Review Article

miR-7 Replacement Therapy in Parkinson’s Disease

Author(s): Ricardo Titze-de-Almeida* and Simoneide Souza Titze-de-Almeida

Volume 18, Issue 3, 2018

Page: [143 - 153] Pages: 11

DOI: 10.2174/1566523218666180430121323

Price: $65

Abstract

The present review examines whether the microRNA 7 (miR-7) holds potential for slowing Parkinson's disease (PD) progression. First, the accurate expression of miR-7 allows for normal development, physiology, and neurogenesis in the central nervous system, also keeping alpha-synuclein (α-Syn) at the physiological level. Second, patients with PD and parkinsonian MPTP-induced animals exhibit a significant decrease of miR-7 in brain areas associated with dopaminergic neurodegeneration. Depletion of miR-7 in the substantia nigra of clinical samples is related to α-Syn accumulation, loss of dopaminergic cells, and reduction of dopamine in the striatum. Therefore, the goal of a miR-7- replacement therapy is to downregulate α-Syn and other PD-related genes, achieving multi-target benefits regarding oxidative stress, mitochondrial health, cell glycolysis, apoptosis, and inhibition of inflammasome activation. While a disease-modifying drug is a major unmet need for the clinical management of PD, an miR-7-replacement therapy presents a striking potential against critical mechanisms of neuropathology. Such innovative treatment would reduce α-Syn accumulation in the Lewy bodies and preserve remaining neurons yet viable at the time of diagnosis, thus slowing disease progression from the early phase of PD characterized by a relatively mild motor impairment to an advanced and more disabling stage.

Keywords: miR-7, Parkinson's disease, Neurodegeneration, RNAi, MicroRNA, Synuclein, Lewy body, Synucleinopathy.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy