-128.
[18]
Rubilar, M.; Jara, C.; Poo, Y.; Acevedo, F.; Gutierrez, C.; Sineiro, J.; Shene, C. Extracts of maqui (Aristotelia chilensis) and murta (Ugni molinae Turcz.): Sources of antioxidant compounds and α-glucosidase/α-amylase inhibitors. J. Agric. Food Chem., 2011, 59(5), 1630-1637.
[19]
Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Huamán-Castilla, N.; Vargas-González, M.; Pedreschi, F.; Pérez-Correa, J.R. The antioxidant and safety properties of spent coffee ground extracts impacted by the combined hot pressurized liquid extraction-resin purification process. Molecules, 2018, 23(1), 1-11.
[20]
Fredes, C.; Yousef, G.G.; Robert, P.; Grace, M.H.; Lila, M.A.; Gómez, M.; Gebauer, M.; Montenegro, G. Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J. Sci. Food Agric., 2014, 94(13), 2639-2648.
[21]
Rodríguez, K.; Ah-Hen, K.S.; Vega-Gálvez, A.; Vásquez, V.; Quispe-Fuentes, I.; Rojas, P.; Lemus-Mondaca, R. Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying. LWT - Food Sci. Technol., 2016, 65, 537-542.
[22]
Bonometti, C. Reproductive aspects in flowers of maqui [Aristotelia chilensis (Mol.) Stuntz], Austral University of Chile, 2000.
[23]
Miranda-Rottmann, S.; Aspillaga, A.A.; Pérez, D.D.; Vasquez, L.; Martinez, A.L.F.; Leighton, F. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J. Agric. Food Chem., 2002, 50(26), 7542-7547.
[24]
Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D.A. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods, 2014, 7(1), 599-608.
[25]
Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric., 2016, 4235-4242.
[26]
Khalifa, H.O.; Kamimoto, M.; Shimamoto, T.; Shimamoto, T. Antimicrobial effects of blueberry, raspberry, and strawberry aqueous extracts and their effects on virulence gene expression in Vibrio cholerae. Phytother. Res., 2015, 29(11), 1791-1797.
[27]
Cespedes, C.L.; Pavon, N.; Dominguez, M.; Alarcon, J.; Balbontin, C.; Kubo, I.; El-Hafidi, M.; Avila, J.G. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem. Toxicol., 2017, 108, 438-450.
[28]
Céspedes, C.; Alarcon, J.; Avila, J.; Nieto, A. Anti-inflammatory activity of Aristotelia chilensis Mol.(Stuntz)(Elaeocarpaceae). Bol. Latinoam. y del Caribe Plantas Med. y Aromat. del Caribe, 2010, 9(2), 91-99.
[29]
Céspedes, C.L.; El-Hafidi, M.; Pavon, N.; Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem., 2008, 107(2), 820-829.
[30]
Rojo, L.; Ribnicky, D.; Logendra, S.; Poulev, A.; Rojas-Silva, P.; Kuhn, P.; Dorn, R.; Grace, M.; Ann, L.M.; Raskin, I. In vitro and in Vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem. HHS Public Access, 2014, 67(3), 223-230.
[31]
Tanaka, J.; Kadekaru, T.; Ogawa, K.; Hitoe, S.; Shimoda, H.; Hara, H. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light. Food Chem., 2013, 139(1-4), 129-137.
[32]
Montenegro, G. Chile nuestra flora útil; Santiago, Chile: Pontificia Universidad Católica de Chile, 2000.
[33]
Seeram, N.; Adams, L.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.; Heber, D. Blackberry, black raspberry, bluerry, cranberry, red raspberry and strawberry extracts inhibit growth stimulate apoptsis of human cancer in vitro. J. Agric. Food Chem., 2006, 54(2), 9329-9339.
[34]
Alvarez-Suarez, J.M.; Dekanski, D.; Ristić, S.; Radonjić, N.V.; Petronijević, N.D.; Giampieri, F.; Astolfi, P.; González-Paramás, A.M.; Santos-Buelga, C.; Tulipani, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase. PLoS One, 2011, 6(10), e25878.
[35]
Muñoz, O.; Christen, P.; Cretton, S.; Backhouse, N.; Torres, V.; Correa, O.; Costa, E.; Miranda, H.; Delporte, C. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol., 2011, 63(6), 849-859.
[36]
Delporte, C.; Backhouse, N.; Inostroza, V.; Aguirre, M.C.; Peredo, N.; Silva, X.; Negrete, R.; Miranda, H.F. Analgesic activity of Ugni molinae (murtilla) in mice models of acute pain. J. Ethnopharmacol., 2007, 112(1), 162-165.
[37]
Suwalsky, M.; Orellana, P.; Avello, M.; Villena, F. Protective effect of Ugni molinae Turcz against oxidative damage of human erythrocytes. Food Chem. Toxicol., 2007, 45(1), 130-135.
[38]
Gómez-Guillén, M.C.; Ihl, M.; Bifani, V.; Silva, A.; Montero, P. Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocoll., 2007, 21(7), 1133-1143.
[39]
Escribano-Bailón, M.T.; Alcalde-Eon, C.; Muñoz, O.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem. Anal., 2006, 17(1), 8-14.
[40]
Céspedes, C.L.; Valdez-Morales, M.; Avila, J.G.; El-Hafidi, M.; Alarcón, J.; Paredes-López, O. Phytochemical profile and the antioxidant activity of Chilean wild black-berry fruits, Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem., 2010, 119(3), 886-895.
[41]
Brauch, J.E.; Buchweitz, M.; Schweiggert, R.M.; Carle, R. Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem., 2016, 190, 308-316.
[42]
Vidal, J.; Avello, L.; Loyola, C. Microencapsulation of maqui (Aristotelia chilensis Molina Stuntz) leaf extracts to preserve and control antioxidant properties. Chil. J. Agric. Res., 2013, 73, 17-23.
[43]
Junqueira-Gonçalves, M.P.; Yáñez, L.; Morales, C.; Navarro, M.; Contreras, R.A.; Zúñiga, G.E. Isolation and characterization of phenolic compounds and anthocyanins from murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity. Molecules, 2015, 20(4), 5698-5713.
[44]
Brito, A.; Areche, C.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanin characterization, total phenolic quantification and antioxidant features of some chilean edible berry extracts. Molecules, 2014, 19(8), 10936-10955.
[45]
Rubilar, M.; Pinelo, M.; Ihl, M.; Scheuermann, E.; Sineiro, J.; Nuñez, M.J. Murta Leaves (Ugni molinae Turcz) as a source of antioxidant polyphenols. J. Agric. Food Chem., 2006, 54(1), 59-64.
[46]
Ortíz, M.A.; Reza, C.; Gerardo, R.; Madinaveitia, C. Ciencias, F. De; Universidad, Q.; Durango, E. De; Artículo, A. Propiedades funcionales de las antocianinas. Biotecnia, 2011, 13, 16-22.
[47]
Dreiseitel, A.; Schreier, P.; Oehme, A.; Locher, S.; Rogler, G.; Piberger, H.; Hajak, G.; Sand, P.G. Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem. Biophys. Res. Commun., 2008, 372(1), 57-61.
[48]
Roy, M.; Sen, S.; Chakraborti, A.S. Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci., 2008, 82(21-22), 1102-1110.
[49]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[50]
Tsuda, T.; Shiga, K.; Ohshima, K.; Kawakishi, S.; Osawa, T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem. Pharmacol., 1996, 52(7), 1033-1039.
[51]
Wu, X.; Pittman, H.E.; Prior, R.L. Pelargonidin is absorbed and metabolized differently than cyanidin after marionberry consumption in pigs. J. Nutr., 2004, 134, 2603-2610.
[52]
Felgines, C.; Verine, S.; Ra, T.; Gonthier, M-P.; Texier, O.; Scalbert, A.; Lamaison, J-L.; Ré Mé Sy, C. Human nutrition and metabolism strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J. Nutr., 2003, 133, 1296-1301.
[53]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Bioavailability, Polyphenols: Food sources and and bioavailability. Am. J. Clin. Nutr., 2004, 79, 727-747.
[54]
Mullen, W.; Edwards, C.A.; Serafini, M.; Crozier, A. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J. Agric. Food Chem., 2008, 56(3), 713-719.
[55]
Mirshekar, M.; Roghani, M.; Khalili, M.; Baluchnejadmojarad, T.; Moazzen, S.A. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iran. Biomed. J., 2010, 14(1-2), 33.
[56]
Giampieri, F.; Alvarez-Suarez, J.M.; Tulipani, S.; Gonzàles-Paramàs, A.M.; Santos-Buelga, C.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Photoprotective potential of strawberry (Fragaria × ananassa) extract against UV-A irradiation damage on human fibroblasts. J. Agric. Food Chem., 2012, 60(9), 2322-2327.
[57]
Reber, J.D.; Eggett, D.L.; Parker, T.L. Antioxidant capacity interactions and a chemical/structural model of phenolic compounds found in strawberries. Int. J. Food Sci. Nutr., 2011, 62(5), 445-452.
[58]
Rior, R.O.L.P. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS / MS in common foods in the United States : Fruits and Berries. J. Agric. Food Chem., 2005, 53(7), 2589-2599.
[59]
Phenol-Explorer. Database on polyphenol content in foods. Available from: http://phenol-explorer.eu/compounds (Accessed on: June 8, 2016).
[60]
Moriwaki, S.; Suzuki, K.; Muramatsu, M.; Nomura, A.; Inoue, F. Delphinidin, One of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One, 2014, 9(5), e97177.
[61]
Nakamura, S.; Tanaka, J.; Imada, T.; Shimoda, H.; Tsubota, K. Delphinidin 3,5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. J. Funct. Foods, 2014, 10, 346-354.
[62]
Martin, S.; Giannone, G.; Andriantsitohaina, R.; Martinez, M.C. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br. J. Pharmacol., 2003, 139(6), 1095-1102.
[63]
Lamy, S.; Blanchette, M.; Michaud-Levesque, J.; Lafleur, R.; Durocher, Y.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis, 2006, 27(5), 989-996.
[64]
Yun, J-M.; Afaq, F.; Khan, N.; Mukhtar, H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog., 2009, 48(3), 260-270.
[65]
Bin, H.B.; Asim, M.S.; Adhami, V.M.; Murtaza, I.; Mukhtar, H. Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: A new weapon to blunt prostate cancer growth. Cell Cycle, 2008, 7(21), 3320-3326.
[66]
Tsai, P.J.; McIntosh, J.; Pearce, P.; Camden, B.; Jordan, B.R. Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res. Int., 2002, 35(4), 351-356.
[67]
Hou, D.X.; Tong, X.; Terahara, N.; Luo, D.; Fujii, M. Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Arch. Biochem. Biophys., 2005, 440(1), 101-109.
[68]
Hidalgo, J.; Flores, C.; Hidalgo, M.A.; Perez, M.; Yañez, A.; Quiñones, L.; Caceres, D.D.; Burgos, R.A. Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Med., 2014, 56(2), 1-7.
[69]
Adrian, M.; Jeandet, P. Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Fitoterapia, 2012, 83(8), 1345-1350.
[70]
Counet, C.; Callemien, D.; Collin, S. Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chem., 2006, 98(4), 649-657.
[71]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275, 1995-1998.
[72]
Wu, C.F.; Yang, J.Y.; Wang, F.; Wang, X.X. Resveratrol: Botanical origin, pharmacological activity and applications. Chin. J. Nat. Med., 2013, 11(1), 1-15.
[73]
Singh, C.K.; Ndiaye, M.A.; Ahmad, N. Resveratrol and cancer: Challenges for clinical translation. Biochim. Biophys. Acta - Mol. Basis Dis., 2015, 1852(6), 1178-1185.
[74]
Anisimova, N.Y.U.; Kiselevsky, M.V.; Sosnov, A.V.; Sadovnikov, S.V.; Stankov, I.N.; Gakh, A.A. -, cis-, and dihydro-resveratrol: A comparative study. Chem. Cent. J., 2011, 5(1), 88.
[75]
Schneider, Y.; Vincent, F.; Duranton, B.; Badolo, L.; Gossé, F.; Bergmann, C.; Seiler, N.; Raul, F. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett., 2000, 158(1), 85-91.
[76]
Zini, R.; Morin, C.; Bertelli, A.A.; Tillement, J.P. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp. Clin. Res., 1999, 25(2-3), 87-97.
[77]
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J. Biol. Chem., 2005, 280(45), 37377-37382.
[78]
Carpenter, K. Wine compound resveratrol linked to slowing Alzheimer’s disease symptoms. Available from: www.wines pectator.com/webfeature/show/id/52335.(Accessed May 7, 2017).
[79]
Szkudelski, T. The insulin-suppressive effect of resveratrol - An in vitro and in vivo phenomenon. Life Sci., 2008, 82(7-8), 430-435.
[80]
Garvin, S.; Öllinger, K.; Dabrosin, C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett., 2006, 231(1), 113-122.
[81]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[82]
Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 9-15.
[83]
Walle, T.; Hsieh, F.; Delegge, M.H.; Oatis, J.E.; Walle, U.K. High absortion but very low bioavaibility of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[84]
Lennon, P.; Chávez, S.; Ocañas, L.G.; Tadeo, C.; Castañeda, B.; Eduardo, J.T.O.; Verástegui, J.T. Tolerabilidad del resveratrol y efectos sobre parámetros bioquímicos sanguíneos resveratrol tolerability and e ects on blood chemistry parameters. Rev. Mex. Cienc. Farm., 2015, 45(4), 1-7.
[85]
Céspedes, C.; Sampietro, D.; Seigler, D.; Rai, M. Natural Antioxidants and Biocides from Wild Medicinal Plants; CABI: Oxfordshire, 2013.
[86]
Chan, E.W.C.; Lim, Y.Y.; Wong, S.K.; Lim, K.K.; Tan, S.P.; Lianto, F.S.; Yong, M.Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem., 2009, 113(1), 166-172.
[87]
Shene, C.; Reyes, A.K.; Villarroel, M.; Sineiro, J.; Pinelo, M.; Rubilar, M. Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts. Eur. Food Res. Technol., 2009, 228(3), 467-475.
[88]
Augusto, T.R.; Sigisfredo, E.; Salinas, S.; Alencar, S.M.; Aparecida, M.; Regitano, B.; Camargo, A.C. Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Sci. Technol., 2014, 34(4), 667-673.
[89]
Alfaro, S.; Mutis, A.; Palma, R. Influence of genotype and harvest year on polyphenol content and antioxidant activity in murtilla (Ugni molinae Turcz) fruit. J. Soil Sci. Plant Nutr., 2013, 13(1), 67-78.
[90]
Fredes, C.; Montenegro, G.; Zoffoli, J.P.; Gómez, M.; Robert, P. Polyphenol content and antioxidant activity of maqui (Aristotelia chilensis [Molina] Stuntz) during fruit development and maturation in central Chile. Chil. J. Agric. Res., 2012, 72, 2630-2648.
[91]
Peña-Cerda, M.; Arancibia-Radich, J.; Valenzuela-Bustamante, P.; Pérez-Arancibia, R.; Barriga, A.; Seguel, I.; García, L.; Delporte, C. Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes. Food Chem., 2017, 215, 219-227.
[92]
Chacón-Fuentes, M.; Parra, L.; Rodriguez-Saona, C.; Seguel, I.; Ceballos, R.; Quiroz, A. Domestication in murtilla (Ugni molinae) reduced defensive flavonol levels but increased resistance against a native herbivorous insect. Environ. Entomol., 2015, 3(44), 627-637.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy