Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer

Author(s): Nagula Shankaraiah*, Shalini Nekkanti , Ojaswitha Ommi and Lakshmi Soukya P.S.

Volume 26, Issue 39, 2019

Page: [7059 - 7080] Pages: 22

DOI: 10.2174/0929867325666180410110729

Price: $65

Abstract

The efficacy of successful cancer therapies is frequently hindered by the development of drug resistance in the tumor. The term ‘drug resistance’ is used to illustrate the decreased effectiveness of a drug in curing a disease or alleviating the symptoms of the patient. This phenomenon helps tumors to survive the damage caused by a specific drug or group of drugs. In this context, studying the mechanisms of drug resistance and applying this information to design customized treatment regimens can improve therapeutic efficacy as well as the curative outcome. Over the years, numerous Multidrug Resistance (MDR) mechanisms have been recognized and tremendous effort has been put into developing agents to address them. The integration of data emerging from the elucidation of molecular and biochemical pathways and specific tumor-associated factors has shown tremendous promise within the oncology community for improving patient outcomes. In this review, we provide an overview of the utility of these molecular and biochemical signaling processes as well as tumor-associated factors associated with MDR, for the rational selection of cancer treatment strategies.

Keywords: Multidrug resistance, small molecules, anticancer, Alternative kinase inhibitors, Antibody-drug conjugates, SiRNA.

[1]
a)Shahraki, O.; Edraki, N.; Khoshneviszadeh, M.; Zargari, F.; Ranjbar, S.; Saso, L.; Firuzi, O.; Miri, R. Novel 5-oxo-hexahydroquinoline derivatives: Design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study. Drug Des. Devel. Ther., 2017, 11, 407-418.
[http://dx.doi.org/10.2147/DDDT.S119995] [PMID: 28243063]
b)Ferry, D.R.; Russell, M.A.; Cullen, M.H. P-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is alloserically coupled to a vinca-alkaloid-selective binding site. Biochem. Biophys. Res. Commun., 1992, 188(1), 440-445.
[http://dx.doi.org/10.1016/0006-291X(92)92404-L] [PMID: 1358068]
[2]
Müller, M.; de Vries, E.G.; Jansen, P.L. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells. J. Hepatol., 1996, 24(1)(Suppl. 1), 100-108.
[PMID: 8926361]
[3]
Stavrovskaya, A.A. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc.), 2000, 65(1), 95-106.
[PMID: 10702644]
[4]
Fletcher, J.I.; Williams, R.T.; Henderson, M.J.; Norris, M.D.; Haber, M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016, 26, 1-9.
[http://dx.doi.org/10.1016/j.drup.2016.03.001] [PMID: 27180306]
[5]
Calcagno, A.M.; Fostel, J.M.; To, K.K.; Salcido, C.D.; Martin, S.E.; Chewning, K.J.; Wu, C.P.; Varticovski, L.; Bates, S.E.; Caplen, N.J.; Ambudkar, S.V. Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. Br. J. Cancer, 2008, 98(9), 1515-1524.
[http://dx.doi.org/10.1038/sj.bjc.6604334] [PMID: 18382425]
[6]
Nekkanti, S.; Tokala, R.; Shankaraiah, N. Targeting DNA minor groove by hybrid molecules as anticancer agents. Curr. Med. Chem., 2017, 24(26), 2887-2907.
[http://dx.doi.org/10.2174/0929867324666170523102730] [PMID: 28545367]
[7]
Shankaraiah, N.; Siraj, K.P.; Nekkanti, S.; Srinivasulu, V.; Sharma, P.; Senwar, K.R.; Sathish, M.; Vishnuvardhan, M.V.P.S.; Ramakrishna, S.; Jadala, C.; Nagesh, N.; Kamal, A. DNA-binding affinity and anticancer activity of β-carboline-chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorg. Chem., 2015, 59, 130-139.
[http://dx.doi.org/10.1016/j.bioorg.2015.02.007] [PMID: 25771335]
[8]
Kamal, A.; Srinivasulu, V.; Nayak, V.L.; Sathish, M.; Shankaraiah, N.; Bagul, C.; Reddy, N.V.S.; Rangaraj, N.; Nagesh, N. Design and synthesis of C3-pyrazole/chalcone-linked beta-carboline hybrids: antitopoisomerase I, DNA-interactive, and apoptosis-inducing anticancer agents. ChemMedChem, 2014, 9(9), 2084-2098.
[http://dx.doi.org/10.1002/cmdc.201300406] [PMID: 24470122]
[9]
Shankaraiah, N.; Jadala, C.; Nekkanti, S.; Senwar, K.R.; Nagesh, N.; Shrivastava, S.; Naidu, V.G.M.; Sathish, M.; Kamal, A. Design and synthesis of C3-tethered 1,2,3-triazolo-β-carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg. Chem., 2016, 64, 42-50.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.005] [PMID: 26657602]
[10]
Nekkanti, S.; Veeramani, K.; Sujana Kumari, S.; Tokala, R.; Shankaraiah, N. A recyclable and water soluble copper(I)-catalyst: One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles and their biological evaluation. RSC Advances, 2016, 6(105), 103556-103566.
[http://dx.doi.org/10.1039/C6RA22942E]
[11]
Kamal, A.; Sreekanth, K.; Shankaraiah, N.; Sathish, M.; Nekkanti, S.; Srinivasulu, V. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity. Bioorg. Chem., 2015, 59, 23-30.
