[1]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[2]
Czabotar, P.E.; Lessene, G. Bcl-2 family proteins as therapeutic targets. Curr. Pharm. Des., 2010, 16(28), 3132-3148.
[3]
Haura, E.B.; Cress, W.D.; Chellappan, S.; Zheng, Z.; Bepler, G. Antiapoptotic signaling pathways in non-small-cell lung cancer: Biology and therapeutic strategies. Clin. Lung Cancer, 2014, 6(2), 113-122.
[4]
Bai, L.; Chen, J.; McEachern, D.; Liu, L.; Zhou, H.; Aguilar, A.; Wang, S. BM-1197: A novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS One, 2014, 9(6), e99404.
[5]
Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Shigekawa, M.; Iwase, K.; Hosui, A.; Miyagi, T.; Tatsumi, T.; Ishida, H.; Li, W.; Kanto, T.; Hiramatsu, N.; Hayashi, N. The Bcl-XL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology, 2010, 52(4), 1310-1321.
[6]
Lessene, G.; Czabotar, P.E.; Sleebs, B.E.; Zobel, K.; Lowes, K.N.; Adams, J.M.; Baell, J.B.; Colman, P.M.; Deshayes, K.; Fairbrother, W.J.; Flygare, J.A.; Gibbons, P.; Kersten, W.J.A.; Kulasegaram, S.; Moss, R.M.; Parisot, J.P.; Smith, B.J.; Street, I.P.; Yang, H.; Huang, D.C.S.; Watson, K.G. Structure-guided design of a selective BCL-XL inhibitor. Nat. Chem. Biol., 2013, 9(6), 390-397.
[7]
Park, D.; Magis, A.T.; Li, R.; Owonikoko, T.K.; Sica, G.L.; Sun, S-Y.; Ramalingam, S.S.; Khuri, F.R.; Curran, W.J.; Deng, X. Novel small molecule inhibitors of Bcl-XL to treat lung cancer. Cancer Res., 2013, 73(17), 5485-5496.
[8]
Sleebs, B.E.; Kersten, W.J.A.; Kulasegaram, S.; Nikolakopoulos, G.; Hatzis, E.; Moss, R.M.; Parisot, J.P.; Yang, H.; Czabotar, P.E.; Fairlie, W.D.; Lee, E.F.; Adams, J.M.; Chen, L.; van Delft, M.F.; Lowes, K.N.; Wei, A.; Huang, D.C.S.; Colman, P.M.; Street, I.P.; Baell, J.B.; Watson, K.; Lessene, G. Discovery of potent and selective benzothiazole hydrazone inhibitors of Bcl-XL. J. Med. Chem., 2013, 56(13), 5514-5540.
[9]
Tao, Z-F.; Hasvold, L.; Wang, L.; Wang, X.; Petros, A.M.; Park, C.H.; Boghaert, E.R.; Catron, N.D.; Chen, J.; Colman, P.M.; Czabotar, P.E.; Deshayes, K.; Fairbrother, W.J.; Flygare, J.A.; Hymowitz, S.G.; Jin, S.; Judge, R.A.; Koehler, M.F.T.; Kovar, P.J.; Lessene, G.; Mitten, M.J.; Ndubaku, C.O.; Nimmer, P.; Purkey, H.E.; Oleksijew, A.; Phillips, D.C.; Sleebs, B.E.; Smith, B.J.; Smith, M.L.; Tahir, S.K.; Watson, K.G.; Xiao, Y.; Xue, J.; Zhang, H.; Zobel, K.; Rosenberg, S.H.; Tse, C.; Leverson, J.D.; Elmore, S.W.; Souers, A.J. Discovery of a potent and selective BCL-X(L) inhibitor with in vivo activity. ACS Med. Chem. Lett., 2014, 5(10), 1088-1093.
[10]
Hann, C.L.; Daniel, V.C.; Sugar, E.A.; Dobromilskaya, I.; Murphy, S.C.; Cope, L.; Lin, X.; Hierman, J.S.; Wilburn, D.L.; Watkins, D.N.; Rudin, C.M. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in Small cell lung cancer. Cancer Res., 2008, 68(7), 2321-2328.
