[1]
Davis, F.G.; Freels, S.; Grutsch, J.; Barlas, S.; Brem, S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type. An analysis based on surveillance, epidemiology, and end results (SEER) data. 1973-1991. J. Neurosurg., 1998, 88, 1-10.
[2]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. European organisation for research and treatment of cancer brain tumor and radiotherapy groups; national cancer institute of canada clinical trials group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352, 987-996.
[3]
Alifieris, C.; Trafalis, D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther., 2015, 152, 63-82.
[4]
Hamard, L.; Ratel, D.; Selek, L.; Berger, F.; van der Sanden, B.; Wion, D. The brain tissue response to surgical injury and its possible contribution to glioma recurrence. J. Neurooncol., 2016, 128, 1-8.
[5]
Frosina, G. Limited advances in therapy of glioblastoma trigger re-consideration of research policy. Crit. Rev. Oncol. Hematol., 2015, 96, 257-261.
[6]
Møller, H.G.; Rasmussen, A.P.; Andersen, H.H.; Johnsen, K.B.; Henriksen, M.; Duroux, M. A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol. Neurobiol., 2013, 47(1), 131-144.
[7]
Chandran, M.; Candolfi, M.; Shah, D.; Mineharu, Y.; Yadav, V.; Koschmann, C.; Asad, A.S.; Lowenstein, P.R.; Castro, M.G. Single vs. combination immunotherapeutic strategies for glioma. Expert Opin. Biol. Ther., 2017, 20, 1-12.
[8]
Reifenberger, G.; Wirsching, H.G.; Knobbe-Thomsen, C.B.; Weller, M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat. Rev. Clin. Oncol., 2016.
[9]
Drapeau, A.; Fortin, D. Chemotherapy delivery strategies to the central nervous system: Neither optional nor superfluous. Curr. Cancer Drug Targets, 2015, 15, 752-768.
[10]
Chen, Y.; Xu, R. Drug repurposing for glioblastoma based on molecular subtypes. J. Biomed. Inform., 2016, 64, 131-138.
[11]
Muñoz, M.; Coveñas, R.; Esteban, F.; Redondo, M. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J. Biosci., 2015, 40, 441-463.
[12]
Hökfelt, T.; Broberger, C.; David Xu, Z-Q.; Sergeyev, V.; Ubink, R.; Díez, M. Neuropeptides: An overview. Neuropharmacology, 2000, 39, 1337-1356.
[13]
Li, Y.; Douglas, S.D.; Ho, W. Human stem cells express substance P gene and its receptor. J. Hematother. Stem Cell Res., 2000, 9, 445-452.
[14]
Dubon, M.J.; Park, K.S. Substance P enhances the proliferation and migration potential of murine bone marrow-derived mesenchymal stem cell-like cell lines. Exp. Ther. Med., 2015, 9, 1185-1191.
[15]
Kim, K.T.; Kim, H.J.; Cho, D.C.; Bae, J.S.; Park, S.W. Substance P stimulates proliferation of spinal neural stem cells in spinal cord injury via the mitogen-activated protein kinase signaling pathway. Spine J., 2015, 15, 2055-2065.
[16]
Garnier, A.; Vykoukal, J.; Hubertus, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M.; Ilmer, M. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. Int. J. Oncol., 2015, 47, 151-160.
[17]
Kalkan, R. Glioblastoma stem cells as a new therapeutic target for glioblastoma. Clin. Med. Insights Oncol., 2015, 9, 95-103.
[18]
Wang, J.; Ma, Y.; Cooper, M.K. Cancer stem cells in glioma: challenges and opportunities. Transl. Cancer Res., 2013, 2, 429-441.
[19]
Walczak-Drzewiecka, A.; Ratajewski, M.; Wagner, W.; Dastych, J. HIF-1alpha is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J. Immunol., 2008, 181, 1665-1672.
[20]
Muñoz, M.; Roso, M.; González-Ortega, A.; Sáenz, J.; Coveñas, R. The broad-spectrum antitumor action of cyclosporin A is due to its tachykinin receptor antagonist pharmacological profile. Peptides, 2010, 31, 1643-1648.
[21]
Muñoz, M.; Coveñas, R. Involvement of substance P and the NK-1 receptor cancer progression. Peptides, 2013, 48, 1-9.
[22]
Ogo, H.; Kuroyanagi, N.; Inoue, A.; Nishio, H.; Hirai, Y.; Akiyama, M.; DiMaggio, D.A.; Krause, J.E.; Nakata, Y. Human astrocytoma cells (U-87 MG) exhibit a specific substance P-binding site with the characteristics of an NK-1 receptor. J. Neurochem., 1996, 67, 1813-1820.
[23]
Palma, C.; Nardelli, F.; Manzini, S.; Maggi, C.A. Substance P activates responses correlated with tumor growth in human glioma cell lines bearing tachykinin NK1 receptors. Br. J. Cancer, 1999, 79, 236-243.
[24]
Berger, A.; Paige, C.J. Hemokinin-1 has substance P-like function in U-251 MG astrocytoma cells. A pharmacological and functional study. J. Neuroimmunol., 2005, 164, 48-56.
[25]
Muñoz, M.; Rosso, M.; Pérez, A.; Coveñas, R.; Rosso, R.; Zamarriego, C.; Piruat, J.I. The NK1 receptor is involved in the antitumoral action of L-733,060 and the mitogenic action of substance P on neuroblastoma and glioma cell lines. Neuropeptides, 2005, 39, 427-432.
[26]
Fowler, C.J.; Brännström, G. Substance P enhances forskolin-stimulated cyclic AMP production in human UC-11MG astrocytoma cells. Methods Find. Exp. Clin. Pharmacol., 1994, 16, 21-28.
[27]
Hennig, I.M.; Laissue, J.A.; Horisberger, U.; Reubi, J.C. Substance-P receptors in human primary neoplasms: Tumoral and vascular localization. Int. J. Cancer, 1995, 61, 786-792.
[28]
Friess, H.; Zhu, Z.; Liard, V.; Shi, X.; Shrikhande, S.V.; Wang, L.; Lieb, K.; Korc, M.; Palma, C.; Zimmermann, A.; Reubi, J.C.; Büchler, M.W. Neurokinin-1 recep-tor expression and its potential effects on tumor growth in human pancreatic cancer. Lab. Invest., 2003, 83, 731-742.
[29]
Luo, W.; Sharif, T.R.; Sharif, M. Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated proteína kinase signaling pathway. Cancer Res., 1996, 56, 4983-4991.
[30]
Muñoz, M.; Rosso, M. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest. New Drugs, 2010, 28, 187-193.
[31]
Sporn, M.B. The war on cancer. Lancet, 1996, 347, 1377-1381.
[32]
Lang, K.; Drell, T.L.; Lindecke, A.; Niggemann, B.; Kaltschmidt, C.; Zaenker, K.S.; Entschladen, F. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer, 2004, 112, 231-238.
[33]
Fackler, O.T.; Grosse, R. Cell motility through plasma membrane blebbing. J. Cell Biol., 2008, 181, 879-884.
[34]
Meshki, J.; Douglas, S.D.; Hu, M.; Leeman, S.E.; Tuluc, F.P. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner. PLoS One, 2011, 6, e25332.
[35]
Mou, L.; Kang, Y.; Zhou, Y.; Zeng, Q.; Song, H.; Wang, R. Neurokinin-1 receptor directly mediates glioma cell migration by up-regulation of matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP). J. Biol. Chem., 2013, 288, 306-318.
[36]
Ziche, M.; Morbidelli, L.; Pacini, M.; Gepetti, P.; Alessandri, G.; Maggi, C.A. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc. Res., 1990, 40, 264-278.
[37]
Seegers, H.C.; Hood, V.C.; Kidd, B.L.; Cruwys, S.C.; Walsh, D.A. Enhancement of angiogenesis by endogenous substance P release and neurokinin-1 receptors during neurogenic inflammation. J. Pharmacol. Exp. Ther., 2003, 306, 8-12.
[38]
Harrison, S.; Geppetti, P.; Substance, P. Int. J. Biochem. Cell Biol., 2001, 33, 555-576.
[39]
Weller, M.; Stevens, A.; Sommer, N.; Melms, A.; Dichgans, J.; Wiethölter, H. Comparative analysis of cytokine patterns in immunological, infectious and oncological neurological disorders. J. Neurol. Sci., 1991, 104, 215-221.
[40]
Frei, K.; Piani, D.; Malipiero, U.V.; Van Meir, E.; de Tribolet, N.; Fontana, A. Granulocyte-macrophage colony-stimulating factor GM-CSF production by glioblastoma cells. Despite the presence of inducing signals GM-CSF is not expressed in vivo. J. Immunol., 1992, 148, 3140-3146.
[41]
Lieb, K.; Fiebich, B.L.; Berger, M.; Bauer, J.; Schulze-Osthoff, K. The neuropeptide substance P activates transcription factor NFkappa B and kappa B-dependent gene expression in human astrocytoma cells. J. Immunol., 1997, 159, 4952-4958.
[42]
Lotz, M.; Vaughan, J.H.; Carson, D.A. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science, 1988, 241, 1218-1221.
[43]
Ho, W.Z.; Kaufman, D.; Uvaydova, M.; Douglas, S.D. Substance P augments interleukin-10 and tumor necrosis factor-alpha release by human cord blood monocytes and macrophages. J. Neuroimmunol., 1996, 71, 73-80.
[44]
Rosso, M.; Muñoz, M.; Berger, M. The role of neurokinin-1 receptor in the microenvironment of inflammation and cancer. Sci. World J., 2012, 2012, 381434.
[48]
Hodkinson, P.S.; Mackinnon, A.; Sethi, T. Targeting growth factors in lung cancer. Chest, 2008, 133, 1209-1216.
[50]
Muñoz, M.; Coveñas, R. Safety of Neurokinin-1 receptor antagonists. Expert Opin. Drug Saf., 2013, 12, 673-685.
[51]
Kramer, M.S.; Cutler, N.; Feighner, J.; Shrivastava, R.; Carman, J.; Sramek, J.J.; Reines, S.A.; Liu, G.; Snavely, D.; Wyatt-Knowles, E.; Hale, J.J.; Mills, S.G.; MacCoss, M.; Swain, C.J.; Harrison, T.; Hill, R.G.; Hefti, F.; Scolnick, E.M.; Cascieri, M.A.; Chicchi, G.G.; Sadowski, S.; Williams, A.R.; Hewson, L.; Smith, D.; Carlson, E.J.; Hargreaves, R.J.; Rupniak, N.M. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science, 1998, 281, 1640-1645.
[52]
Harford-Wright, E.; Lewis, K.M.; Ghabriel, M.N.; Vink, R. Treatment with the NK1 antagonist Emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors. PLoS One, 2014, 9, e97002.
[53]
Medrano, S.; Gruenstein, E.; Dimlich, R.V. Substance P receptors on human astrocytoma cells are linked to glycogen breakdown. Neurosci. Lett., 1994, 167, 14-18.
[54]
Palma, C.; Bigioni, M.; Irrissuto, C.; Nardelli, F.; Maggi, C.A.; Manzini, S. Anti-tumour activity of tachykinin NK1 receptor antagonists on human glioma U373 MG xenograft. Br. J. Cancer, 2000, 82, 480-487.
[55]
Akazawa, T.; Kwatra, S.G.; Goldsmith, L.E.; Richardson, M.D.; Cox, E.A.; Sampson, J.H.; Kwatra, M.M. A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated apoptosis in glioblastomas. J. Neurochem., 2009, 109, 1079-1086.
[56]
Li, X.; Ma, G.; Ma, Q.; Li, W.; Liu, J.; Han, L.; Duan, W.; Xu, Q.; Liu, H.; Wang, Z.; Sun, Q.; Wang, F.; Wu, E. Neurotransmitter substance P mediates pancreatic cancer perineural invasion via NK-1R in cancer cells. Mol. Cancer Res., 2013, 11, 294-302.
[57]
Berger, M.; Neth, O.; Ilmer, M.; Garnier, A.; Salinas-Martín, M.V.; de Agustín Asencio, J.C.; von Schweinitz, D.; Kappler, R.; Muñoz, M. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be inhibited by aprepitant in vitro and in vivo. J. Hepatol., 2014, 60, 985-994.
[58]
Bang, R.; Sass, G.; Kiemer, A.K.; Vollmar, A.M.; Neuhuber, W.L.; Tiegs, G. Neurokinin-1 receptor antagonists CP-96,345 and L-733,060 protect mice from cytokine-mediated liver injury. J. Pharmacol. Exp. Ther., 2003, 305, 31-39.
[59]
Svensson, C.I.; Lucas, K.K.; Hua, X.Y.; Powell, H.C.; Dennis, E.A.; Yaksh, T.L. Spinal phospholipase A2 in inflammatory hyperalgesia: role of the small, secretory phospholipase A2. Neuroscience, 2005, 133, 543-553.
[60]
Kast, R.E.; Boockvar, J.A.; Brüning, A.; Cappello, F.; Chang, W.W.; Cvek, B.; Dou, Q.P.; Dueñas-González, A.; Efferth, T.; Focosi, D.; Ghaffari, S.H.; Karpel-Massler, G.; Ketola, K.; Khoshnevisan, A.; Keizman, D.; Magné, N.; Marosi, C.; McDonald, K.; Muñoz, M.; Paranjpe, A.; Pourgholami, M.H.; Sardi, I.; Sella, A.; Srivenugopal, K.S.; Tuccori, M.; Wang, W.; Wirtz, C.R.; Halatsch, M.E. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the international initiative for accelerated improvement of glioblastoma care. Oncotarget, 2013, 4, 502-530.
[61]
Kast, R.E.; Ramiri, S.; Lladó, S.; Toro, S.; Coveñas, R.; Muñoz, M. Antitumor action of temozolomide, ritonavir and aprepitant agaisnt human glioma cells. J. Neurooncol., 2016, 126, 425-431.
[62]
Thorne, A.H.; Zanca, C.; Furnari, F. Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro-oncol., 2016, 18, 914-918.
[63]
Mitsuhashi, M.; Ohashi, Y.; Schichijo, S.; Christian, C.; Sudduth-Klinger, J.; Harrowe, G.; Payan, D.G. Multiple intracellular signalling pathways of the neuropeptide SP receptor. J. Neurosci. Res., 1992, 32, 437-443.
[64]
Castagliuolo, I.; Valenick, L.; Liu, J.; Pothoulakis, C. Epidermal growth factor receptor transactivation mediates substance P-induced mitogenic responses in U-373 MG cells. J. Biol. Chem., 2000, 275, 26545-26550.
[65]
Wang, Z. Transactivation of epidermal growth factor receptor by G protein-coupled receptors: Recent progress, challenges and future research. Int. J. Mol. Sci., 2016, 17, 95.
[66]
Cattaneo, F.; Guerra, G.; Parisi, M.; de Marinis, M.; Tafuri, D.; Cinelli, M.; Ammendola, R. Cell-surface receptors transactivation mediated by G protein-coupled receptors. Int. J. Mol. Sci., 2014, 15, 19700-19728.
[67]
Luttrell, D.K.; Luttrell, L.M. Not so strange bedfellows: G-proteing-coupled receptors and Src family kinases. Oncogene, 2004, 23, 7969-7978.
[68]
Yamaguchi, K.; Richardson, M.D.; Bigner, D.D.; Kwatra, M.M. Signal transduction through substance P receptor in human glioblastoma cells: Roles for Src and PKCδ. Cancer Chemother. Pharmacol., 2005, 56, 585-593.
[69]
García-Recio, S.; Pastor-Arroyo, E.M.; Marín-Aguilera, M.; Almendro, V.; Gascón, P. The transmodulation of HER2 and EGFR by substance P in breast cancer cells requires c-Src and metalloproteinase activation. PLoS One, 2015, 10, e0129661.
[70]
Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016, 7, 33440-33450.
[71]
Nakajima, Y.; Tsuchida, K.; Negishi, M.; Ito, S.; Nakanishi, S. Direct linkage of three tachykinin receptors to stimulation of both phosphatidylinositol hydrolysis and cAMP cascades in transfected Chinese hamster ovary cells. J. Biol. Chem., 1992, 267, 2437-2442.
[72]
Takeda, Y.; Blount, P.; Sachais, B.S.; Hershey, A.D.; Raddatz, R.; Krause, J.E. Ligand binding kinetics of substance P and neurokinin receptors stably expressed in Chinese hamster ovary cells and evidence for differential stimulation of inositol 1, 4, 5-triphosphate and cyclic AMP second messenger responses. J. Neurochem., 1992, 59, 740-745.
[73]
Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E., II; Marcello, J.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Sampson, J.; Wagner, M.; Bailey, L.; Bigner, D.D.; Friedman, A.H.; Friedman, H.S. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol., 2007, 25, 4722-4729.
[74]
Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; Vredenburgh, J.; Huang, J.; Zheng, M.; Cloughesy, T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol., 2009, 27, 4733-4740.
[75]
Moriya, S.; Ohba, S.; Adachi, K.; Nishiyama, Y.; Hayashi, T.; Nagahisa, S.; Kaito, T.; Nakae, S.; Hirose, Y. A retrospective study of bevacizumab for treatment of brainstem glioma with malignant features. J. Clin. Neurosci., 2018, 47, 228-233.
[76]
Tamura, R.; Tanaka, T.; Miyake, K.; Yoshida, K.; Sasaki, H. Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathol., 2017, 34, 62-77.
[77]
Yonezawa, H.; Hirano, H.; Uchida, H.; Habu, M.; Hanaya, R.; Oyoshi, T.; Sadamura, Y.; Hanada, T.; Tokimura, H.; Moinuddin, F.; Arita, K. Efficacy of bevacizumab therapy for unresectable malignant glioma: A retrospective analysis. Mol. Clin. Oncol., 2017, 6, 105-110.
[78]
Tabouret, E.; Tchoghandjian, A.; Denicolai, E.; Delfino, C.; Metellus, P.; Graillon, T.; Boucard, C.; Nanni, I.; Padovani, L.; Ouafik, L.; Figarella-Branger, D.; Chinot, O. Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway. Oncotarget, 2015, 6, 11664-11675.
[79]
Theoharides, T.C.; Zhang, B.; Kempuraj, D.; Tagen, M.; Vasiadi, M.; Angelidou, A.; Alysandratos, K.D.; Kalogeromitros, D.; Asadi, S.; Stavrianeas, N.; Peterson, E.; Leeman, S.; Conti, P. IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc. Natl. Acad. Sci. USA, 2010, 107, 4448-4453.
[80]
Yamaguchi, K.; Kumakura, S.; Murakami, T.; Someya, A.; Inada, E.; Nagaoka, I. Ketamine suppresses the substance P-induced production of IL-6 and IL-8 by human U373MG glioblastoma/astrocytoma cells. Int. J. Mol. Med., 2017, 39, 687-692.