[http://dx.doi.org/10.1016/j.bioorg.2015.01.002] [PMID: 25665519]
[12]
Kamal, A.; Shankaraiah, N.; Reddy, C.R.; Prabhakar, S.; Markandeya, N.; Srivastava, H.K.; Sastry, G.N. Synthesis of bis-1,2,3-triazolo-bridged unsymmetrical pyrrolobenzodiazepine trimers via “click” chemistry and their DNA-binding studies. Tetrahedron, 2010, 66(29), 5498-5506.
[http://dx.doi.org/10.1016/j.tet.2010.05.003]
[13]
Nekkanti, S.; Pooladanda, V.; Veldandi, M.; Tokala, R.; Godugu, C.; Shankaraiah, N. Synthesis of 1,2,3-triazolo-fused-tetrahydro-β-carboline derivatives via 1,3-dipolar cycloaddition reaction: Cytotoxicity evaluation and DNAbinding studies. ChemistrySelect, 2017, 2, 7210-7221.
[http://dx.doi.org/10.1002/slct.201700620]
[14]
Shankaraiah, N.; Kumar, N.P.; Amula, S.B.; Nekkanti, S.; Jeengar, M.K.; Naidu, V.G.M.; Reddy, T.S.; Kamal, A. Novel podophyllotoxin-thiourea congeners as DNA topoisomerase-II inhibition and apoptosis inducing agents: Synthesis, anticancer activity and molecular modeling studies. Bioorg. Med. Chem. Lett., 2015, 25, 4239-4244.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.100] [PMID: 26292628]
[15]
Wang, W.; Rastinejad, F.; El-Deiry, W.S. Restoring p53-dependent tumor suppression. Cancer Biol. Ther., 2003, 2(4)(Suppl. 1), S55-S63.
[PMID: 14508081]
[16]
Domínguez-Álvarez, E.; Gajdács, M.; Spengler, G.; Palop, J.A.; Marć, M.A.; Kieć-Kononowicz, K.; Amaral, L.; Molnár, J.; Jacob, C.; Handzlik, J.; Sanmartín, C. Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorg. Med. Chem. Lett., 2016, 26(12), 2821-2824.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.064] [PMID: 27156771]
[17]
Liu, Y.Y.; Han, T.Y.; Giuliano, A.E.; Hansen, N.; Cabot, M.C. Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance. J. Biol. Chem., 2000, 275(10), 7138-7143.
[http://dx.doi.org/10.1074/jbc.275.10.7138] [PMID: 10702281]
[18]
Lucci, A.; Giuliano, A.E.; Han, T.Y.; Dinur, T.; Liu, Y.Y.; Senchenkov, A.; Cabot, M.C. Ceramide toxicity and metabolism differ in wild-type and multidrug-resistant cancer cells. Int. J. Oncol., 1999, 15(3), 535-540.
[http://dx.doi.org/10.3892/ijo.15.3.535] [PMID: 10427136]
[19]
Lavie, Y.; Cao, Ht.; Volner, A.; Lucci, A.; Han, T.Y.; Geffen, V.; Giuliano, A.E.; Cabot, M.C. Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J. Biol. Chem., 1997, 272(3), 1682-1687.
[http://dx.doi.org/10.1074/jbc.272.3.1682] [PMID: 8999846]
[20]
Liscovitch, M.; Lavie, Y. Cancer multidrug resistance: a review of recent drug discovery research. IDrugs, 2002, 5(4), 349-355.
[PMID: 15565517]
[21]
Cabot, M.C.; Giuliano, A.E.; Volner, A.; Han, T.Y. Tamoxifen retards glycosphingolipid metabolism in human cancer cells. FEBS Lett., 1996, 394(2), 129-131.
[http://dx.doi.org/10.1016/0014-5793(96)00942-8] [PMID: 8843149]
[22]
Senchenkov, A.; Litvak, D.A.; Cabot, M.C. Targeting ceramide metabolism--a strategy for overcoming drug resistance. J. Natl. Cancer Inst., 2001, 93(5), 347-357.
[http://dx.doi.org/10.1093/jnci/93.5.347] [PMID: 11238696]
[23]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[24]
Hirschmann-Jax, C.; Foster, A.E.; Wulf, G.G.; Nuchtern, J.G.; Jax, T.W.; Gobel, U.; Goodell, M.A.; Brenner, M.K. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. USA, 2004, 101(39), 14228-14233.
[http://dx.doi.org/10.1073/pnas.0400067101] [PMID: 15381773]
[25]
Sparreboom, A.; Planting, A.S.; Jewell, R.C.; van der Burg, M.E.; van der Gaast, A.; de Bruijn, P.; Loos, W.J.; Nooter, K.; Chandler, L.H.; Paul, E.M.; Wissel, P.S.; Verweij, J. Clinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein. Anticancer Drugs, 1999, 10(8), 719-728.
[http://dx.doi.org/10.1097/00001813-199909000-00005] [PMID: 10573204]
[26]
Yang, K.; Chen, Y.; To, K.K.W.; Wang, F.; Li, D.; Chen, L.; Fu, L. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp. Mol. Med., 2017, 49(3)e303
[http://dx.doi.org/10.1038/emm.2016.168] [PMID: 28303028]
[27]
Wang, Y.J.; Patel, B.A.; Anreddy, N.; Zhang, Y.K.; Zhang, G.N.; Alqahtani, S.; Singh, S.; Shukla, S.; Kaddoumi, A.; Ambudkar, S.V.; Talele, T.T.; Chen, Z.S. Thiazole-valine peptidomimetic (TTT-28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1. Sci. Rep., 2017, 7, 42106.
[http://dx.doi.org/10.1038/srep42106] [PMID: 28181548]
[28]
Zingone, A.; Kuehl, W.M. Pathogenesis of monoclonal gammopathy of undetermined significance and progression to multiple myeloma. In: Seminars in hematology; Saunders, W.B., Ed.; , 2011; 48, pp. (1)4-12.
[http://dx.doi.org/10.1053/j.seminhematol.2010.11.003]
[29]
Moschetta, M.; Kawano, Y.; Podar, K. Targeting the Bone Marrow Microenvironment. In: Plasma Cell Dyscrasias; Roccaro, A.; Ghobrial, I., Eds.; Springer: Cham, 2016; Vol. 169, pp. 63-102.
[http://dx.doi.org/10.1007/978-3-319-40320-5_6]
[30]
a)Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med., 2010, 363(19), 1812-1821.
[http://dx.doi.org/10.1056/NEJMoa1002965] [PMID: 21047225]
b)Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[31]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D-Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[32]
Mullard, A. 2011 in reflection. Nat. Rev. Drug Discov., 2012, 11(1), 6-8.
[http://dx.doi.org/10.1038/nrd3643] [PMID: 22212664]
[33]
Segal, N.H.; Verghis, J.; Govindan, S.; Maliakal, P.; Sharkey, R.M.; Wegener, W.A.; Goldenberg, D.M.; Saltz, L.B. A phase I study of IMMU-130 (labetuzumab-SN38) anti- CEACAM5 antibody–drug conjugate (ADC) in patients with metastatic colorectal cancer (mCRC). Cancer Res, 2013, 73LB, 159.
[http://dx.doi.org/10.1158/1538-7445.AM2013-LB-159]
[34]
Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance--challenges and solutions. Drug Resist. Updat., 2015, 18, 36-46.
[http://dx.doi.org/10.1016/j.drup.2014.11.001] [PMID: 25476546]
[35]
Vivek, R.; Thangam, R. NipunBabu, V.; Rejeeth, C.; Sivasubramanian, S.; Gunasekaran, P.; Muthuchelian, K.; Kannan, S. Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Appl. Mater. Interfaces, 2014, 6(9), 6469-6480.
[http://dx.doi.org/10.1021/am406012g] [PMID: 24780315]
[36]
Salomon, P.L.; Singh, R. Sensitive ELISA method for the measurement of catabolites of antibody–drug conjugates (ADCs) in target cancer cells. Mol. Pharm., 2015, 12(6), 1752-1761.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00028] [PMID: 25738394]
[37]
a)Akan, I.; Akan, S.; Akca, H.; Savas, B.; Ozben, T. N-acetylcysteine enhances multidrug resistance-associated protein 1 mediated doxorubicin resistance. Eur. J. Clin. Invest., 2004, 34(10), 683-689.
[http://dx.doi.org/10.1111/j.1365-2362.2004.01411.x] [PMID: 15473893]
b)Akan, I.; Akan, S.; Akca, H.; Savas, B.; Ozben, T. Multidrug resistance-associated protein 1 (MRP1) mediated vincristine resistance: effects of N-acetylcysteine and Buthionine sulfoximine. Cancer Cell Int., 2005, 5(1), 22.
[http://dx.doi.org/10.1186/1475-2867-5-22] [PMID: 16042792]
[38]
Rocha, Gda.G.; Oliveira, R.R.; Kaplan, M.A.; Gattass, C.R. 3β-Acetyl tormentic acid reverts MRP1/ABCC1 mediated cancer resistance through modulation of intracellular levels of GSH and inhibition of GST activity. Eur. J. Pharmacol., 2014, 741, 140-149.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.054] [PMID: 25111243]
[39]
a)Chen, G.; Wang, F.; Trachootham, D.; Huang, P. Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds. Mitochondrion, 2010, 10(6), 614-625.
[http://dx.doi.org/10.1016/j.mito.2010.08.001] [PMID: 20713185]
b)Okon, I.S.; Coughlan, K.A.; Zhang, M.; Wang, Q.; Zou, M.H. Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J. Biol. Chem., 2015, 290(14), 9101-9110.
[http://dx.doi.org/10.1074/jbc.M114.631580] [PMID: 25681445]
[40]
Wang, R.; Ma, L.; Weng, D.; Yao, J.; Liu, X.; Jin, F. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep., 2016, 35(5), 3075-3083.
[http://dx.doi.org/10.3892/or.2016.4690] [PMID: 26987028]
[41]
Lozano, C.; Torres, J.L.; Julià, L.; Jimenez, A.; Centelles, J.J.; Cascante, M. Effect of new antioxidant cysteinyl-flavanol conjugates on skin cancer cells. FEBS Lett., 2005, 579(20), 4219-4225.
[http://dx.doi.org/10.1016/j.febslet.2005.06.051] [PMID: 16051220]
[42]
Guo, P.; Wang, S.; Liang, W.; Wang, W.; Wang, H.; Zhao, M.; Liu, X. Salvianolic acid B reverses multidrug resistance in HCT-8/VCR human colorectal cancer cells by increasing ROS levels. Mol. Med. Rep., 2017, 15(2), 724-730.
[http://dx.doi.org/10.3892/mmr.2016.6049] [PMID: 28000873]
[43]
Karthikeyan, S.; Hoti, S.L.; Nazeer, Y.; Hegde, H.V. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways. Oncotarget, 2016, 7(27), 42353-42373.
[http://dx.doi.org/10.18632/oncotarget.9865] [PMID: 27304668]
[44]
Zhang, L.; Zhang, Z.; Chen, F.; Chen, Y.; Lin, Y.; Wang, J. Aromatic heterocyclic esters of podophyllotoxin exert anti-MDR activity in human leukemia K562/ADR cells via ROS/MAPK signaling pathways. Eur. J. Med. Chem., 2016, 123, 226-235.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.050] [PMID: 27484511]
[45]
Kandaswami, C.; Lee, L.T.; Lee, P.P.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo, 2005, 19(5), 895-909.
[PMID: 16097445]
[46]
Scambia, G.; Ranelletti, F.O.; Panici, P.B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M.; Mancuso, S. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol., 1994, 34(6), 459-464.
[http://dx.doi.org/10.1007/BF00685655] [PMID: 7923555]
[47]
Kim, M.K.; Kim, Y.; Choo, H.; Chong, Y. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein. Bioorg. Med. Chem., 2017, 25(3), 1219-1226.
[http://dx.doi.org/10.1016/j.bmc.2016.12.034] [PMID: 28043777]
[48]
Imai, Y.; Tsukahara, S.; Asada, S.; Sugimoto, Y. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res., 2004, 64(12), 4346-4352.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0078] [PMID: 15205350]
[49]
Cihalova, D.; Staud, F.; Ceckova, M. Interactions of cyclin-dependent kinase inhibitors AT-7519, flavopiridol and SNS-032 with ABCB1, ABCG2 and ABCC1 transporters and their potential to overcome multidrug resistance in vitro. Cancer Chemother. Pharmacol., 2015, 76(1), 105-116.
[http://dx.doi.org/10.1007/s00280-015-2772-1] [PMID: 25986678]
[50]
Liu, R.; Zhang, H.; Yuan, M.; Zhou, J.; Tu, Q.; Liu, J.J.; Wang, J. Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules, 2013, 18(9), 11496-11511.
[http://dx.doi.org/10.3390/molecules180911496] [PMID: 24048283]
[51]
Li, B.; Hou, D.; Guo, H.; Zhou, H.; Zhang, S.; Xu, X.; Liu, Q.; Zhang, X.; Zou, Y.; Gong, Y.; Shao, C. Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells. Sci. Rep., 2017, 7(1), 208.
[http://dx.doi.org/10.1038/s41598-017-00315-4] [PMID: 28303009]
[52]
Wang, S.; Willenberg, I.; Krohn, M.; Hecker, T.; Meckelmann, S.; Li, C.; Pan, Y.; Schebb, N.H.; Steinberg, P.; Empl, M.T. Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro. PLoS One, 2017, 12(1) e0170502
[http://dx.doi.org/10.1371/journal.pone.0170502] [PMID: 28114318]
[53]
Senwar, K.R.; Sharma, P.; Reddy, T.S.; Jeengar, M.K.; Nayak, V.L.; Naidu, V.G.M.; Kamal, A.; Shankaraiah, N. Spirooxindole-derived morpholine-fused-1,2,3-triazoles: Design, synthesis, cytotoxicity and apoptosis inducing studies. Eur. J. Med. Chem., 2015, 102, 413-424.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.017] [PMID: 26301558]
[54]
Senwar, K.R.; Reddy, T.S.; Thummuri, D.; Sharma, P.; Naidu, V.G.M.; Srinivasulu, G.; Shankaraiah, N. Design, synthesis and apoptosis inducing effect of novel (Z)-3-(3′-methoxy-4′-(2-amino-2-oxoethoxy)-benzylidene)indolin-2-ones as potential antitumour agents. Eur. J. Med. Chem., 2016, 118, 34-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.025] [PMID: 27128173]
[55]
Sharma, P.; Thummuri, D.; Reddy, T.S.; Senwar, K.R.; Naidu, V.G.M.; Srinivasulu, G.; Bharghava, S.K.; Shankaraiah, N. New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2016, 122, 584-600.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.019] [PMID: 27448916]
[56]
a)Bradeen, H.A.; Eide, C.A.; O’Hare, T.; Johnson, K.J.; Willis, S.G.; Lee, F.Y.; Druker, B.J.; Deininger, M.W. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood, 2006, 108(7), 2332-2338.
[http://dx.doi.org/10.1182/blood-2006-02-004580] [PMID: 16772610]
b)Kantarjian, H.; Shah, N.P.; Hochhaus, A.; Cortes, J.; Shah, S.; Ayala, M.; Moiraghi, B.; Shen, Z.; Mayer, J.; Pasquini, R.; Nakamae, H.; Huguet, F.; Boqué, C.; Chuah, C.; Bleickardt, E.; Bradley-Garelik, M.B.; Zhu, C.; Szatrowski, T.; Shapiro, D.; Baccarani, M. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med., 2010, 362(24), 2260-2270.
[http://dx.doi.org/10.1056/NEJMoa1002315] [PMID: 20525995]
[57]
Saglio, G.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Lobo, C.; Pasquini, R.; Clark, R.E.; Hochhaus, A.; Hughes, T.P.; Gallagher, N.; Hoenekopp, A.; Dong, M.; Haque, A.; Larson, R.A.; Kantarjian, H.M. ENESTnd investigators. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med., 2010, 362(24), 2251-2259.
[http://dx.doi.org/10.1056/NEJMoa0912614] [PMID: 20525993]
[58]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238] [PMID: 15728811]
[59]
a)O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
b)Weisberg, E.; Choi, H.G.; Ray, A.; Barrett, R.; Zhang, J.; Sim, T.; Zhou, W.; Seeliger, M.; Cameron, M.; Azam, M.; Fletcher, J.A.; Debiec-Rychter, M.; Mayeda, M.; Moreno, D.; Kung, A.L.; Janne, P.A.; Khosravi-Far, R.; Melo, J.V.; Manley, P.W.; Adamia, S.; Wu, C.; Gray, N.; Griffin, J.D. Discovery of a small-molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRalpha, Kit, and Src kinases: novel type II inhibitor of gatekeeper mutants. Blood, 2010, 115(21), 4206-4216.
[http://dx.doi.org/10.1182/blood-2009-11-251751] [PMID: 20299508]
[60]
Ma, C.; Wei, S.; Song, Y. T790M and acquired resistance of EGFR TKI: a literature review of clinical reports. J. Thorac. Dis., 2011, 3(1), 10-18.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2010.12.02] [PMID: 22263058]
[61]
Finlay, M.R.V.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P.A.; Box, M.R.; Bradbury, R.H.; Brown, S.J.; Butterworth, S.; Campbell, A.; Chorley, C.; Colclough, N.; Cross, D.A.E.; Currie, G.S.; Grist, M.; Hassall, L.; Hill, G.B.; James, D.; James, M.; Kemmitt, P.; Klinowska, T.; Lamont, G.; Lamont, S.G.; Martin, N.; McFarland, H.L.; Mellor, M.J.; Orme, J.P.; Perkins, D.; Perkins, P.; Richmond, G.; Smith, P.; Ward, R.A.; Waring, M.J.; Whittaker, D.; Wells, S.; Wrigley, G.L. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem., 2014, 57(20), 8249-8267.
[http://dx.doi.org/10.1021/jm500973a] [PMID: 25271963]
[62]
Cross, D.A.E.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.V.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Red Brewer, M.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G.H.P.; Cantarini, M.; Kim, D-W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337] [PMID: 24893891]
[63]
Sequist, L.V.; Soria, J-C.; Goldman, J.W.; Wakelee, H.A.; Gadgeel, S.M.; Varga, A.; Papadimitrakopoulou, V.; Solomon, B.J.; Oxnard, G.R.; Dziadziuszko, R.; Aisner, D.L.; Doebele, R.C.; Galasso, C.; Garon, E.B.; Heist, R.S.; Logan, J.; Neal, J.W.; Mendenhall, M.A.; Nichols, S.; Piotrowska, Z.; Wozniak, A.J.; Raponi, M.; Karlovich, C.A.; Jaw-Tsai, S.; Isaacson, J.; Despain, D.; Matheny, S.L.; Rolfe, L.; Allen, A.R.; Camidge, D.R. Rociletinib in EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1700-1709.
[http://dx.doi.org/10.1056/NEJMoa1413654] [PMID: 25923550]
[64]
a)Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
b)Turke, A.B.; Zejnullahu, K.; Wu, Y.L.; Song, Y.; Dias-Santagata, D.; Lifshits, E.; Toschi, L.; Rogers, A.; Mok, T.; Sequist, L.; Lindeman, N.I.; Murphy, C.; Akhavanfard, S.; Yeap, B.Y.; Xiao, Y.; Capelletti, M.; Iafrate, A.J.; Lee, C.; Christensen, J.G.; Engelman, J.A.; Jänne, P.A. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell, 2010, 17(1), 77-88.
[http://dx.doi.org/10.1016/j.ccr.2009.11.022] [PMID: 20129249]
[65]
a)Nazarian, R.; Shi, H.; Wang, Q.; Kong, X.; Koya, R.C.; Lee, H.; Chen, Z.; Lee, M.K.; Attar, N.; Sazegar, H.; Chodon, T.; Nelson, S.F.; McArthur, G.; Sosman, J.A.; Ribas, A.; Lo, R.S. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468(7326), 973-977.
[http://dx.doi.org/10.1038/nature09626] [PMID: 21107323]
b)Villanueva, J.; Vultur, A.; Lee, J.T.; Somasundaram, R.; Fukunaga-Kalabis, M.; Cipolla, A.K.; Wubbenhorst, B.; Xu, X.; Gimotty, P.A.; Kee, D.; Santiago-Walker, A.E.; Letrero, R.; D’Andrea, K.; Pushparajan, A.; Hayden, J.E.; Brown, K.D.; Laquerre, S.; McArthur, G.A.; Sosman, J.A.; Nathanson, K.L.; Herlyn, M. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010, 18(6), 683-695.
[http://dx.doi.org/10.1016/j.ccr.2010.11.023] [PMID: 21156289]
[66]
Lee, Y.; Wang, Y.; James, M.; Jeong, J.H.; You, M. Inhibition of IGF1R signaling abrogates resistance to afatinib (BIBW2992) in EGFR T790M mutant lung cancer cells. Mol. Carcinog., 2016, 55(5), 991-1001.
[http://dx.doi.org/10.1002/mc.22342] [PMID: 26052929]
[67]
Zhang, Z.; Lee, J.C.; Lin, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C-M.; Kim, S-W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J-S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44(8), 852-860.
[http://dx.doi.org/10.1038/ng.2330] [PMID: 22751098]
[68]
Kaminskas, E.; Farrell, A.T.; Wang, Y-C.; Sridhara, R.; Pazdur, R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist, 2005, 10(3), 176-182.
[http://dx.doi.org/10.1634/theoncologist.10-3-176] [PMID: 15793220]
[69]
Chang, Y.; Ganesh, T.; Horton, J.R.; Spannhoff, A.; Liu, J.; Sun, A.; Zhang, X.; Bedford, M.T.; Shinkai, Y.; Snyder, J.P.; Cheng, X. Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J. Mol. Biol., 2010, 400(1), 1-7.
[http://dx.doi.org/10.1016/j.jmb.2010.04.048] [PMID: 20434463]
[70]
Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; Chesi, M.; Schinzel, A.C.; McKeown, M.R.; Heffernan, T.P.; Vakoc, C.R.; Bergsagel, P.L.; Ghobrial, I.M.; Richardson, P.G.; Young, R.A.; Hahn, W.C.; Anderson, K.C.; Kung, A.L.; Bradner, J.E.; Mitsiades, C.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6), 904-917.
[http://dx.doi.org/10.1016/j.cell.2011.08.017] [PMID: 21889194]
[71]
Bowers, E.M.; Yan, G.; Mukherjee, C.; Orry, A.; Wang, L.; Holbert, M.A.; Crump, N.T.; Hazzalin, C.A.; Liszczak, G.; Yuan, H.; Larocca, C.; Saldanha, S.A.; Abagyan, R.; Sun, Y.; Meyers, D.J.; Marmorstein, R.; Mahadevan, L.C.; Alani, R.M.; Cole, P.A. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol., 2010, 17(5), 471-482.
[http://dx.doi.org/10.1016/j.chembiol.2010.03.006] [PMID: 20534345]
[72]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[73]
a)Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: an epigenetic overview. Int. J. Mol. Sci., 2013, 14(10), 21087-21113.
[http://dx.doi.org/10.3390/ijms141021087] [PMID: 24152442]
b)Byler, S.; Goldgar, S.; Heerboth, S.; Leary, M.; Housman, G.; Moulton, K.; Sarkar, S. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res., 2014, 34(3), 1071-1077.
[PMID: 24596345]
c)Byler, S.; Sarkar, S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics, 2014, 6(2), 161-165.
[http://dx.doi.org/10.2217/epi.14.4] [PMID: 24811783]
[74]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[75]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[76]
Scaltriti, M.; Eichhorn, P.J.; Cortés, J.; Prudkin, L.; Aura, C.; Jiménez, J.; Chandarlapaty, S.; Serra, V.; Prat, A.; Ibrahim, Y.H.; Guzmán, M.; Gili, M.; Rodríguez, O.; Rodríguez, S.; Pérez, J.; Green, S.R.; Mai, S.; Rosen, N.; Hudis, C.; Baselga, J. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc. Natl. Acad. Sci. USA, 2011, 108(9), 3761-3766.
[http://dx.doi.org/10.1073/pnas.1014835108] [PMID: 21321214]
[77]
VanderWel, S.N.; Harvey, P.J.; McNamara, D.J.; Repine, J.T.; Keller, P.R.; Quin, J., III; Booth, R.J.; Elliott, W.L.; Dobrusin, E.M.; Fry, D.W.; Toogood, P.L. Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J. Med. Chem., 2005, 48(7), 2371-2387.
[http://dx.doi.org/10.1021/jm049355+] [PMID: 15801830]
[78]
Toogood, P.L.; Harvey, P.J.; Repine, J.T.; Sheehan, D.J.; VanderWel, S.N.; Zhou, H.; Keller, P.R.; McNamara, D.J.; Sherry, D.; Zhu, T.; Brodfuehrer, J.; Choi, C.; Barvian, M.R.; Fry, D.W. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem., 2005, 48(7), 2388-2406.
[http://dx.doi.org/10.1021/jm049354h] [PMID: 15801831]
[79]
Vora, S.R.; Juric, D.; Kim, N.; Mino-Kenudson, M.; Huynh, T.; Costa, C.; Lockerman, E.L.; Pollack, S.F.; Liu, M.; Li, X.; Lehar, J.; Wiesmann, M.; Wartmann, M.; Chen, Y.; Cao, Z.A.; Pinzon-Ortiz, M.; Kim, S.; Schlegel, R.; Huang, A.; Engelman, J.A. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell, 2014, 26(1), 136-149.
[http://dx.doi.org/10.1016/j.ccr.2014.05.020] [PMID: 25002028]
[80]
Schwartz, G.K.; LoRusso, P.M.; Dickson, M.A.; Randolph, S.S.; Shaik, M.N.; Wilner, K.D.; Courtney, R.; O’Dwyer, P.J. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br. J. Cancer, 2011, 104(12), 1862-1868.
[http://dx.doi.org/10.1038/bjc.2011.177] [PMID: 21610706]
[81]
Gao, Y.; Shen, J.; Choy, E.; Mankin, H.; Hornicek, F.; Duan, Z. Inhibition of CDK4 sensitizes multidrug resistant ovarian cancer cells to paclitaxel by increasing apoptosis. Cell. Oncol., 2017, 3(40), 209-218.
[http://dx.doi.org/10.1007/s13402-017-0316-x]
[82]
Hamilton, E.; Infante, J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev., 2016, 45, 129-138.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.002] [PMID: 27017286]
[83]
Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov., 2010, 9(6), 447-464.
[http://dx.doi.org/10.1038/nrd3137] [PMID: 20467424]
[84]
Raghunand, N.; He, X.; van Sluis, R.; Mahoney, B.; Baggett, B.; Taylor, C.W.; Paine-Murrieta, G.; Roe, D.; Bhujwalla, Z.M.; Gillies, R.J. Enhancement of chemotherapy by manipulation of tumour pH. Br. J. Cancer, 1999, 80(7), 1005-1011.
[http://dx.doi.org/10.1038/sj.bjc.6690455] [PMID: 10362108]
[85]
Uwagawa, T.; Misawa, T.; Iida, T.; Sakamoto, T.; Gocho, T.; Wakiyama, S.; Hirohara, S.; Yanaga, K. Proton-pump inhibitor as palliative care for chemotherapy-induced gastroesophageal reflux disease in pancreatic cancer patients. J. Palliat. Med., 2010, 13(7), 815-818.
[http://dx.doi.org/10.1089/jpm.2009.0404] [PMID: 20636150]
[86]
Ben Sahra, I.; Laurent, K.; Giuliano, S.; Larbret, F.; Ponzio, G.; Gounon, P.; Le Marchand-Brustel, Y.; Giorgetti-Peraldi, S.; Cormont, M.; Bertolotto, C.; Deckert, M.; Auberger, P.; Tanti, J.F.; Bost, F. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res., 2010, 70(6), 2465-2475.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2782] [PMID: 20215500]
[87]
Hagen, T.; Lagace, C.J.; Modica-Napolitano, J.S.; Aprille, J.R. Permeability transition in rat liver mitochondria is modulated by the ATP-Mg/Pi carrier. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(2), G274-G281.
[http://dx.doi.org/10.1152/ajpgi.00052.2003] [PMID: 12851217]
[88]
Oliver, L.; Mahé, B.; Gréé, R.; Vallette, F.M.; Juin, P. HA14-1, a small molecule inhibitor of Bcl-2, bypasses chemoresistance in leukaemia cells. Leuk. Res., 2007, 31(6), 859-863.
[http://dx.doi.org/10.1016/j.leukres.2006.11.010] [PMID: 17224180]
[89]
van Delft, M.F.; Wei, A.H.; Mason, K.D.; Vandenberg, C.J.; Chen, L.; Czabotar, P.E.; Willis, S.N.; Scott, C.L.; Day, C.L.; Cory, S.; Adams, J.M.; Roberts, A.W.; Huang, D.C. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 2006, 10(5), 389-399.
[http://dx.doi.org/10.1016/j.ccr.2006.08.027] [PMID: 17097561]
[90]
Wang, C.C.; Liu, H.E.; Lee, Y.L.; Huang, Y.W.; Chen, Y.J.; Liou, J.P.; Huang, H.M. MPT0B169, a novel tubulin inhibitor, induces apoptosis in taxol-resistant acute myeloid leukemia cells through mitochondrial dysfunction and Mcl-1 downregulation. Tumour Biol., 2016, 37(5), 6065-6072.
[http://dx.doi.org/10.1007/s13277-015-4380-4] [PMID: 26608370]
[91]
Wong, S.M.; Liu, F.H.; Lee, Y.L.; Huang, H.M. MPT0B169, a new antitubulin agent, inhibits Bcr-Abl expression and induces mitochondrion-mediated apoptosis in nonresistant and imatinib-resistant chronic myeloid leukemia cells. PLoS One, 2016, 11(1) e0148093
[http://dx.doi.org/10.1371/journal.pone.0148093] [PMID: 26815740]
[92]
Bedikian, A.Y.; Millward, M.; Pehamberger, H.; Conry, R.; Gore, M.; Trefzer, U.; Pavlick, A.C.; DeConti, R.; Hersh, E.M.; Hersey, P.; Kirkwood, J.M.; Haluska, F.G. Oblimersen Melanoma Study Group. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J. Clin. Oncol., 2006, 24(29), 4738-4745.
[http://dx.doi.org/10.1200/JCO.2006.06.0483] [PMID: 16966688]
[93]
Guo, R.; Tian, Y.; Wang, Y.; Yang, W. Near‐infrared laser‐triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer. Adv. Funct. Mater., 2017, 27(13) 1606398
[http://dx.doi.org/10.1002/adfm.201606398]
[94]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[95]
Ogawara, K.; Un, K.; Tanaka, K.; Higaki, K.; Kimura, T. In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearing mice: Involvement of cytotoxic effect on vascular endothelial cells. J. Control. Release, 2009, 133(1), 4-10.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.008] [PMID: 18840484]
[96]
Jin, X.; Zhou, B.; Xue, L.; San, W. Soluplus(®) micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother., 2015, 69, 388-395.
[http://dx.doi.org/10.1016/j.biopha.2014.12.028] [PMID: 25661387]
[97]
Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 2009, 5(23), 2673-2677.
[http://dx.doi.org/10.1002/smll.200900621] [PMID: 19780069]
[98]
Lee, S-M.; Kim, H.J.; Kim, S.Y.; Kwon, M-K.; Kim, S.; Cho, A.; Yun, M.; Shin, J-S.; Yoo, K-H. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials, 2014, 35(7), 2272-2282.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.068] [PMID: 24342728]
[99]
Mapoung, S.; Pitchakarn, P.; Yodkeeree, S.; Ovatlarnporn, C.; Sakorn, N.; Limtrakul, P. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells. Chem. Biol. Interact., 2016, 244, 140-148.
[http://dx.doi.org/10.1016/j.cbi.2015.12.001] [PMID: 26689174]
[100]
Chen, Y.; Zhang, M.; Jin, H.; Tang, Y.; Wu, A.; Xu, Q.; Huang, Y. Prodrug-like, PEGylated protein toxin trichosanthin for reversal of chemoresistance. Mol. Pharm., 2017, 14(5), 1429-1438.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00987] [PMID: 28195491]
[101]
Li, D.; Gale, R.P.; Liu, Y.; Lei, B.; Wang, Y.; Diao, D.; Zhang, M. 5′-Triphosphate siRNA targeting MDR1 reverses multi-drug resistance and activates RIG-I-induced immune-stimulatory and apoptotic effects against human myeloid leukaemia cells. Leuk. Res., 2017, 58, 23-30.
[http://dx.doi.org/10.1016/j.leukres.2017.03.010] [PMID: 28380403]
[102]
Shen, H.; Liu, T.; Fu, L.; Zhao, S.; Fan, B.; Cao, J.; Li, X. Identification of microRNAs involved in dexamethasone-induced muscle atrophy. Mol. Cell. Biochem., 2013, 381(1-2), 105-113.
[http://dx.doi.org/10.1007/s11010-013-1692-9] [PMID: 23716137]
[103]
Bao, L.; Hazari, S.; Mehra, S.; Kaushal, D.; Moroz, K.; Dash, S. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am. J. Pathol., 2012, 180(6), 2490-2503.
[http://dx.doi.org/10.1016/j.ajpath.2012.02.024] [PMID: 22521303]
[104]
Dong, W-H.; Li, Q.; Zhang, X-Y.; Guo, Q.; Li, H.; Wang, T-Y. Deep sequencing identifies deregulation of microRNAs involved with vincristine drug-resistance of colon cancer cells. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11524-11530.
[PMID: 26617885]
[105]
Li, Y.; Zhao, L.; Li, N.; Miao, Y.; Zhou, H.; Jia, L. miR-9 regulates the multidrug resistance of chronic myelogenous leukemia by targeting ABCB1. Oncol. Rep., 2017, 37(4), 2193-2200.
[http://dx.doi.org/10.3892/or.2017.5464] [PMID: 28260112]
[106]
McHugh, K.; Callaghan, R. Clinical trials on MDR reversal agents. In: Multidrug Resistance: Biological and Pharmaceutical Advances in Antitumour Treatment; Colabufo, N.A., Ed.; Research Signpost: Kerala, 2008; pp. 321-353.
[107]
Colabufo, N.A.; Berardi, F.; Contino, M.; Niso, M.; Perrone, R. ABC pumps and their role in active drug transport. Curr. Top. Med. Chem., 2009, 9(2), 119-129.
[http://dx.doi.org/10.2174/156802609787521553] [PMID: 19200000]
[108]
Wang, D-S.; Patel, A.; Shukla, S.; Zhang, Y-K.; Wang, Y-J.; Kathawala, R.J.; Robey, R.W.; Zhang, L.; Yang, D-H.; Talele, T.T.; Bates, S.E.; Ambudkar, S.V.; Xu, R-H.; Chen, Z-S. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2. Oncotarget, 2014, 5(12), 4529-4542.
[http://dx.doi.org/10.18632/oncotarget.2102] [PMID: 24980828]
[109]
Kuang, Y-H.; Shen, T.; Chen, X.; Sodani, K.; Hopper-Borge, E.; Tiwari, A.K.; Lee, J.W.K.K.; Fu, L-W.; Chen, Z-S. Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochem. Pharmacol., 2010, 79(2), 154-161.
[http://dx.doi.org/10.1016/j.bcp.2009.08.021] [PMID: 19720054]
[110]
Shi, Z.; Peng, X-X.; Kim, I-W.; Shukla, S.; Si, Q-S.; Robey, R.W.; Bates, S.E.; Shen, T.; Ashby, C.R., Jr; Fu, L-W.; Ambudkar, S.V.; Chen, Z-S. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res., 2007, 67(22), 11012-11020.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2686] [PMID: 18006847]
[111]
Zhang, H.; Wang, Y-J.; Zhang, Y-K.; Wang, D-S.; Kathawala, R.J.; Patel, A.; Talele, T.T.; Chen, Z-S.; Fu, L-W. AST1306, a potent EGFR inhibitor, antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Cancer Lett., 2014, 350(1-2), 61-68.
[http://dx.doi.org/10.1016/j.canlet.2014.04.008] [PMID: 24747122]
[112]
Zhang, H.; Zhang, Y-K.; Wang, Y-J.; Kathawala, R.J.; Patel, A.; Zhu, H.; Sodani, K.; Talele, T.T.; Ambudkar, S.V.; Chen, Z-S.; Fu, L-W. WHI-P154 enhances the chemotherapeutic effect of anticancer agents in ABCG2-overexpressing cells. Cancer Sci., 2014, 105(8), 1071-1078.
[http://dx.doi.org/10.1111/cas.12462] [PMID: 24903205]
[113]
Minocha, M.; Khurana, V.; Qin, B.; Pal, D.; Mitra, A.K. Enhanced brain accumulation of pazopanib by modulating P-gp and Bcrp1 mediated efflux with canertinib or erlotinib. Int. J. Pharm., 2012, 436(1-2), 127-134.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.038] [PMID: 22688250]
[114]
Vispute, S.G.; Chen, J-J.; Sun, Y-L.; Sodani, K.S.; Singh, S.; Pan, Y.; Talele, T.; Ashby, C.R., Jr; Chen, Z-S. Vemurafenib (PLX4032, Zelboraf®), a BRAF Inhibitor, Modulates ABCB1-, ABCG2-, and ABCC10-Mediated Multidrug Resistance. J. Cancer Res. Updates, 2013, 2, 306-317.
[115]
Kanzaki, A.; Takebayashi, Y.; Ren, X-Q.; Miyashita, H.; Mori, S.; Akiyama, S.; Pommier, Y. Overcoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cell lines by ecteinascidin 743. Mol. Cancer Ther., 2002, 1(14), 1327-1334.
[PMID: 12516966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy