Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Development and Validation of a Robust QSAR Model for Benzothiazole Hydrazone Derivatives as Bcl-XL Inhibitors

Author(s): Pawan Gupta* and Aleksandrs Gutcaits

Volume 16, Issue 1, 2019

Page: [11 - 20] Pages: 10

DOI: 10.2174/1570180815666180502093039

Price: $65

Abstract

Background: B-cell Lymphoma Extra Large (Bcl-XL) belongs to B-cell Lymphoma two (Bcl-2) family. Due to its over-expression and anti-apoptotic role in many cancers, it has been proven to be a more biologically relevant therapeutic target in anti-cancer therapy. In this study, a Quantitative Structure Activity Relationship (QSAR) modeling was performed to establish the link between structural properties and inhibitory potency of benzothiazole hydrazone derivatives against Bcl-XL.

Methods: The 53 benzothiazole hydrazone derivatives have been used for model development using genetic algorithm and multiple linear regression methods. The data set is divided into training and test set using Kennard-Stone based algorithm. The best QSAR model has been selected with statistically significant r2 = 0.931, F-test =55.488 RMSE = 0.441 and Q2 0.900.

Results: The model has been tested successfully for external validation (r2 pred = 0.752), as well as different criteria for acceptable model predictability. Furthermore, analysis of the applicability domain has been carried out to evaluate the prediction reliability of external set molecules. The developed QSAR model has revealed that nThiazoles, nROH, EEig13d, WA, BEHv6, HATS6m, RDF035u and IC4 descriptors are important physico-chemical properties for determining the inhibitory activity of these molecules.

Conclusion: The developed QSAR model is stable for this chemical series, indicating that test set molecules represent the training dataset. The model is statistically reliable with good predictability. The obtained descriptors reflect important structural features required for activity against Bcl-XL. These properties are designated by topology, shape, size, geometry, substitution information of the molecules (nThiazoles and nROH) and electronic properties. In a nutshell, these characteristics can be successfully utilized for designing and screening of novel inhibitors.

Keywords: Bcl-XL, descriptors, MLR, genetic algorithm, QSAR model, validation, domain of applicability analysis.

Graphical Abstract

[1]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[2]
Czabotar, P.E.; Lessene, G. Bcl-2 family proteins as therapeutic targets. Curr. Pharm. Des., 2010, 16(28), 3132-3148.
[3]
Haura, E.B.; Cress, W.D.; Chellappan, S.; Zheng, Z.; Bepler, G. Antiapoptotic signaling pathways in non-small-cell lung cancer: Biology and therapeutic strategies. Clin. Lung Cancer, 2014, 6(2), 113-122.
[4]
Bai, L.; Chen, J.; McEachern, D.; Liu, L.; Zhou, H.; Aguilar, A.; Wang, S. BM-1197: A novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS One, 2014, 9(6), e99404.
[5]
Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Shigekawa, M.; Iwase, K.; Hosui, A.; Miyagi, T.; Tatsumi, T.; Ishida, H.; Li, W.; Kanto, T.; Hiramatsu, N.; Hayashi, N. The Bcl-XL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology, 2010, 52(4), 1310-1321.
[6]
Lessene, G.; Czabotar, P.E.; Sleebs, B.E.; Zobel, K.; Lowes, K.N.; Adams, J.M.; Baell, J.B.; Colman, P.M.; Deshayes, K.; Fairbrother, W.J.; Flygare, J.A.; Gibbons, P.; Kersten, W.J.A.; Kulasegaram, S.; Moss, R.M.; Parisot, J.P.; Smith, B.J.; Street, I.P.; Yang, H.; Huang, D.C.S.; Watson, K.G. Structure-guided design of a selective BCL-XL inhibitor. Nat. Chem. Biol., 2013, 9(6), 390-397.
[7]
Park, D.; Magis, A.T.; Li, R.; Owonikoko, T.K.; Sica, G.L.; Sun, S-Y.; Ramalingam, S.S.; Khuri, F.R.; Curran, W.J.; Deng, X. Novel small molecule inhibitors of Bcl-XL to treat lung cancer. Cancer Res., 2013, 73(17), 5485-5496.
[8]
Sleebs, B.E.; Kersten, W.J.A.; Kulasegaram, S.; Nikolakopoulos, G.; Hatzis, E.; Moss, R.M.; Parisot, J.P.; Yang, H.; Czabotar, P.E.; Fairlie, W.D.; Lee, E.F.; Adams, J.M.; Chen, L.; van Delft, M.F.; Lowes, K.N.; Wei, A.; Huang, D.C.S.; Colman, P.M.; Street, I.P.; Baell, J.B.; Watson, K.; Lessene, G. Discovery of potent and selective benzothiazole hydrazone inhibitors of Bcl-XL. J. Med. Chem., 2013, 56(13), 5514-5540.
[9]
Tao, Z-F.; Hasvold, L.; Wang, L.; Wang, X.; Petros, A.M.; Park, C.H.; Boghaert, E.R.; Catron, N.D.; Chen, J.; Colman, P.M.; Czabotar, P.E.; Deshayes, K.; Fairbrother, W.J.; Flygare, J.A.; Hymowitz, S.G.; Jin, S.; Judge, R.A.; Koehler, M.F.T.; Kovar, P.J.; Lessene, G.; Mitten, M.J.; Ndubaku, C.O.; Nimmer, P.; Purkey, H.E.; Oleksijew, A.; Phillips, D.C.; Sleebs, B.E.; Smith, B.J.; Smith, M.L.; Tahir, S.K.; Watson, K.G.; Xiao, Y.; Xue, J.; Zhang, H.; Zobel, K.; Rosenberg, S.H.; Tse, C.; Leverson, J.D.; Elmore, S.W.; Souers, A.J. Discovery of a potent and selective BCL-X(L) inhibitor with in vivo activity. ACS Med. Chem. Lett., 2014, 5(10), 1088-1093.
[10]
Hann, C.L.; Daniel, V.C.; Sugar, E.A.; Dobromilskaya, I.; Murphy, S.C.; Cope, L.; Lin, X.; Hierman, J.S.; Wilburn, D.L.; Watkins, D.N.; Rudin, C.M. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in Small cell lung cancer. Cancer Res., 2008, 68(7), 2321-2328.
[11]
Rudin, C.M.; Hann, C.L.; Garon, E.B.; Ribeiro de Oliveira, M.; Bonomi, P.D.; Camidge, D.R.; Chu, Q.; Giaccone, G.; Khaira, D.; Ramalingam, S.S.; Ranson, M.R.; Dive, C.; McKeegan, E.M.; Chyla, B.J.; Dowell, B.L.; Chakravartty, A.; Nolan, C.E.; Rudersdorf, N.; Busman, T.A.; Mabry, M.H.; Krivoshik, A.P.; Humerickhouse, R.A.; Shapiro, G.I.; Gandhi, L. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res., 2012, 18(11), 3163-3169.
[12]
Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C-M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208.
[13]
Baggstrom, M.Q.; Qi, Y.; Koczywas, M.; Argiris, A.; Johnson, E.A.; Millward, M.J.; Murphy, S.C.; Erlichman, C.; Rudin, C.M.; Govindan, R. On behalf of the Mayo Phase, C.; the California, C., A phase II study of AT-101 (gossypol) in chemotherapy-sensitive recurrent extensive stage small cell lung cancer (ES-SCLC). J. Thorac. Oncol., 2011, 6(10), 1757-1760.
[14]
Nguyen, M.; Marcellus, R.C.; Roulston, A.; Watson, M.; Serfass, L.; Murthy Madiraju, S.R.; Goulet, D.; Viallet, J. Bélec, L.; Billot, X.; Acoca, S.; Purisima, E.; Wiegmans, A.; Cluse, L.; Johnstone, R.W.; Beauparlant, P.; Shore, G.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19512-19517.
[15]
Ashimori, N.; Zeitlin, B.D.; Zhang, Z.; Warner, K.; Turkienicz, I.M.; Spalding, A.C.; Teknos, T.N.; Wang, S.; Nor, J.E. TW-37, a small molecule inhibitor of Bcl-2, mediates S phase cell cycle arrest and suppresses head and neck tumor angiogenesis. Mol. Cancer Ther., 2009, 8(4), 893-903.
[16]
Kitada, S.; Kress, C.L.; Krajewska, M.; Jia, L.; Pellecchia, M.; Reed, J.C. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in BCL-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood, 2008, 111(6), 3211-3219.
[17]
Ou-Yang, S-s.; Lu, J-y.; Kong, X-q.; Liang, Z-j.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[18]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[19]
Taboureau, O.; Baell, J.B.; Fernández-Recio, J.; Villoutreix, B.O. Established and emerging trends in computational drug discovery in the structural genomics era. Chem. Biol., 2012, 19(1), 29-41.
[20]
Srivastava, A.K.; Srivastava, A. Archana; Jaiswal, M.; Nath, A. QSAR studies on anti-apoptotic Bcl-2 protein inhibitors. J. Saudi Chem. Soc., 2009, 13(3), 259-262.
[21]
Levoin, N.; Vo, D.D.; Gautier, F.; Barillé-Nion, S.; Juin, P.; Tasseau, O.; Grée, R. A combination of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1747-1757.
[22]
Almerico, A.M.; Tutone, M.; Lauria, A. 3D-QSAR pharmacophore modeling and in silico screening of new Bcl-xl inhibitors. Eur. J. Med. Chem., 2010, 45(11), 4774-4782.
[23]
Zheng, C-H.; Zhou, Y-J.; Zhu, J.; Ji, H-T.; Chen, J.; Li, Y-W.; Sheng, C-Q.; Lu, J-G.; Jiang, J-H.; Tang, H.; Song, Y-L. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method. Bioorg. Med. Chem., 2007, 15(19), 6407-6417.
[24]
Kanakaveti, V.; Sakthivel, R.; Rayala, S.K.; Gromiha, M.M. Importance of functional groups in predicting the activity of small molecule inhibitors for Bcl-2 and Bcl-xL. Chem. Biol. Drug Des., 2017, 90(2), 308-316.
[25]
Burke, J.P.; Bian, Z.; Shaw, S.; Zhao, B.; Goodwin, C.M.; Belmar, J.; Browning, C.F.; Vigil, D.; Friberg, A.; Camper, D.V.; Rossanese, O.W.; Lee, T.; Olejniczak, E.T.; Fesik, S.W. Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J. Med. Chem., 2015, 58(9), 3794-3805.
[26]
Dearden, J.C. The history and development of quantitative structure-activity relationships (QSARs). Int. J. Quant. Struct. Act. Relat., 2016, 1(1), 1-44. [Addendum].
[27]
Schrödinger Release 2015-2, LigPrep Version 3.4, Schrödinger, LLC, New York, NY..
[28]
Shelley, J.; Cholleti, A.; Frye, L.; Greenwood, J.; Timlin, M.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[29]
Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics, 1969, 11, 137-148.
[30]
Zhang, D.; Xiao, J.; Zhou, N.; Zheng, M.; Luo, X.; Jiang, H.; Chen, K. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction. BioMed Res. Int., 2015, 2015, 292683.
[31]
Melagraki, G.; Afantitis, A.; Makridima, K.; Sarimveis, H.; Igglessi-Markopoulou, O. Prediction of toxicity using a novel RBF neural network training methodology. J. Mol. Model., 2006, 12(3), 297-305.
[32]
Wu, W.; Walczak, B.; Massart, D.L.; Heuerding, S.; Erni, F.; Last, I.R.; Prebble, K.A. Artificial neural networks in classification of NIR spectral data: Design of the training set. Chemom. Intell. Lab. Syst., 1996, 33(1), 35-46.
[33]
Ghosh, P.; Thanadath, M.; Bagchi, M. On an aspect of calculated molecular descriptors in QSAR studies of quinolone antibacterials. Mol. Divers., 2006, 10(3), 415-427.
[34]
Shahlaei, M.; Fassihi, A.; Nezami, A. QSAR study of some 5-methyl/trifluoromethoxy- 1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents. Res. Pharm. Sci., 2009, 4(2), 123-131.
[35]
Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang, R. Synthesis and Quantitative Structure-Activity Relationship (QSAR) study of novel n-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal agents. J. Agric. Food Chem., 2013, 61(24), 5696-5705.
[36]
Ambure, P.; Aher, R.B.; Gajewicz, A.; Puzyn, T.; Roy, K. “NanoBRIDGES”- software: Open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst., 2015, 147, 1-13.
[37]
Roy, D.K. Software Tools. Available from: http://teqip.jdvu.ac.in/QSAR_Tools/.
[38]
Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. Milano chemomatrics and QSAR research group, Milano, Italy. Dragon 5.3, 2005. Available from: http://www.talete.mi.it.
[39]
Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci., 2004, 44(1), 1-12.
[40]
Raymer, M.L.; Punch, W.F.; Goodman, E.D.; Kuhn, L.A.; Jain, A.K. Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput., 2000, 4(2), 164-171.
[41]
Gupta, P.; Sharma, A.; Garg, P.; Roy, N. QSAR study of curcumine derivatives as HIV-1 integrase inhibitors. Curr. Comput. Aided Drug Des., 2013, 9(1), 141-150.
[42]
Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A. Genetic algorithm optimization in drug design QSAR: Bayesian-Regularized Genetic Neural Networks (BRGNN) and Genetic Algorithm-optimized Support Vectors Machines (GA-SVM). Mol. Divers., 2011, 15(1), 269-289.
[43]
Singh, D.A.A.G.; Leavline, E.J.; Priyanka, R.; Priya, P.P. Dimensionality reduction using genetic algorithm for improving accuracy in medical diagnosis. I.J. Intell. Systems Appl., 2016, 8(1), 67.
[44]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[45]
Rucker, C.; Rucker, G.; Meringer, M. y-Randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model., 2007, 47(6), 2345-2357.
[46]
Roy, P.P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules, 2009, 14(5), 1660-1701.
[47]
Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data. J. Comput. Chem., 2013, 34(12), 1071-1082.
[48]
Roy, K.; Mitra, I.; Kar, S.; Ojha, P.K.; Das, R.N.; Kabir, H. Comparative studies on some metrics for external validation of QSPR models. J. Chem. Inf. Model., 2012, 52(2), 396-408.
[49]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[50]
Weaver, S.; Gleeson, M.P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model., 2008, 26(8), 1315-1326.
[51]
MATLAB and Statistics Toolbox Release; The MathWorks, Inc.: Natick, Massachusetts, United States, 2012. b
[52]
Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst., 2015, 145, 22-29.
[53]
Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W.E. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur. J. Pharm. Sci., 2012, 47(2), 421-429.
[54]
Consonni, V.; Todeschini, R.; Pavan, M. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J. Chem. Inf. Comput. Sci., 2002, 42(3), 682-692.
[55]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH: Weinheim; , 2000.

© 2025 Bentham Science Publishers | Privacy Policy