[11]
Rudin, C.M.; Hann, C.L.; Garon, E.B.; Ribeiro de Oliveira, M.; Bonomi, P.D.; Camidge, D.R.; Chu, Q.; Giaccone, G.; Khaira, D.; Ramalingam, S.S.; Ranson, M.R.; Dive, C.; McKeegan, E.M.; Chyla, B.J.; Dowell, B.L.; Chakravartty, A.; Nolan, C.E.; Rudersdorf, N.; Busman, T.A.; Mabry, M.H.; Krivoshik, A.P.; Humerickhouse, R.A.; Shapiro, G.I.; Gandhi, L. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res., 2012, 18(11), 3163-3169.
[12]
Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C-M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208.
[13]
Baggstrom, M.Q.; Qi, Y.; Koczywas, M.; Argiris, A.; Johnson, E.A.; Millward, M.J.; Murphy, S.C.; Erlichman, C.; Rudin, C.M.; Govindan, R. On behalf of the Mayo Phase, C.; the California, C.,
A phase II study of AT-101 (gossypol) in chemotherapy-sensitive
recurrent extensive stage small cell lung cancer (ES-SCLC). J. Thorac. Oncol., 2011, 6(10), 1757-1760.
[14]
Nguyen, M.; Marcellus, R.C.; Roulston, A.; Watson, M.; Serfass, L.; Murthy Madiraju, S.R.; Goulet, D.; Viallet, J. Bélec, L.; Billot, X.; Acoca, S.; Purisima, E.; Wiegmans, A.; Cluse, L.; Johnstone, R.W.; Beauparlant, P.; Shore, G.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19512-19517.
[15]
Ashimori, N.; Zeitlin, B.D.; Zhang, Z.; Warner, K.; Turkienicz, I.M.; Spalding, A.C.; Teknos, T.N.; Wang, S.; Nor, J.E. TW-37, a small molecule inhibitor of Bcl-2, mediates S phase cell cycle arrest and suppresses head and neck tumor angiogenesis. Mol. Cancer Ther., 2009, 8(4), 893-903.
[16]
Kitada, S.; Kress, C.L.; Krajewska, M.; Jia, L.; Pellecchia, M.; Reed, J.C. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in BCL-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood, 2008, 111(6), 3211-3219.
[17]
Ou-Yang, S-s.; Lu, J-y.; Kong, X-q.; Liang, Z-j.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[18]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[19]
Taboureau, O.; Baell, J.B.; Fernández-Recio, J.; Villoutreix, B.O. Established and emerging trends in computational drug discovery in the structural genomics era. Chem. Biol., 2012, 19(1), 29-41.
[20]
Srivastava, A.K.; Srivastava, A. Archana; Jaiswal, M.; Nath, A. QSAR studies on anti-apoptotic Bcl-2 protein inhibitors. J. Saudi Chem. Soc., 2009, 13(3), 259-262.
[21]
Levoin, N.; Vo, D.D.; Gautier, F.; Barillé-Nion, S.; Juin, P.; Tasseau, O.; Grée, R. A combination of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1747-1757.
[22]
Almerico, A.M.; Tutone, M.; Lauria, A. 3D-QSAR pharmacophore modeling and in silico screening of new Bcl-xl inhibitors. Eur. J. Med. Chem., 2010, 45(11), 4774-4782.
[23]
Zheng, C-H.; Zhou, Y-J.; Zhu, J.; Ji, H-T.; Chen, J.; Li, Y-W.; Sheng, C-Q.; Lu, J-G.; Jiang, J-H.; Tang, H.; Song, Y-L. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method. Bioorg. Med. Chem., 2007, 15(19), 6407-6417.
[24]
Kanakaveti, V.; Sakthivel, R.; Rayala, S.K.; Gromiha, M.M. Importance of functional groups in predicting the activity of small molecule inhibitors for Bcl-2 and Bcl-xL. Chem. Biol. Drug Des., 2017, 90(2), 308-316.
[25]
Burke, J.P.; Bian, Z.; Shaw, S.; Zhao, B.; Goodwin, C.M.; Belmar, J.; Browning, C.F.; Vigil, D.; Friberg, A.; Camper, D.V.; Rossanese, O.W.; Lee, T.; Olejniczak, E.T.; Fesik, S.W. Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J. Med. Chem., 2015, 58(9), 3794-3805.
[26]
Dearden, J.C. The history and development of quantitative structure-activity relationships (QSARs). Int. J. Quant. Struct. Act. Relat., 2016, 1(1), 1-44. [Addendum].
[27]
Schrödinger Release 2015-2, LigPrep Version 3.4, Schrödinger,
LLC, New York, NY..
[28]
Shelley, J.; Cholleti, A.; Frye, L.; Greenwood, J.; Timlin, M.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[29]
Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics, 1969, 11, 137-148.
[30]
Zhang, D.; Xiao, J.; Zhou, N.; Zheng, M.; Luo, X.; Jiang, H.; Chen, K. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction. BioMed Res. Int., 2015, 2015, 292683.
[31]
Melagraki, G.; Afantitis, A.; Makridima, K.; Sarimveis, H.; Igglessi-Markopoulou, O. Prediction of toxicity using a novel RBF neural network training methodology. J. Mol. Model., 2006, 12(3), 297-305.
[32]
Wu, W.; Walczak, B.; Massart, D.L.; Heuerding, S.; Erni, F.; Last, I.R.; Prebble, K.A. Artificial neural networks in classification of NIR spectral data: Design of the training set. Chemom. Intell. Lab. Syst., 1996, 33(1), 35-46.
[33]
Ghosh, P.; Thanadath, M.; Bagchi, M. On an aspect of calculated molecular descriptors in QSAR studies of quinolone antibacterials. Mol. Divers., 2006, 10(3), 415-427.
[34]
Shahlaei, M.; Fassihi, A.; Nezami, A. QSAR study of some 5-methyl/trifluoromethoxy- 1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents. Res. Pharm. Sci., 2009, 4(2), 123-131.
[35]
Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang, R. Synthesis and Quantitative Structure-Activity Relationship (QSAR) study of novel n-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal agents. J. Agric. Food Chem., 2013, 61(24), 5696-5705.
[36]
Ambure, P.; Aher, R.B.; Gajewicz, A.; Puzyn, T.; Roy, K. “NanoBRIDGES”- software: Open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst., 2015, 147, 1-13.
[37]
Roy, D.K. Software Tools. Available from: http://teqip.jdvu.ac.in/QSAR_Tools/.
[38]
Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. Milano
chemomatrics and QSAR research group, Milano, Italy. Dragon
5.3, 2005. Available from: http://www.talete.mi.it.
[39]
Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci., 2004, 44(1), 1-12.
[40]
Raymer, M.L.; Punch, W.F.; Goodman, E.D.; Kuhn, L.A.; Jain, A.K. Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput., 2000, 4(2), 164-171.
[41]
Gupta, P.; Sharma, A.; Garg, P.; Roy, N. QSAR study of curcumine derivatives as HIV-1 integrase inhibitors. Curr. Comput. Aided Drug Des., 2013, 9(1), 141-150.
[42]
Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A. Genetic algorithm optimization in drug design QSAR: Bayesian-Regularized Genetic Neural Networks (BRGNN) and Genetic Algorithm-optimized Support Vectors Machines (GA-SVM). Mol. Divers., 2011, 15(1), 269-289.
[43]
Singh, D.A.A.G.; Leavline, E.J.; Priyanka, R.; Priya, P.P. Dimensionality reduction using genetic algorithm for improving accuracy in medical diagnosis. I.J. Intell. Systems Appl., 2016, 8(1), 67.
[44]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[45]
Rucker, C.; Rucker, G.; Meringer, M. y-Randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model., 2007, 47(6), 2345-2357.
[46]
Roy, P.P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules, 2009, 14(5), 1660-1701.
[47]
Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data. J. Comput. Chem., 2013, 34(12), 1071-1082.
[48]
Roy, K.; Mitra, I.; Kar, S.; Ojha, P.K.; Das, R.N.; Kabir, H. Comparative studies on some metrics for external validation of QSPR models. J. Chem. Inf. Model., 2012, 52(2), 396-408.
[49]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[50]
Weaver, S.; Gleeson, M.P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model., 2008, 26(8), 1315-1326.
[51]
MATLAB and Statistics Toolbox Release; The MathWorks, Inc.: Natick, Massachusetts, United States, 2012. b
[52]
Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst., 2015, 145, 22-29.
[53]
Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W.E. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur. J. Pharm. Sci., 2012, 47(2), 421-429.
[54]
Consonni, V.; Todeschini, R.; Pavan, M. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J. Chem. Inf. Comput. Sci., 2002, 42(3), 682-692.
[55]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors.
Wiley-VCH: Weinheim; , 2000.