Review Article

可能可行的口腔念珠菌病替代疗法

卷 26, 期 14, 2019

页: [2515 - 2528] 页: 14

弟呕挨: 10.2174/0929867325666180601102333

价格: $65

摘要

念珠菌是导致感染(念珠菌病)的主要人类真菌病原体,主要在老年人和免疫功能低下的宿主中。即使念珠菌属。是共生中口腔微生物群的成员,在某些情况下,它会导致微生物失衡导致生态失调,导致口腔疾病。由于几种抗真菌药物的活性受到损害,因此迫切需要替代疗法来治疗口腔念珠菌病(通常与生物膜相关)。发生这种情况尤其是由于念珠菌属中耐药性的增加。株。过度使用抗真菌药物,全身毒性,与其他药物的交叉反应性和目前数量低的具有抗真菌活性的药物分子,导致了重要的临床局限性。 我们对用于管理口腔念珠菌病的替代方案进行了重点评估,对同行评审的研究文献进行了书目数据库(PubMed Central,Elsevier的ScienceDirect,SCOPUS和Springer的SpringerLink)的结构化搜索。使用的关键词是“念珠菌病”,“口腔念珠菌病”,“生物膜+念珠菌”,“替代治疗”,“联合疗法+念珠菌”,本综述考虑了最近10至15年的报告。 该综述确定了治疗口腔念珠菌病的几种有前途的新方法:联合抗念珠菌治疗,义齿清洁剂,漱口水作为破坏念珠菌生物膜的替代品,天然化合物(例如蜂蜜,益生菌,植物提取物和精油)和光动力疗法。该评价的结果证实了开发口服念珠菌感染的有效疗法的重要性和紧迫性。

关键词: 念珠菌,口腔念珠菌病,耐药,抗真菌治疗,植物,蜂蜜,益生菌,光动力疗法。

[1]
Lass-Flörl, C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses, 2009, 52(3), 197-205. [http://dx.doi.org/10.1111/j.1439-0507.2009.01691.x]. [PMID: 19391253].
[2]
Williams, D.W.; Kuriyama, T.; Silva, S.; Malic, S.; Lewis, M.A.O. Candida biofilms and oral candidosis: treatment and prevention. Periodontol. 2000, 2011, 55(1), 250-265. [http://dx.doi.org/10.1111/j.1600-0757.2009.00338.x]. [PMID: 21134239].
[3]
Lewis, M.A.O.; Williams, D.W. Diagnosis and management of oral candidosis. Br. Dent. J., 2017, 223(9), 675-681. [http://dx.doi.org/10.1038/sj.bdj.2017.886]. [PMID: 29123282].
[4]
Rodrigues, M.E.; Henriques, M.; Silva, S. Disinfectants to Fight Oral Candida Biofilms. Adv. Exp. Med. Biol., 2016, 931, 83-93. [http://dx.doi.org/10.1007/5584_2016_10]. [PMID: 27271679].
[5]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev., 2007, 20(1), 133-163. [http://dx.doi.org/10.1128/CMR.00029-06]. [PMID: 17223626].
[6]
Hajjeh, R.A.R.A.; Sofair, A.N.A.N.; Harrison, L.H.L.H.; Lyon, G.M.M.; Arthington-Skaggs, B.A.B.A.; Mirza, S.A.S.A.; Phelan, M.; Morgan, J.; Lee-Yang, W.; Ciblak, M.A.M.A.; Benjamin, L.E.; Sanza, L.T.; Huie, S.; Yeo, S.F.; Brandt, M.E.; Warnock, D.W. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J. Clin. Microbiol., 2004, 42(4), 1519-1527. [http://dx.doi.org/10.1128/JCM.42.4.1519-1527.2004]. [PMID: 15070998].
[7]
Horn, D.L.; Neofytos, D.; Anaissie, E.J.; Fishman, J.A.; Steinbach, W.J.; Olyaei, A.J.; Marr, K.A.; Pfaller, M.A.; Chang, C.H.; Webster, K.M. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin. Infect. Dis., 2009, 48(12), 1695-1703. [http://dx.doi.org/10.1086/599039]. [PMID: 19441981].
[8]
Krcmery, V.; Barnes, A.J. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J. Hosp. Infect., 2002, 50(4), 243-260. [http://dx.doi.org/10.1053/jhin.2001.1151]. [PMID: 12014897].
[9]
Miranda, L.N.; van der Heijden, I.M.; Costa, S.F.; Sousa, A.P.I.; Sienra, R.A.; Gobara, S.; Santos, C.R.; Lobo, R.D.; Pessoa, V.P., Jr; Levin, A.S. Candida colonisation as a source for candidaemia. J. Hosp. Infect., 2009, 72(1), 9-16. [http://dx.doi.org/10.1016/j.jhin.2009.02.009]. [PMID: 19303662].
[10]
Liguori, G.; Di Onofrio, V.; Lucariello, A.; Gallé, F.; Signoriello, G.; Colella, G.; D’Amora, M.; Rossano, F. Oral candidiasis: a comparison between conventional methods and multiplex polymerase chain reaction for species identification. Oral Microbiol. Immunol., 2009, 24(1), 76-78. [http://dx.doi.org/10.1111/j.1399-302X.2008.00447.x]. [PMID: 19121074].
[11]
González, G.M.; Elizondo, M.; Ayala, J. Trends in species distribution and susceptibility of bloodstream isolates of Candida collected in Monterrey, Mexico, to seven antifungal agents: results of a 3-year (2004 to 2007) surveillance study. J. Clin. Microbiol., 2008, 46(9), 2902-2905. [http://dx.doi.org/10.1128/JCM.00937-08]. [PMID: 18632907].
[12]
Rodrigues, C.F.; Rodrigues, M.E.; Silva, S.; Henriques, M. Candida glabrata Biofilms: How far have we come? J. Fungi (Basel), 2017, 3(1), 11. [http://dx.doi.org/10.3390/jof3010011]. [PMID: 29371530].
[13]
Seneviratne, C.J.; Silva, W.J.; Jin, L.J.; Samaranayake, Y.H.; Samaranayake, L.P. Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Arch. Oral Biol., 2009, 54(11), 1052-1060. [http://dx.doi.org/10.1016/j.archoralbio.2009.08.002]. [PMID: 19712926].
[14]
Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henriques, M. Candida species biofilms’ antifungal resistance. J. Fungi (Basel), 2017, 3(1), 8. [http://dx.doi.org/10.3390/jof3010008]. [PMID: 29371527].
[15]
Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol., 2011, 19(5), 241-247. [http://dx.doi.org/10.1016/j.tim.2011.02.003]. [PMID: 21411325].
[16]
Hawser, S.P.; Douglas, L.J. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother., 1995, 39(9), 2128-2131. [http://dx.doi.org/10.1128/AAC.39.9.2128]. [PMID: 8540729].
[17]
Ramage, G.; Wickes, B.L.; Lopez-Ribot, J.L. Biofilms of Candida albicans and their associated resistance to antifungal agents. Am. Clin. Lab., 2001, 20(7), 42-44. [PMID: 11570274].
[18]
Geerts, G.A.V.M.; Stuhlinger, M.E.; Basson, N.J. Effect of an antifungal denture liner on the saliva yeast count in patients with denture stomatitis: a pilot study. J. Oral Rehabil., 2008, 35(9), 664-669. [http://dx.doi.org/10.1111/j.1365-2842.2007.01805.x]. [PMID: 18793352].
[19]
Freire, F.; Ferraresi, C.; Jorge, A.O.C.; Hamblin, M.R. Photodynamic therapy of oral Candida infection in a mouse model. J. Photochem. Photobiol. B, 2016, 159, 161-168. [http://dx.doi.org/10.1016/j.jphotobiol.2016.03.049]. [PMID: 27074245].
[20]
Mima, E.G. de O.; Pavarina, A.C.; Dovigo, L.N.; Vergani, C.E.; Costa, C.A. de S.; Kurachi, C.; Bagnato, V.S. Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2010, 109(3), 392-401. [http://dx.doi.org/10.1016/j.tripleo.2009.10.006]. [PMID: 20060338].
[21]
Souza, R.C.; Junqueira, J.C.; Rossoni, R.D.; Pereira, C.A.; Munin, E.; Jorge, A.O.C. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med. Sci., 2010, 25(3), 385-389. [http://dx.doi.org/10.1007/s10103-009-0706-z]. [PMID: 19579004].
[22]
Pereira Gonzales, F.; Maisch, T. Photodynamic inactivation for controlling Candida albicans infections. Fungal Biol., 2012, 116(1), 1-10. [http://dx.doi.org/10.1016/j.funbio.2011.10.001]. [PMID: 22208597].
[23]
de Souza, S.C.; Junqueira, J.C.; Balducci, I.; Koga-Ito, C.Y.; Munin, E.; Jorge, A.O.C. Photosensitization of different Candida species by low power laser light. J. Photochem. Photobiol. B, 2006, 83(1), 34-38. [http://dx.doi.org/10.1016/j.jphotobiol.2005.12.002]. [PMID: 16413196].
[24]
Giroldo, L.M.; Felipe, M.P.; de Oliveira, M.A.; Munin, E.; Alves, L.P.; Costa, M.S. Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med. Sci., 2009, 24(1), 109-112. [http://dx.doi.org/10.1007/s10103-007-0530-2]. [PMID: 18157564].
[25]
Cabrini Juliana, C.; Alves, F.; Basso, F.G.; De Souza Costa, C.A.; Bagnato, V.S.; Garcia De Oliveira Mima, E.; Pavarina, A.C. Treatment of oral candidiasis using photodithazine. PLoS One, 2016, 11e0156947
[26]
Soares, B.M.; da Silva, D.L.; Sousa, G.R.; Amorim, J.C.F.; de Resende, M.A.; Pinotti, M.; Cisalpino, P.S. In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J. Photochem. Photobiol. B, 2009, 94(1), 65-70. [http://dx.doi.org/10.1016/j.jphotobiol.2008.07.013]. [PMID: 19014890].
[27]
Dovigo, L.N.; Carmello, J.C.; Carvalho, M.T.; Mima, E.G.; Vergani, C.E.; Bagnato, V.S.; Pavarina, A.C. Photodynamic inactivation of clinical isolates of Candida using Photodithazine®. Biofouling, 2013, 29(9), 1057-1067. [http://dx.doi.org/10.1080/08927014.2013.827668]. [PMID: 24025068].
[28]
Baltazar, L.M.; Ray, A.; Santos, D.A.; Cisalpino, P.S.; Friedman, A.J.; Nosanchuk, J.D.; Cisalpino, P.S.; Friedman, A.J. Antimicrobial photodynamic therapy: An effective alternative approach to control fungal infections. Front. Microbiol., 2015, 6, 202. [http://dx.doi.org/10.3389/fmicb.2015.00202]. [PMID: 25821448].
[29]
FAO/WHO. Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation., 2001.
[30]
Sanders, M.E. Probiotics: definition, sources, selection, and uses. Clin. Infect. Dis., 2008, 46(Suppl. 2), S58-S61. [http://dx.doi.org/10.1086/523341]. [PMID: 18181724].
[31]
Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol., 1989, 66(5), 365-378. [http://dx.doi.org/10.1111/j.1365-2672.1989.tb05105.x]. [PMID: 2666378].
[32]
Gourbeyre, P.; Denery, S.; Bodinier, M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J. Leukoc. Biol., 2011, 89(5), 685-695. [http://dx.doi.org/10.1189/jlb.1109753]. [PMID: 21233408].
[33]
Demirel, G.; Celik, I.H.; Erdeve, O.; Saygan, S.; Dilmen, U.; Canpolat, F.E. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants. Eur. J. Pediatr., 2013, 172(10), 1321-1326. [http://dx.doi.org/10.1007/s00431-013-2041-4]. [PMID: 23703468].
[34]
Kumar, S.; Singhi, S.; Chakrabarti, A.; Bansal, A.; Jayashree, M. Probiotic use and prevalence of candidemia and candiduria in a PICU. Pediatr. Crit. Care Med., 2013, 14(9), e409-e415. [http://dx.doi.org/10.1097/PCC.0b013e31829f5d88]. [PMID: 23965638].
[35]
Matsubara, V.H.; Bandara, H.M.H.N.; Mayer, M.P.A.; Samaranayake, L.P. Probiotics as Antifungals in Mucosal Candidiasis. Clin. Infect. Dis., 2016, 62(9), 1143-1153. [http://dx.doi.org/10.1093/cid/ciw038]. [PMID: 26826375].
[36]
Bandara, H.M.H.N.; Matsubara, V.H.; Samaranayake, L.P. Future therapies targeted towards eliminating Candida biofilms and associated infections. Expert Rev. Anti Infect. Ther., 2017, 15(3), 299-318. [http://dx.doi.org/10.1080/14787210.2017.1268530]. [PMID: 27927053].
[37]
Ishikawa, K.H.; Mayer, M.P.A.; Miyazima, T.Y.; Matsubara, V.H.; Silva, E.G.; Paula, C.R.; Campos, T.T.; Nakamae, A.E.M. A multispecies probiotic reduces oral Candida colonization in denture wearers. J. Prosthodont., 2015, 24(3), 194-199. [http://dx.doi.org/10.1111/jopr.12198]. [PMID: 25143068].
[38]
Jørgensen, M.R.; Keller, M.K.; Kragelund, C.; Twetman, S. Effect of Probiotic Bacteria on Oral Candida in Frail Elderly. JDR Clin. Res. Suppl., 2012, 94, 181S-186S. [http://dx.doi.org/10.1177/0022034515595950].
[39]
Li, D.; Li, Q.; Liu, C.; Lin, M.; Li, X.; Xiao, X.; Zhu, Z.; Gong, Q.; Zhou, H. Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis. Mycoses, 2014, 57(3), 141-146. [http://dx.doi.org/10.1111/myc.12116]. [PMID: 23952962].
[40]
Mendonça, F.H.B.P.; Santos, S.S. Faria, Ida.S.; Gonçalves e Silva, C.R.; Jorge, A.O.; Leão, M.V. Effects of probiotic bacteria on Candida presence and IgA anti-Candida in the oral cavity of elderly. Braz. Dent. J., 2012, 23(5), 534-538. [http://dx.doi.org/10.1590/S0103-64402012000500011]. [PMID: 23306230].
[41]
Hatakka, K.; Ahola, A.J.; Yli-Knuuttila, H.; Richardson, M.; Poussa, T.; Meurman, J.H.; Korpela, R. Probiotics reduce the prevalence of oral candida in the elderly--a randomized controlled trial. J. Dent. Res., 2007, 86(2), 125-130. [http://dx.doi.org/10.1177/154405910708600204]. [PMID: 17251510].
[42]
Haukioja, A. Probiotics and oral health. Eur. J. Dent., 2010, 4(3), 348-355. [PMID: 20613927].
[43]
Krasse, P.; Carlsson, B.; Dahl, C.; Paulsson, A.; Nilsson, A.; Sinkiewicz, G. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed. Dent. J., 2006, 30(2), 55-60. [PMID: 16878680].
[44]
Vivekananda, M.R.; Vandana, K.L.; Bhat, K.G. Effect of the probiotic Lactobacilli reuteri (Prodentis) in the management of periodontal disease: a preliminary randomized clinical trial. J. Oral Microbiol., 2010, 2. [http://dx.doi.org/10.3402/jom.v2i0.5344]. [PMID: 21523225].
[45]
Cagetti, M.G.; Mastroberardino, S.; Milia, E.; Cocco, F.; Lingström, P.; Campus, G. The use of probiotic strains in caries prevention: a systematic review. Nutrients, 2013, 5(7), 2530-2550. [http://dx.doi.org/10.3390/nu5072530]. [PMID: 23857225].
[46]
Ohshima, T.; Kojima, Y.; Seneviratne, C.J.; Maeda, N.; Seneviratne, C.J.; Maeda, N. Therapeutic application of synbiotics, a fusion of probiotics and prebiotics, and biogenics as a new concept for oral candida infections: A mini review. Front. Microbiol., 2016, 7, 10. [http://dx.doi.org/10.3389/fmicb.2016.00010]. [PMID: 26834728].
[47]
Reid, G.; Younes, J.A.; Van der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol., 2011, 9(1), 27-38. [http://dx.doi.org/10.1038/nrmicro2473]. [PMID: 21113182].
[48]
Pascual, L.M.; Daniele, M.B.; Giordano, W.; Pájaro, M.C.; Barberis, I.L. Purification and partial characterization of novel bacteriocin L23 produced by Lactobacillus fermentum L23. Curr. Microbiol., 2008, 56(4), 397-402. [http://dx.doi.org/10.1007/s00284-007-9094-4]. [PMID: 18172715].
[49]
Sharma, A.; Srivastava, S. Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol., 2014, 118(2), 264-275. [http://dx.doi.org/10.1016/j.funbio.2013.12.006]. [PMID: 24528647].
[50]
Okkers, D.J.; Dicks, L.M.; Silvester, M.; Joubert, J.J.; Odendaal, H.J. Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J. Appl. Microbiol., 1999, 87(5), 726-734. [http://dx.doi.org/10.1046/j.1365-2672.1999.00918.x]. [PMID: 10594714].
[51]
H. C.. Hoover, D. G. Bacteriocins and their Food Applications. Compr. Rev. Food Sci. Food Saf., 2003, 2, 82-100. [http://dx.doi.org/10.1111/j.1541-4337.2003.tb00016.x].
[52]
Talarico, T.L.; Casas, I.A.; Chung, T.C.; Dobrogosz, W.J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 1988, 32(12), 1854-1858. [http://dx.doi.org/10.1128/AAC.32.12.1854]. [PMID: 3245697].
[53]
Gänzle, M.G.; Höltzel, A.; Walter, J.; Jung, G.; Hammes, W.P. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol., 2000, 66(10), 4325-4333. [http://dx.doi.org/10.1128/AEM.66.10.4325-4333.2000]. [PMID: 11010877].
[54]
Jay, J.M. Antimicrobial properties of diacetyl. Appl. Environ. Microbiol., 1982, 44(3), 525-532. [PMID: 7137998].
[55]
Chung, T.C.; Axelsson, L.; Lindgren, S.E.; Dobrogosz, W.J. In Vitro Studies on Reuterin Synthesis by Lactobacillus reuteri. Microb. Ecol. Health Dis., 1989, 2, 137-144. [http://dx.doi.org/10.3109/08910608909140211].
[56]
Shokryazdan, P.; Sieo, C.C.; Kalavathy, R.; Liang, J.B.; Alitheen, N.B.; Faseleh Jahromi, M.; Ho, Y.W. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Res. Int., 2014.2014927268 [http://dx.doi.org/10.1155/2014/927268]. [PMID: 25105147].
[57]
Maekawa, T.; Ishijima, S.A.; Ida, M.; Izumo, T.; Ono, Y.; Shibata, H.; Abe, S. Prophylactic effect of lactobacillus pentosus strain s-pt84 on Candida infection and gastric inflammation in a Murine gastrointestinal Candidiasis model. Med. Mycol. J., 2016, 57.
[58]
Wagner, R.D.; Pierson, C.; Warner, T.; Dohnalek, M.; Farmer, J.; Roberts, L.; Hilty, M.; Balish, E. Biotherapeutic effects of probiotic bacteria on candidiasis in immunodeficient mice. Infect. Immun., 1997, 65(10), 4165-4172. [PMID: 9317023].
[59]
Elahi, S.; Pang, G.; Ashman, R.; Clancy, R. Enhanced clearance of Candida albicans from the oral cavities of mice following oral administration of Lactobacillus acidophilus. Clin. Exp. Immunol., 2005, 141(1), 29-36. [http://dx.doi.org/10.1111/j.1365-2249.2005.02811.x]. [PMID: 15958067].
[60]
Matsubara, V.H.; Silva, E.G.; Paula, C.R.; Ishikawa, K.H.; Nakamae, A.E. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis., 2012, 18(3), 260-264. [http://dx.doi.org/10.1111/j.1601-0825.2011.01868.x]. [PMID: 22059932].
[61]
Zavisic, G.; Petricevic, S.; Radulovic, Z.; Begovic, J.; Golic, N.; Topisirovic, L.; Strahinic, I. Probiotic features of two oral Lactobacillus isolates. Braz. J. Microbiol., 2012, 43(1), 418-428. [http://dx.doi.org/10.1590/S1517-83822012000100050]. [PMID: 24031847].
[62]
Kojima, Y.; Ohshima, T.; Seneviratne, C.J.; Maeda, N. Combining prebiotics and probiotics to develop novel synbiotics that suppress oral pathogens. J. Oral Biosci., 2016, 58, 27-32. [http://dx.doi.org/10.1016/j.job.2015.08.004].
[63]
Matsubara, V.H.; Wang, Y.; Bandara, H.M.H.N.; Mayer, M.P.A.; Samaranayake, L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol., 2016, 100(14), 6415-6426. [http://dx.doi.org/10.1007/s00253-016-7527-3]. [PMID: 27087525].
[64]
Caufield, P.W.; Schön, C.N.; Saraithong, P.; Li, Y.; Argimón, S. Oral Lactobacilli and Dental Caries: A Model for Niche Adaptation in Humans; JDR Clin. Res, 2015. [http://dx.doi.org/10.1177/0022034515576052]
[65]
Kõll, P.; Mändar, R.; Marcotte, H.; Leibur, E.; Mikelsaar, M.; Hammarström, L. Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol. Immunol., 2008, 23(2), 139-147. [http://dx.doi.org/10.1111/j.1399-302X.2007.00402.x]. [PMID: 18279182].
[66]
Tiihonen, K.; Ouwehand, A.C.; Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing Res. Rev., 2010, 9(2), 107-116. [http://dx.doi.org/10.1016/j.arr.2009.10.004]. [PMID: 19874918].
[67]
James, K.M.; MacDonald, K.W.; Chanyi, R.M.; Cadieux, P.A.; Burton, J.P. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. J. Med. Microbiol., 2016, 65(4), 328-336. [http://dx.doi.org/10.1099/jmm.0.000226]. [PMID: 26847045].
[68]
Song, Y.G.; Lee, S.H. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Arch. Oral Biol., 2017, 76, 1-6. [http://dx.doi.org/10.1016/j.archoralbio.2016.12.014]. [PMID: 28063305].
[69]
Zhao, C.; Lv, X.; Fu, J.; He, C.; Hua, H.; Yan, Z. In vitro inhibitory activity of probiotic products against oral Candida species. J. Appl. Microbiol., 2016, 121(1), 254-262. [http://dx.doi.org/10.1111/jam.13138]. [PMID: 26999745].
[70]
Parčina Amižić, I.; Cigić, L.; Gavić, L.; Radić, M.; Biočina Lukenda, D.; Tonkić, M.; Goić Barišić, I. Antimicrobial efficacy of probiotic-containing toothpastes: an in vitro evaluation. Med Glas (Zenica), 2017, 14(1), 139-144. [http://dx.doi.org/10.17392/870-16]. [PMID: 28165440].
[71]
Mishra, R.; Tandon, S.; Rathore, M.; Banerjee, M. Antimicrobial efficacy of probiotic and herbal oral rinses against Candida albicans in children: A randomized clinical trial. Int. J. Clin. Pediatr. Dent., 2016, 9(1), 25-30. [http://dx.doi.org/10.5005/jp-journals-10005-1328]. [PMID: 27274151].
[72]
Bohora, A.; Kokate, S. Evaluation of the role of probiotics in endodontic treatment: A preliminary study. J. Int. Soc. Prev. Community Dent., 2017, 7(1), 46-51. [http://dx.doi.org/10.4103/2231-0762.200710]. [PMID: 28316949].
[73]
Miyazima, T.Y.; Ishikawa, K.H.; Mayer, M.; Saad, S.; Nakamae, A. Cheese supplemented with probiotics reduced the Candida levels in denture wearers-RCT. Oral Dis., 2017, 23(7), 919-925. [http://dx.doi.org/10.1111/odi.12669]. [PMID: 28346730].
[74]
Oliveira, V.M.C.; Santos, S.S.F.; Silva, C.R.G.; Jorge, A.O.C.; Leão, M.V. Lactobacillus is able to alter the virulence and the sensitivity profile of Candida albicans. J. Appl. Microbiol., 2016, 121(6), 1737-1744. [http://dx.doi.org/10.1111/jam.13289]. [PMID: 27606962].
[75]
Van Houte, J.; Gibbons, R.J.; Pulkkinen, A.J. Ecology of human oral lactobacilli. Infect. Immun., 1972, 6(5), 723-729. [PMID: 4637297].
[76]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412. [http://dx.doi.org/10.1093/jn/125.6.1401]. [PMID: 7782892].
[77]
Rodrigues, C.F.; Henriques, M. Oral mucositis caused by Candida glabrata biofilms: Failure of the concomitant use of fluconazole and ascorbic acid. Ther. Adv. Infect. Dis., 2017, 4(1), 10-17. [http://dx.doi.org/10.1177/2049936116684477].
[78]
Almståhl, A.; Lingström, P.; Eliasson, L.; Carlén, A. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains. Clin. Oral Investig., 2013, 17(6), 1465-1470. [http://dx.doi.org/10.1007/s00784-012-0832-z]. [PMID: 22956128].
[79]
Larmas, M.; Mäkinen, K.K.; Scheinin, A. Turku sugar studies. III. An intermediate report on the effect of sucrose, fructose and xylitol diets on the numbers of salivary lactobacilli, candida and streptococci. Acta Odontol. Scand., 1974, 32(6), 423-433. [http://dx.doi.org/10.3109/00016357409026551]. [PMID: 4618417].
[80]
Larmas, M.; Mäkinen, K.K.; Scheinin, A. Turku sugar studies. VIII. Principal microbiological findings. Acta Odontol. Scand., 1976, 34(5), 285-328. [http://dx.doi.org/10.3109/00016357609004644]. [PMID: 1070216].
[81]
Pizzo, G.; Giuliana, G.; Milici, M.E.; Giangreco, R. Effect of dietary carbohydrates on the in vitro epithelial adhesion of Candida albicans, Candida tropicalis, and Candida krusei. New Microbiol., 2000, 23(1), 63-71. [PMID: 10946407].
[82]
Abu-Elteen, K.H. The influence of dietary carbohydrates on in vitro adherence of four Candida species to human buccal epithelial cells. Microb. Ecol. Health Dis., 2005, 17, 156-162. [http://dx.doi.org/10.1080/08910600500442917].
[83]
Junio, H.A.; Sy-Cordero, A.A.; Ettefagh, K.A.; Burns, J.T.; Micko, K.T.; Graf, T.N.; Richter, S.J.; Cannon, R.E.; Oberlies, N.H.; Cech, N.B. Synergy-directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis). J. Nat. Prod., 2011, 74(7), 1621-1629. [http://dx.doi.org/10.1021/np200336g]. [PMID: 21661731].
[84]
Silva, N.; Fernandes Júnior, A. Biological properties of medicinal plants: a review of their antimicrobial activity. J. Venom. Anim. Toxins Incl. Trop. Dis., 2010, 16, 402-413. [http://dx.doi.org/10.1590/S1678-91992010000300006].
[85]
Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem., 2015, 170, 378-385. [http://dx.doi.org/10.1016/j.foodchem.2014.08.096]. [PMID: 25306360].
[86]
Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N.A.; Nd, S.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol., 2000, 32, S81-S118.
[87]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582. [http://dx.doi.org/10.1128/CMR.12.4.564]. [PMID: 10515903].
[88]
Lapornik, B.; Prošek, M.; Wondra, A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng., 2005, 71, 214-222. [http://dx.doi.org/10.1016/j.jfoodeng.2004.10.036].
[89]
Martins, N.; Ferreira, I.C.F.R.; Barros, L.; Carvalho, A.M.; Henriques, M.; Silva, S. Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Ind. Crops Prod., 2015, 66, 62-67. [http://dx.doi.org/10.1016/j.indcrop.2014.12.033].
[90]
Martins, N.; Ferreira, I.C.F.R.; Henriques, M.; Silva, S. In vitro anti-Candida activity of Glycyrrhiza glabra L. Ind. Crops Prod., 2016, 83, 81-85. [http://dx.doi.org/10.1016/j.indcrop.2015.12.029].
[91]
Kumar, S.N.; Aravind, S.R.; Sreelekha, T.T.; Jacob, J.; Kumar, B.S.D. Asarones from Acorus calamus in combination with azoles and amphotericin B: a novel synergistic combination to compete against human pathogenic Candida species in vitro. Appl. Biochem. Biotechnol., 2015, 175(8), 3683-3695. [http://dx.doi.org/10.1007/s12010-015-1537-y]. [PMID: 25686561].
[92]
Ali, I.; Sharma, P.; Suri, K.A.; Satti, N.K.; Dutt, P.; Afrin, F.; Khan, I.A. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J. Med. Microbiol., 2011, 60(Pt 9), 1326-1336. [http://dx.doi.org/10.1099/jmm.0.031906-0]. [PMID: 21474610].
[93]
Gupta, V.; Mittal, P.; Bansal, P.; Khokra, S.L.; Kaushik, D. Pharmacological Potential of Matricaria recutita-A Review. Int. J. Pharm. Sci. Drug Res., 2010, 2, 12-16.
[94]
Martín, Á.; Varona, S.; Navarrete, A.; Cocero, M.J. Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. Open Chem. Eng. J., 2010, 4, 31-41. [http://dx.doi.org/10.2174/1874123101004020031].
[95]
Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316. [http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x]. [PMID: 10736000].
[96]
Aleksic, V.; Knezevic, P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res., 2014, 169(4), 240-254. [http://dx.doi.org/10.1016/j.micres.2013.10.003]. [PMID: 24291016].
[97]
Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med., 2006, 6, 39. [http://dx.doi.org/10.1186/1472-6882-6-39]. [PMID: 17134518].
[98]
Pozzatti, P.; Scheid, L.A.; Spader, T.B.; Atayde, M.L.; Santurio, J.M.; Alves, S.H. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Can. J. Microbiol., 2008, 54(11), 950-956. [http://dx.doi.org/10.1139/W08-097]. [PMID: 18997851].
[99]
Ferreira da Costa, M. da C.M. Gomes da Silva, A.; Silva, A. P. S.; Lima, V. L. de M.; Bezerra-Silva, P. C.; Rocha, S. K. L.; Navarro, D. M. A. F.; Correia, M. T. S.; Napoleão, T. H.; Silva, M. V.; Paiva, P. M. G. Essential Oils from Leaves of Medicinal Plants of Brazilian Flora: Chemical Composition and Activity against Candida Species. Medicines (Basel), 2017, 4, 8. [http://dx.doi.org/10.3390/medicines4020027].
[100]
Souza, C.M.C.; Pereira, Junior, S.A. Moraes, Tda.S.; Damasceno, J.L.; Amorim Mendes, S.; Dias, H.J.; Stefani, R.; Tavares, D.C.; Martins, C.H.; Crotti, A.E.; Mendes-Giannini, M.J.; Pires, R.H. Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Med. Mycol., 2016, 54(5), 515-523. [http://dx.doi.org/10.1093/mmy/myw003]. [PMID: 26868902].
[101]
Pires, R.H.; Montanari, L.B.; Martins, C.H.G.; Zaia, J.E.; Almeida, A.M.F.; Matsumoto, M.T.; Mendes-Giannini, M.J.S. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia, 2011, 172(6), 453-464. [http://dx.doi.org/10.1007/s11046-011-9448-0]. [PMID: 21761153].
[102]
Ramage, G.; Jose, A.; Coco, B.; Rajendran, R.; Rautemaa, R.; Murray, C.; Lappin, D.F.; Bagg, J. Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 111(4), 456-460. [http://dx.doi.org/10.1016/j.tripleo.2010.10.043]. [PMID: 21310633].
[103]
Shino, B.; Peedikayil, F.C.; Jaiprakash, S.R.; Ahmed Bijapur, G.; Kottayi, S.; Jose, D. Comparison of Antimicrobial Activity of Chlorhexidine, Coconut Oil, Probiotics, and Ketoconazole on Candida albicans Isolated in Children with Early Childhood Caries: An In Vitro Study. Scientifica (Cairo), 2016.20167061587 [http://dx.doi.org/10.1155/2016/7061587]. [PMID: 27051559].
[104]
Seleem, D.; Benso, B.; Noguti, J.; Pardi, V.; Murata, R.M. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms. PLoS One, 2016, 11(6)e0157188 [http://dx.doi.org/10.1371/journal.pone.0157188]. [PMID: 27284694].
[105]
Szweda, P.; Gucwa, K.; Kurzyk, E.; Romanowska, E.; Dzierżanowska-Fangrat, K.; Zielińska Jurek, A.; Kuś, P.M.; Milewski, S. Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents Against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates. Indian J. Microbiol., 2015, 55(2), 175-183. [http://dx.doi.org/10.1007/s12088-014-0508-2]. [PMID: 25805904].
[106]
Estevinho, M.L.; Afonso, S.E.; Feás, X.; Estevinho, L.; Afonso, S.; Feás, X. Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. J. Food Sci. Technol., 2011, 48(5), 640-643. [http://dx.doi.org/10.1007/s13197-011-0243-1]. [PMID: 23572800].
[107]
Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol., 2008, 46(12), 3774-3779. [http://dx.doi.org/10.1016/j.fct.2008.09.062]. [PMID: 18940227].
[108]
Bardy, J.; Slevin, N.J.; Mais, K.L.; Molassiotis, A. A systematic review of honey uses and its potential value within oncology care. J. Clin. Nurs., 2008, 17(19), 2604-2623. [http://dx.doi.org/10.1111/j.1365-2702.2008.02304.x]. [PMID: 18808626].
[109]
Lusby, P.E.; Coombes, A.L.; Wilkinson, J.M. Bactericidal activity of different honeys against pathogenic bacteria. Arch. Med. Res., 2005, 36(5), 464-467. [http://dx.doi.org/10.1016/j.arcmed.2005.03.038]. [PMID: 16099322].
[110]
Molan, P. Why honey is effective as a medicine. Bee World, 2001, 82, 22-40. [http://dx.doi.org/10.1080/0005772X.2001.11099498].
[111]
Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: a review. Iran. J. Basic Med. Sci., 2013, 16(6), 731-742. [PMID: 23997898].
[112]
Theunissen, F.; Grobler, S.; Gedalia, I. The antifungal action of three South African honeys on Candida albicans. Apidologie (Celle), 2001, 32, 371-379. [http://dx.doi.org/10.1051/apido:2001137].
[113]
Irish, J.; Carter, D.A.; Shokohi, T.; Blair, S.E. Honey has an antifungal effect against Candida species. Med. Mycol., 2006, 44(3), 289-291. [http://dx.doi.org/10.1080/13693780500417037]. [PMID: 16702110].
[114]
Küçük, M.; Kolaylı, S.; Karaoğlu, Ş.; Ulusoy, E.; Baltacı, C.; Candan, F. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem., 2007, 100, 526-534. [http://dx.doi.org/10.1016/j.foodchem.2005.10.010].
[115]
Boukraa, L.; Benbarek, H.; Moussa, A. Synergistic action of starch and honey against Candida albicans in correlation with diastase number. Braz. J. Microbiol., 2008, 39(1), 40-43. [http://dx.doi.org/10.1590/S1517-83822008000100010]. [PMID: 24031175].
[116]
Koc, A.N.; Silici, S.; Ercal, B.D.; Kasap, F.; Hörmet-Oz, H.T.; Mavus-Buldu, H. Antifungal activity of Turkish honey against Candida spp. and Trichosporon spp: an in vitro evaluation. Med. Mycol., 2009, 47(7), 707-712. [http://dx.doi.org/10.3109/13693780802572554]. [PMID: 19888803].
[117]
Shokri, H.; Sharifzadeh, A. Fungicidal efficacy of various honeys against fluconazole-resistant Candida species isolated from HIV+ patients with candidiasis. J. Mycol. Med., 2017, 27(2), 159-165. [http://dx.doi.org/10.1016/j.mycmed.2017.01.004]. [PMID: 28159362].
[118]
Casanova, B.B.; Muniz, M.N.; de Oliveira, T.; de Oliveira, L.F.; Machado, M.M.; Fuentefria, A.M.; Gosmann, G.; Gnoatto, S.C.B. Synthesis and Biological Evaluation of Some Hydrazone Derivatives as Anti-inflammatory Agents. Lett. Drug Des. Discov., 2012, 9, 310-315. [http://dx.doi.org/10.2174/157018012799129828].
[119]
Ferreira, B.D.S.; de Almeida, A.M.; Nascimento, T.C.; de Castro, P.P.; Silva, V.L.; Diniz, C.G.; Le Hyaric, M. Synthesis and biological evaluation of a new series of N-acyldiamines as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2014, 24(19), 4626-4629. [http://dx.doi.org/10.1016/j.bmcl.2014.08.047]. [PMID: 25219900].
[120]
Abrão, P.H.O.; Pizi, R.B.; de Souza, T.B.; Silva, N.C.; Fregnan, A.M.; Silva, F.N.; Coelho, L.F.L.; Malaquias, L.C.C.; Dias, A.L.T.; Dias, D.F.; Veloso, M.P.; Carvalho, D.T. Synthesis and Biological Evaluation of New Eugenol Mannich Bases as Promising Antifungal Agents. Chem. Biol. Drug Des., 2015, 86(4), 459-465. [http://dx.doi.org/10.1111/cbdd.12504].
[121]
Vartak, A.; Mutalik, V.; Parab, R.R.; Shanbhag, P.; Bhave, S.; Mishra, P.D.; Mahajan, G.B. Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680. Lett. Appl. Microbiol., 2014, 58(6), 591-596. [http://dx.doi.org/10.1111/lam.12229]. [PMID: 24517845].
[122]
Carradori, S.; Bizzarri, B.; D’Ascenzio, M.; De Monte, C.; Grande, R.; Rivanera, D.; Zicari, A.; Mari, E.; Sabatino, M.; Patsilinakos, A.; Ragno, R.; Secci, D. Synthesis, biological evaluation and quantitative structure-active relationships of 1,3-thiazolidin-4-one derivatives. A promising chemical scaffold endowed with high antifungal potency and low cytotoxicity. Eur. J. Med. Chem., 2017, 140, 274-292. [http://dx.doi.org/10.1016/j.ejmech.2017.09.026]. [PMID: 28963991].
[123]
de Souza, T. B.; de Oliveira Brito, K. M.; Silva, N. C.; Rocha, R. P.; de Sousa, G. F.; Duarte, L. P.; Coelho, L. F. L.; Dias, A. L. T.; Veloso, M. P.; Carvalho, D. T.; Dias, D. F. New Eugenol Glucoside-based Derivative Shows Fungistatic and Fungicidal Activity against Opportunistic Candida glabrata. Chem. Biol. Drug Des., 2015, n/a-n/a.
[124]
Perera, J.; Weerasekera, M.; Kottegoda, N. Slow release anti-fungal skin formulations based on citric acid intercalated layered double hydroxides nanohybrids. Chem. Cent. J., 2015, 9, 27. [http://dx.doi.org/10.1186/s13065-015-0106-3]. [PMID: 26023319].
[125]
Silva, S.; Pires, P.; Monteiro, D.R.; Negri, M.; Gorup, L.F.; Camargo, E.R.; Barbosa, D.B.; Oliveira, R.; Williams, D.W.; Henriques, M.; Azeredo, J. The effect of silver nanoparticles and nystatin on mixed biofilms of Candida glabrata and Candida albicans on acrylic. Med. Mycol., 2013, 51(2), 178-184. [http://dx.doi.org/10.3109/13693786.2012.700492]. [PMID: 22803822].
[126]
Leonhard, V.; Alasino, R.V.; Muñoz, A.; Beltramo, D.M. Silver nanoparticles with high loading capacity of amphotericin B: Characterization, bactericidal and antifungal effects. Curr. Drug Deliv., 2018, 15(6), 850-859. [http://dx.doi.org/10.2174/1567201814666170918162337]. [PMID: 28925873].
[127]
Ning, Y.; Ling, J.; Wu, C.D. Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida species. Arch. Oral Biol., 2015, 60(10), 1565-1570. [http://dx.doi.org/10.1016/j.archoralbio.2015.07.001]. [PMID: 26263544].
[128]
Raman, N.; Lee, M-R.; Lynn, D.M.; Palecek, S.P. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species. Pharmaceuticals (Basel), 2015, 8(3), 483-503. [http://dx.doi.org/10.3390/ph8030483]. [PMID: 26287212].
[129]
Joseph, M.R.P.; Al-Hakami, A.M.; Assiry, M.M.; Jamil, A.S.; Assiry, A.M.; Shaker, M.A.; Hamid, M.E. In vitro anti-yeast activity of chloramphenicol: A preliminary report. J. Mycol. Med., 2015, 25(1), 17-22. [http://dx.doi.org/10.1016/j.mycmed.2014.10.019]. [PMID: 25497707].
[130]
Casella, T.M.; Eparvier, V.; Mandavid, H.; Bendelac, A.; Odonne, G.; Dayan, L.; Duplais, C.; Espindola, L.S.; Stien, D. Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry, 2013, 96, 370-377. [http://dx.doi.org/10.1016/j.phytochem.2013.10.004]. [PMID: 24189345].
[131]
Nirma, C.; Eparvier, V.; Stien, D. Antifungal agents from Pseudallescheria boydii SNB-CN73 isolated from a Nasutitermes sp. termite. J. Nat. Prod., 2013, 76(5), 988-991. [http://dx.doi.org/10.1021/np4001703]. [PMID: 23627396].
[132]
Nirma, C.; Eparvier, V.; Stien, D. Antibacterial ilicicolinic acids C and D and ilicicolinal from Neonectria discophora SNB-CN63 isolated from a termite nest. J. Nat. Prod., 2015, 78(1), 159-162. [http://dx.doi.org/10.1021/np500080m]. [PMID: 25478997].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy