[1]
Tredici, M.R.; Bassi, N.; Prussi, M.; Biondi, N.; Rodolfi, L.; Zittelli, G.C.; Sampietro, G. Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high net energy ratio. Appl. Energy, 2015, 154, 1103-1111.
[2]
Hossain, S.; Salleh, A. Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol., 2008, 4, 250-254.
[3]
Fu, J.; Yang, C.; Wu, J.; Zhuang, J.; Hou, Z.; Lu, X. Direct production of aviation fuels from microalgae lipids in water. Fuel, 2015, 139, 678-683.
[4]
Guo, F.; Wang, X.; Yang, X. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle. Energy Convers. Manage., 2017, 132, 272-280.
[5]
Bwapwa, J.K.; Anandraj, A.; Trois, C. Possibilities for conversion of microalgae oil into aviation fuel: A review. Renew. Sustain. Energy Rev., 2017, 80, 1345-1354.
[6]
Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 2010, 14, 217-232.
[7]
Tandeau-de-Marsac, N.; Houmard, J. Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanism. FEMS Microbiol. Rev., 1993, 104, 119-190.
[8]
Larkum, A.W.D.; Ross, I.L.; Kruse, O.; Hankamer, B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol., 2011, 30, 198-205.
[9]
Amaro, H.M.; Macedo, A.C.; Malcata, F.X. Microalgae: An alternative as sustainable source of biofuels? Energy, 2012, 44, 158-166.
[10]
Menetrez, M.Y. An overview of algae biofuel production and potential environmental impact. Environ. Sci. Technol., 2012, 46, 7073-7085.
[11]
Mondal, M.; Goswami, S.; Ghosh, A.; Oinam, G.; Tiwari, O.N.; Das, P.; Gayen, K.; Mandal, M.K.; Halder, G.N. Production of biodiesel from microalgae through biological carbon capture: A review. Biotech, 2017, 7(2), 99.
[12]
Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res., 2010, 115, C05017.
[13]
Pienkos, P.T. Potential for biofuels from algae. NREL/PR-510-42414. National Renewable Energy Laboratory; NREL: Golden, CO, 2007.
[14]
Udaiyappan, A.F.M.; Hasan, H.A.; Takriff, M.S.; Abdullah, S.R.S. A review of the potential, challenges and current status of microalgae biomass application in industrial wastewater treatment. J. Water Process Eng., 2017, 20, 8-21.
[15]
Cheah, W.Y.; Show, P.L.; Juan, J.C.; Chang, J.S.; Ling, T.C. Enhancing biomass and lipid prodcutions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Convers. Managament, 2018, 164, 188-197.
[16]
Kamyab, H.; Chelliapan, S.; Din, M.F.M.; Yassar, R.S.; Rezania, S.; Khademi, T.; Kumar, A.; Azimi, M. Evaluation of Lemna minor and Chlamydomonas to treat palm oil effluent and fertilizer production. J. Water Process Eng., 2017, 17, 229-236.
[17]
Mohammadi, M.; Man, H.C.; Hassan, M.A.; Yee, P.L. Treatment of wastewater from rubber industry in Malaysia. Afr. J. Biotechnol., 2013, 9, 6233-6243.
[18]
Phang, S.M.; Miah, M.S.; Yeoh, B.G.; Hashim, M.A. Spirulina cultivation in digested sago starch factory wastewater. J. Appl. Phycol., 2000, 12, 395-400.
[19]
Lim, S.L.; Chu, W.L.; Phang, S.M. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol., 2010, 101, 7314-7322.
[20]
Paran, G.; Norshuhaila, M.S.; Hazel, M.; Ab Aziz, A.L.; Umi Kalthsom, P. deleke, Abdul Rahman, O. Green Approach in the Bio-removal of Heavy Metals from wastewaters. MATEC Web Conf., 2017, 103, 06007.
[21]
Kumar, R.; Goyal, D. Waste water treatment and metal (Pb2+, Zn2+) removal by microalgal based stabilization pond system. Indian J. Microbiol., 2010, 50(1), 34-40.
[22]
Kouhia, M.; Holmberg, H.; Ahtila, P. Microalgae-utilizing biorefinery concept for pulp and paper industry: Converting secondary streams into value-added products. Algal Res., 2015, 10, 41-47.
[23]
Hill, A.; Kurki, A.; Morris, M. Biodiesel: The Sustainability Dimensions., ATTRA Publication: Butte, 2010, pp. 4-5.
[24]
Beer, L.L.; Boyd, E.S.; Peters, J.W.; Posewitz, M.C. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol., 2009, 20, 264-271.
[25]
Banerjee, C.; Dubey, K.K.; Shukla, P. Metabolic engineering of microalgal based biofuel production: Prospects and challenges. Front. Microbiol., 2016, 7, 432.
[26]
Wu, C.; Xiong, W.; Dai, J.; Wu, Q. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides. Plant Physiol., 2015, 167(2), 586-599.
[27]
Flassig, R.J.; Fachet, M.; Höffner, K.; Barton, P.I.; Sundmacher, K. Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae. Biotechnol. Biofuels, 2016, 9(1), 165.
[28]
Levitan, O.; Dinamarca, J.; Zelzion, E.; Lun, D.S.; Guerra, L.T.; Kim, M.K.; Kim, J.; Van Mooy, B.A.S.; Bhattacharya, D.; Falkowski, P.G. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc. Natl. Acad. Sci., 2015, 112(2), 412-417.
[29]
Bashir, K.M.I.; Kim, M.S.; Stahl, U.; Cho, M.G. Microalgae engineering toolbox: Selectable and screenable markers. Biotechnol. Bioprocess Eng.;, 2016, 21(2), 224-235.
[30]
Gee, C.W.; Niyogi, K.K. The carbonic anhydrase CAH1 is an essential component of the Carbon-Concentrating Mechanism (CCM) of the marine alga in Nannochloropsis oceanic. Proc. Natl. Acad. Sci. USA, 2017, 114(17), 4537-4542.
[31]
Cerutti, H.; Ma, X.; Msanne, J.; Repas, T. RNA-mediated silencing in Algae: Biological roles and tools for analysis of gene function. Eukaryot. Cell, 2011, 10(9), 1164-1172.
[32]
Trentacoste, E.M.; Shrestha, R.P.; Smith, S.R.; Gle, C.; Hartmann, A.C.; Hildebrand, M.; Gerwick, W.H. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci., 2013, 110(49), 19748-19753.
[33]
Wang, C.; Chen, X.; Li, H.; Wang, J.; Hu, Z. Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii. Biotechnol. Biofuels, 2017, 10(1), 91.
[34]
Kang, S.; Kim, K.H.; Kim, Y.C. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode. Sci. Rep., 2015, 5 Article number: 15835
[35]
Oey, M.; Ross, I.L.; Hankamer, B. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS One, 2014, 9(2), 3-6.
[36]
Prasad, B.; Vadakedath, N.; Jeong, H.J.; General, T.; Cho, M.G.; Lein, W. Agrobacterium tumefaciens mediated genetic transformation of haptophytes (Isochrysisspecies). Appl. Microbiol. Biotechnol., 2014, 98(20), 8629-8639.
[37]
Srinivasan, R.; Gothandam, K.M. Synergistic action of D-glucose and acetosyringone on agrobacterium strains for efficient dunaliella transformation. PLoS One, 2016, 11(6), 1-13.
[38]
Postma, P.R.; Suarez-Garcia, E.; Safi, C.; Olivieri, G.; Olivieri, G.; Wijffels, R.H.; Wijffels, R.H. Energy efficient bead milling of micro algae: Effect of bead size on disintegration and release of proteins and carbohydrates. Bioresour. Technol., 2017, 224, 670-679.
[39]
Nagarajan, D.; Lee, D.J.; Kondo, A.; Chang, J.S. Recent insights into biohydrogen production by microalgae-from biophotolysis to dark fermentation. Bioresour. Technol., 2017, 227, 373-387.
[40]
Klaitong, P.; Faaroonsawat, S.; Chungjatupornchai, W. Accelerated triacylglycerol production and altered fatty acid composition in Oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Microb. Cell Fact., 2017, 16(1), 61.
[41]
Scranton, M.A.; Ostrand, J.T.; Fields, F.J.; Mayfield, S.P. Chlamydomonas as a model for biofuels and bio-products production. Plant J., 2015, 82(3), 523-531.
[42]
Nobusawa, T.; Hori, K.; Mori, H.; Kurokawa, K.; Ohta, H. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the Oleaginous alga Nannochloropsis. Plant J., 2017, 90(3), 547-559.
[43]
Zhao, T.; Li, G.; Mi, S.; Hannon, G.J.; Wang, X.J.; Qi, Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhartii. Genes Dev., 2007, 21, 1190-1203.
[44]
Liu, Q.; Chen, Y.Q. A new mechanism in plant engineering: The potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol. Adv., 2010, 28, 301-307.
[45]
Perez-Quintero, A.L.; Lopez, C. Artificial microRNAs and their applications in plant molecular biology. Agron. Colomb., 2010, 28, 373-381.
[46]
Schwab, R.; Ossowski, S.; Riester, M.; Warthmann, N.; Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18, 1121-1133.
[47]
Warthmann, N.; Chen, H.; Ossowski, S.; Weigel, D.; Herve, P. Highly specific gene silencing by artificial miRNAs in rice. PLoS One, 2008, 3, e1829.
[48]
Molnar, A.; Bassett, A.; Thuenemann, E.; Schwach, F.; Karkare, S.; Ossowski, S.; Weigel, D.; Baulcombe, D. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J., 2009, 58, 165-174.
[49]
Schwab, R.; Ossowski, S.; Warthman, N.; Weigel, D. Directed gene silencing with artificial microRNAs. In: Plant microRNAs, Methods in Molecular Biology. Meyers, B.C.; Green, P.J. eds., Humana Press: Clifton, 2010, 592, pp. 71-89.
[50]
Zhao, T.; Wang, W.; Bai, X.; Qi, Y. Gene silencing by artificial microRNAs in Chlamydomonas. Plant J., 2009, 58, 157-164.
[51]
Kang, N.K.; Jeon, S.; Kwon, S.; Koh, H.G.; Shin, S.E.; Lee, B.; Choi, G.G.; Yang, J.W.; Jeong, B.R.; Chang, Y.K. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol. Biofuels, 2015, 8, 200.
[52]
Chungjatupornchai, W.; Kitraksa, P.; Faaroonsawat, S. Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J. Appl. Phycol., 2016, 28(1), 191-199.
[53]
Srivastava, G.; Nishchal, G.V.V. Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresour. Technol., 2017, pii: S0960-8524(17)30457-1.
[54]
Cha, T.S.; Yee, W.; Aziz, A. Asessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J. Microbiol. Biotechnol., 2012, 28, 1771-1779.
[55]
Kindle, K.L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Methods Enzymol., 1998, 297, 27-38.
[56]
Liu, X.; Curtiss, R., III Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA, 2009, 106, 21550-21554.
[57]
Rosenberg, J.N.; Oyler, G.; Wilkinson, L.; Betenbaugh, M.J. A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol., 2008, 19(5), 430-436.
[58]
Song, D.; Fu, J.; Shi, D. Exploitation of oil- bearing microalgae for biodiesel. Chin. J. Biotechnol., 2008, 24, 341-348.
[59]
Gimpel, J.A.; Specht, E.A.; Georgianna, D.R.; Mayfield, S.P. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr. Opin. Chem. Biol., 2013, 17(3), 489-495.
[60]
Radakovits, R.; Jinkerson, R.E.; Darzins, A.; Posewitz, M.C. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell, 2010, 9(4), 486-501.
[61]
Amaro, H.M.; Guedes, A.C.; Malcata, F.X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy, 2011, 88, 3402-3410.
[62]
Brennan, L.; Owende, P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 2010, 14(2), 557-577.
[63]
Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 2008, 54(4), 621-639.
[64]
Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy, 2010, 87, 38-46.
[65]
Peralta-Yahya, P.; Ouellet, M.; Chan, R.; Mukhopadhyay, A.; Keasling, J.D.; Lee, T.S. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun., 2011, 2, 483.
[66]
Cho, H.S.; Oh, Y.K.; Park, S.C.; Lee, J.W.; Park, J.Y. Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris. Renew. Energy, 2013, 54, 156-160.
[67]
Isleten-Hosoglu, M.; Ayyildic-Tanis, D.; Zengin, G.; Elibol, M. Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic conditions. Bioresour. Technol., 2013, 131, 258-265.
[68]
Valdes, J.R.B.; Aguilar, C.; Esquivel, J.C.C.; Zavala, A.M.; Montanez, J. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol. Rep., 2016, 10, 117-125.
[69]
Dinamarca, J.; Levitan, O.; Kumaraswamy, G.K.; Lun, D.S.; Falkowski, P.G. Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. J. Phycol., 2017, 53, 405-414.
[70]
Dhup, S.; Kannan, D.C.; Dhawan, V. Growth, lipid productivity and cellular mechanism of lipid accumulation in microalgae Monoraphidium sp. following different phosphorous concentrations for biofuel production. Curr. Sci., 2017, 112(3), 539-548.
[71]
Leite, G.B.; Abdelaziz, A.E.M.; Hallenbeck, P.C. Algal biofuels: Challenges and opportunities. Bioresour. Technol., 2013, 145, 134-141.
[72]
Deng, X.; Li, Y.; Fei, X. Microalgae: A promising feedstock for biodiesel. Afr. J. Microbiol. Res., 2009, 3, 1008-1014.
[73]
Becker, E.W.; Baddiley, J.; Higgins, I.J.; Potter, W.G. Microalgae: Biotechnology and Microbiology; Cambridge University Press: Cambridge, 1994.
[74]
Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv., 2007, 25, 294-306.
[75]
Andruleviciute, V.; Makareviciene, V.; Skorupskaite, V.; Gumbyte, M. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J. Appl. Phycol., 2014, 26, 83-90.
[76]
Couto, R.M.; Simoes, P.C.; Reis, A.; Da Silva, T.L.; Martins, V.H.; Sanchez-Vicente, Y. Supercritical fluid extraction of lipids from the heterotrophic microalgae Crypthecodinium cohnii. Eng. Life Sci., 2010, 10, 158-164.
[77]
Guiheneuf, F.; Mimouni, V.; Ulmann, L.; Tremblin, G. Environmental factors affecting growth and omega 3 fatty acid composition in Skeletonema costatum. The influences of irradiance and carbon source. Diatom Res., 2008, 23, 93-103.
[78]
Gouveia, L.; Oliveira, A.C. Microalgae as raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 2009, 36, 269-274.
[79]
Pratoomyot, J.; Srivilas, P.; Noiraksar, T. Fatty acids composition of 10 microalgal species. Songklanakarin J. Sci. Technol., 2005, 27, 1179-1187.
[80]
Pruvost, J.; Van Vooren, G.; Cogne, G.; Legrand, J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour. Technol., 2009, 100, 5988-5995.
[81]
Budge, S.M.; Parrish, C.C. Lipid class and fatty acid composition of Pseudonitzschia multiseries and Pseudonitzschia pungens and effects of lipolytic enzyme deactivation. Phytochemistry, 1999, 52, 561-566.
[82]
Ratledge, C.; Cohen, Z. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol., 2008, 20, 155-160.
[83]
Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Biodiesel production from oleaginous microorganisms. Renew. Energy, 2009, 34, 1-5.
[84]
Fajardo, A.F.; Cerdan, L.E.; Medina, A.R.; Fernandaz, F.G.A.; Moreno, P.A.G.; Grima, E.M. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur. J. Lipid Sci. Technol., 2007, 109, 120-126.
[85]
Song, M.; Pei, H.; Hu, W.; Ma, G. Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour. Technol., 2013, 141, 245-251.
[86]
Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environment impacts and future prospects. Biomass Bioenergy, 2013, 53, 29-38.
[87]
Medipally, S.R.; Yusoff, F.M.; Banerjee, S.; Shariff, M. Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Res. Int., 2015, 2015, Article ID: 519513.
[88]
Sakthivel, R.; Elumalai, S.; Arif, M.M. Microalgae lipid research, past, present: A critical review for biodiesel production in the future. J. Exp. Sci., 2011, 2, 29-49.
[89]
Griffiths, M.J.; Dicks, R.G.; Richardson, C.; Harrison, S.T.L. Advantages and challenges of microalgae as a source of oil for biodiesel, biodiesel-feedstocks and processing technologies; InTech Europe, 2011. DOI: 10.5772/30085.
[90]
Cheirsilp, B.; Torpee, S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol., 2012, 110, 510-516.
[91]
Lavens, P.; Sorgeloos, P. Manual on the production and use of live food for aquaculture. FAO Fisheries, Technical Paper. No. 361, 1996.
[92]
Wahidin, S.; Idris, A.; Shaleh, S.R.M. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol., 2013, 129, 7-11.
[93]
Cordero, J.; Guevara, M.; Morales, E.; Lodeiros, C. Effect of heavy metals on the growth of tropical microalga Tetrasermis chuii (Prasinophyceae). Rev. Biol. Trop., 2005, 53, 325-330.
[94]
Salih, F.M. Microalgae tolerance to high concentrations of carbon dioxide: A review. J. Environ. Prot., 2011, 2, 648-654.
[95]
Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: High-Efficiency microalgae for biodiesel production. Bioenergy Resour., 2008, 1, 20-43.
[96]
Dassey, A.J.; Theegala, C.S. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol., 2013, 128, 241-245.
[97]
Rashid, N.; Rehman, S.U.; Han, J. Rapid harvesting of freshwater microalgae using chitosan. Process Biochem., 2013, 48(7), 1107-1110.
[98]
Cravotto, G.; Boffa, L.; Mantegna, S.; Perego, P.; Avogadro, M.; Cintas, P. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem., 2008, 15(5), 898-902.
[99]
Xiong, W.; Li, X.; Xiang, J.; Wu, Q. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol., 2008, 78, 29-36.
[100]
Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, M. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol., 2011, 102, 10163-10172.
[101]
Borchord, J.A.; Omelia, C.R. Sand filteration of algal suspensions. J. Am. Water Works Assoc., 1961, 53, 1493-1502.
[102]
Zhang, X.; Hu, Q.; Sommerfeld, M.; Puruhito, E.; Chen, Y. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour. Technol., 2010, 101, 5297-5304.
[103]
Zhang, W.; Zhang, W.; Zhang, X.; Amendola, P.; Hu, Q.; Chen, Y. Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting. Algal Res., 2013, 2, 223-229.
[104]
Coward, T.; Lee, J.G.M.; Caldwell, G.S. Development of a foam floatation system for harvesting microalgae biomass. Algal Res., 2013, 2, 135-144.
[105]
Grima, E.M.; Belarbi, E.H.; Fernandez, A.; Medina, A.R.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process option and economics. Biotechnol. Adv., 2003, 20, 491-516.
[106]
Pragya, N.; Pandey, K.K.; Sahoo, P.K. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew. Sustain. Energy Rev., 2013, 24, 159-171.
[107]
Mollah, M.Y.A.; Morkovsky, P.; Gomes, J.A.G.; Kesmez, M.; Parga, J.; Cocke, D.L. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. B, 2004, 114, 199-210.
[108]
Matos, C.T.; Santos, M.; Nobre, B.P.; Gouveia, L. Nannochloropsis sp. Biomass recovery by electro-coagulation for biodiesel and pigment production. Bioresour. Technol., 2013, 134, 219-226.
[109]
Golueke, C.G.; Oswald, W.J. Harvesting and processing sewage grown algae. J. Water Pollut. Control Fed., 1965, 37(4), 471-498.
[110]
Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv., 2012, 30, 709-732.
[111]
Beatrice, G.T.; Chandra, S.T. Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures. Renew. Energy, 2014, 64, 238-243.
[112]
Farooq, W.; Lee, Y.C.; Ryu, B.G.; Kim, B.H.; Kim, H.S.; Choi, Y.E.; Yang, J.W. Two-stage cultivation of two Chorella sp. Strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour. Technol., 2013, 132, 230-238.
[113]
Yoo, C.; Jun, S.Y.; Lee, J.Y.; Ahn, C.Y.; Oh, H.M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., 2010, 101, S71-S74.
[114]
Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 2009, 102, 100-112.
[115]
Zhu, L.D.; Takala, J.; Hiltunen, E.; Wang, Z.M. Recycling harvest water to cultivate Chlorella zonfingiensis under nutrient limitation for biodiesel production. Bioresour. Technol., 2013, 144, 14-20.
[116]
Kelly, M.; Dworjanyn, S. The Potential of Marine Biomass for Anaerobic Biogas Production: A Feasibility Study with Recommendations for Further Research; The Crown Estate, 2008.
[117]
Liu, J.; Mukherjee, J.; Hawkes, J.J.; Wilkinson, S.J. Optimization of lipid production for algal biodiesel in nitrogen stressed cells of Dunaliella salina using FTIR analysis. J. Chem. Technol. Biotechnol., 2013, 88, 1807-1814.
[118]
Bondioli, P.; Bella, L.D.; Rivolta, G.; Zittelli, G.C.; Bassi, N.; Rodolfi, L.; Casini, D.; Prussi, M.; Chiaramonti, D.; Tredici, M.R. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol., 2012, 114, 567-572.
[119]
Wen, X.; Du, K.; Wang, Z.; Peng, X.; Luo, L.; Tao, H.; Li, Y. Effective cultivation of microalgae for biofuel production: A pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol. Biofuels, 2016, 9(1), 123.
[120]
Prabakaran, P.; Ravindran, A.D. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett. Appl. Microbiol., 2011, 53, 15-154.
[121]
Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy, 2011, 88, 3411-3424.
[122]
Lee, O.K.; Kim, A.L.; Seong, D.H.; Lee, C.G.; Jung, Y.T.; Lee, J.W.; Lee, E.Y. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol., 2013, 132, 197-201.
[123]
Suarli, E.; Sarbatly, R. Conversion of microalgae to biofuel. Renew. Sustain. Energy Rev., 2012, 16, 4316-4342.
[124]
Amin, S. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage., 2009, 50, 1834-1840.
[125]
Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioenergy, 2006, 101, 87-96.
[126]
Tamagnini, P.; Leitao, E.; Oliveira, P.; Ferreira, D.; Pinto, F.; Harris, D.J.; Heidorn, T.; Lindblad, P. Cyanobacterial hydrogenases: Diversity, regulation and applications. FEMS Microbiol. Rev., 2007, 31, 692-720.
[127]
Sellner, K.G.; Doucette, G.J.; Kirkpatrick, G.J. Harmful algal bloom: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol., 2003, 30, 383-406.