Review Article

他克林-天然产物杂交用于阿尔茨海默氏病治疗

卷 27, 期 26, 2020

页: [4392 - 4400] 页: 9

弟呕挨: 10.2174/0929867325666180403151725

价格: $65

摘要

阿尔茨海默氏病(AD)是一种复杂的神经退行性病变,其表现为高胆碱能和神经递质缺陷,氧化应激,炎症,导致衰老斑块形成的Aβ聚集以及tau蛋白的过度磷酸化,从而导致神经原纤维缠结。由于其多因素和复杂的性质,现在认为能够同时抑制或结合参与AD进展和发展的多种生物学靶标的多靶标定向小分子被认为是设计用于AD治疗的新化合物的最佳治疗策略。 其中,他克林是众所周知的标准金配体,天然产物已成为用于多种治疗方法的传统新剂的传统来源。 在这篇综述中,我们将更新用于AD治疗的多靶点tacrine天然产物杂种的最新进展。

关键词: 乙酰胆碱酯酶,阿尔茨海默氏病,抗氧化剂,丁酰胆碱酯酶,多靶标定向配体,天然产物,他克林。

[1]
Sadowski, M.; Wisniewski, T. Disease modifying approaches for Alzheimer’s pathology. Curr. Pharm. Des., 2007, 13(19), 1943-1954.
[http://dx.doi.org/10.2174/138161207781039788] [PMID: 17627527]
[2]
Álvarez, A.; Opazo, C.; Alarcón, R.; Garrido, J.; Inestrosa, N.C. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol., 1997, 272(3), 348-361.
[http://dx.doi.org/10.1006/jmbi.1997.1245] [PMID: 9325095]
[3]
Cummings, J.L. Treatment of Alzheimer’s disease: current and future therapeutic approaches. Rev. Neurol. Dis., 2004, 1(2), 60-69.
[PMID: 16400259]
[4]
Jarrott, B. Tacrine: In vivo veritas. Pharmacol. Res., 2017, 116, 29-31.
[http://dx.doi.org/10.1016/j.phrs.2016.12.033] [PMID: 28040533]
[5]
Lagadic-Gossmann, D.; Rissel, M.; Le Bot, M.A.; Guillouzo, A. Toxic effects of tacrine on primary hepatocytes and liver epithelial cells in culture. Cell Biol. Toxicol., 1998, 14(5), 361-373.
[http://dx.doi.org/10.1023/A:1007589808761] [PMID: 9808364]
[6]
Mount, C.; Downton, C. Alzheimer disease: progress or profit? Nat. Med., 2006, 12(7), 780-784.
[http://dx.doi.org/10.1038/nm0706-780] [PMID: 16829947]
[7]
Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; Chen, D.; Furukawa, K.; Sambamurti, K.; Brossi, A.; Lahiri, D.K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17213-17218.
[http://dx.doi.org/10.1073/pnas.0508575102] [PMID: 16275899]
[8]
Reid, G.A.; Chilukuri, N.; Darvesh, S. Butyrylcholinesterase and the cholinergic system. Neuroscience, 2013, 234, 53-68.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.054] [PMID: 23305761]
[9]
Podoly, E.; Shalev, D.E.; Shenhar-Tsarfaty, S.; Bennett, E.R.; Ben Assayag, E.; Wilgus, H.; Livnah, O.; Soreq, H. The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J. Biol. Chem., 2009, 284(25), 17170-17179.
[http://dx.doi.org/10.1074/jbc.M109.004952] [PMID: 19383604]
[10]
Thathiah, A.; De Strooper, B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat. Rev. Neurosci., 2011, 12(2), 73-87.
[http://dx.doi.org/10.1038/nrn2977] [PMID: 21248787]
[11]
Hamley, I.W. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev., 2012, 112(10), 5147-5192.
[http://dx.doi.org/10.1021/cr3000994] [PMID: 22813427]
[12]
Butini, S.; Brogi, S.; Novellino, E.; Campiani, G.; Ghosh, A.K.; Brindisi, M.; Gemma, S. The structural evolution of β-secretase inhibitors: a focus on the development of small-molecule inhibitors. Curr. Top. Med. Chem., 2013, 13(15), 1787-1807.
[http://dx.doi.org/10.2174/15680266113139990137] [PMID: 23931442]
[13]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[14]
Venugopal, C.; Demos, C.M.; Rao, K.S.; Pappolla, M.A.; Sambamurti, K. Beta-secretase: structure, function, and evolution. CNS Neurol. Disord. Drug Targets, 2008, 7(3), 278-294.
[http://dx.doi.org/10.2174/187152708784936626] [PMID: 18673212]
[15]
Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. beta-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem. Pharmacol., 2003, 65(3), 407-416.
[http://dx.doi.org/10.1016/S0006-2952(02)01514-9] [PMID: 12527333]
[16]
Danysz, W.; Parsons, C.G. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br. J. Pharmacol., 2012, 167(2), 324-352.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[17]
Rosini, M.; Simoni, E.; Minarini, A.; Melchiorre, C. Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem. Res., 2014, 39(10), 1914-1923.
[http://dx.doi.org/10.1007/s11064-014-1250-1] [PMID: 24493627]
[18]
Thomas, D.D.; Ridnour, L.A.; Isenberg, J.S.; Flores-Santana, W.; Switzer, C.H.; Donzelli, S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; Colton, C.A.; Harris, C.C.; Roberts, D.D.; Wink, D.A. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med., 2008, 45(1), 18-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.020] [PMID: 18439435]
[19]
Storr, T.; Thompson, K.H.; Orvig, C. Design of targeting ligands in medicinal inorganic chemistry. Chem. Soc. Rev., 2006, 35(6), 534-544.
[http://dx.doi.org/10.1039/b514859f] [PMID: 16729147]
[20]
Cuajungco, M.P.; Fagét, K.Y. Zinc takes the center stage: its paradoxical role in Alzheimer’s disease. Brain Res. Brain Res. Rev., 2003, 41(1), 44-56.
[http://dx.doi.org/10.1016/S0165-0173(02)00219-9] [PMID: 12505647]
[21]
Finberg, J.P. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther., 2014, 143(2), 133-152.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.010] [PMID: 24607445]
[22]
Song, M.S.; Matveychuk, D.; MacKenzie, E.M.; Duchcherer, M.; Mousseau, D.D.; Baker, G.B. An update on amine oxidase inhibitors: multifaceted drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 44, 118-124.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.001] [PMID: 23410524]
[23]
León, R.; García, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev., 2013, 33(1), 139-189.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[24]
Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[25]
Wu, W-Y.; Dai, Y.C.; Li, N.G.; Dong, Z.X.; Gu, T.; Shi, Z.H.; Xue, X.; Tang, Y.P.; Duan, J.A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 572-587.
[http://dx.doi.org/10.1080/14756366.2016.1210139] [PMID: 28133981]
[26]
Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; Unzeta, M.; Nikolic, K.; Butini, S.; Marco-Contelles, J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog. Neurobiol., 2017, 151, 4-34.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.003] [PMID: 26797191]
[27]
Tang, H.; Zhao, L.Z.; Zhao, H.T.; Huang, S.L.; Zhong, S.M.; Qin, J.K.; Chen, Z.F.; Huang, Z.S.; Liang, H. Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur. J. Med. Chem., 2011, 46(10), 4970-4979.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.002] [PMID: 21871694]
[28]
Butini, S.; Brindisi, M.; Brogi, S.; Maramai, S.; Guarino, E.; Panico, A.; Saxena, A.; Chauhan, V.; Colombo, R.; Verga, L.; De Lorenzi, E.; Bartolini, M.; Andrisano, V.; Novellino, E.; Campiani, G.; Gemma, S. Multifunctional cholinesterase and amyloid Beta fibrillization modulators. Synthesis and biological investigation. ACS Med. Chem. Lett., 2013, 4(12), 1178-1182.
[http://dx.doi.org/10.1021/ml4002908] [PMID: 24900626]
[29]
Brogi, S.; Butini, S.; Maramai, S.; Colombo, R.; Verga, L.; Lanni, C.; De Lorenzi, E.; Lamponi, S.; Andreassi, M.; Bartolini, M.; Andrisano, V.; Novellino, E.; Campiani, G.; Brindisi, M.; Gemma, S. Disease-modifying anti-Alzheimer’s drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation. CNS Neurosci. Ther., 2014, 20(7), 624-632.
[http://dx.doi.org/10.1111/cns.12290] [PMID: 24935788]
[30]
Nepovimova, E.; Korabecny, J.; Dolezal, R.; Babkova, K.; Ondrejicek, A.; Jun, D.; Sepsova, V.; Horova, A.; Hrabinova, M.; Soukup, O.; Bukum, N.; Jost, P.; Muckova, L.; Kassa, J.; Malinak, D.; Andrs, M.; Kuca, K. Tacrine−trolox hybrids: A novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J. Med. Chem., 2015, 58(22), 8985-9003.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01325] [PMID: 26503905]
[31]
Galdeano, C.; Viayna, E.; Sola, I.; Formosa, X.; Camps, P.; Badía, A.; Clos, M.V.; Relat, J.; Ratia, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Salmona, M.; Minguillón, C.; González-Muñoz, G.C.; Rodríguez-Franco, M.I.; Bidon-Chanal, A.; Luque, F.J.; Muñoz-Torrero, D. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J. Med. Chem., 2012, 55(2), 661-669.
[http://dx.doi.org/10.1021/jm200840c] [PMID: 22185619]
[32]
Viayna, E.; Solà, I.; Bartolini, M.; De Simone, A.; Tapia-Rojas, C.; Serrano, F.G.; Sabaté, R.; Juárez-Jiménez, J.; Pérez, B.; Luque, F.J.; Andrisano, V.; Clos, M.V.; Inestrosa, N.C.; Muñoz-Torrero, D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem., 2014, 57(6), 2549-2567.
[http://dx.doi.org/10.1021/jm401824w] [PMID: 24568372]
[33]
Chioua, M.; Pérez, M.; Bautista-Aguilera, O.M.; Yañez, M.; López, M.G.; Romero, A.; Cacabelos, R.; Brogi, S.; Butini, S.; Borrell, J.I. Marco-Contelles, J. Multipotent hupertacrines as non-toxic, cholinesterase inhibitors for the potential treatment of Alzheimer’s disease. Mini Rev. Med. Chem., 2015, 15, 648-658.
[http://dx.doi.org/10.2174/1389557515666150219130156] [PMID: 25694076]
[34]
Balmori, A.; Chioua, M.; Puig de la Bellacasa, R.; Estrada-Tejedor, R.; Ismaili, L.; Marco-Contelles, J.; Borrell, J.I. 5-Amino-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridin-2(1H)-one: The first example of a new family of Hupertacrines for Alzheimer’s disease therapy. Chem. Select., 2017, 2, 2605-2610.
[http://dx.doi.org/10.1002/slct.201700289]
[35]
Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.024] [PMID: 24095756]
[36]
Xie, S.S.; Wang, X.B.; Li, J.Y.; Yang, L.; Kong, L.Y. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur. J. Med. Chem., 2013, 64, 540-553.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.051] [PMID: 23685572]
[37]
Li, S.Y.; Jiang, N.; Xie, S.S.; Wang, K.D.; Wang, X.B.; Kong, L.Y. Design, synthesis and evaluation of novel tacrine-rhein hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Org. Biomol. Chem., 2014, 12(5), 801-814.
[http://dx.doi.org/10.1039/C3OB42010H] [PMID: 24310227]
[38]
Sun, Y.; Chen, J.; Chen, X.; Huang, L.; Li, X. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-Homoisoflavonoid hybrids. Bio. org. Med. Chem., 2013, 21(23), 7406-7417.
[http://dx.doi.org/10.1016/j.bmc.2013.09.050] [PMID: 24128814]
[39]
Fernández-Bachiller, M.I.; Pérez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem., 2012, 55(3), 1303-1317.
[http://dx.doi.org/10.1021/jm201460y] [PMID: 22243648]
[40]
Spilovska, K.; Korabecny, J.; Sepsova, V.; Jun, D.; Hrabinova, M.; Jost, P.; Muckova, L.; Soukup, O.; Janockova, J.; Kucera, T.; Dolezal, R.; Mezeiova, E.; Kaping, D.; Kuca, K. Novel tacrine-scutellarin hybrids as multipotent anti-Alzheimer’s agents: Design, synthesis and biological evaluation. Molecules, 2017, 22(6), 1-22.
[http://dx.doi.org/10.3390/molecules22061006] [PMID: 28621747]
[41]
Chao, X.; He, X.; Yang, Y.; Zhou, X.; Jin, M.; Liu, S.; Cheng, Z.; Liu, P.; Wang, Y.; Yu, J.; Tan, Y.; Huang, Y.; Qin, J.; Rapposelli, S.; Pi, R. Design, synthesis and pharmacological evaluation of novel tacrine-caffeic acid hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2012, 22(20), 6498-6502.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.036] [PMID: 22981331]
[42]
Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(9), 2905-2909.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.073] [PMID: 18406135]
[43]
(a)Fang, L.; Appenroth, D.; Decker, M.; Kiehntopf, M.; Roegler, C.; Deufel, T.; Fleck, C.; Peng, S.; Zhang, Y.; Lehmann, J. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J. Med. Chem., 2008, 51(4), 713-716.
[http://dx.doi.org/10.1021/jm701491k] [PMID: 18232655]
(b)Chen, Y.; Sun, J.; Fang, L.; Liu, M.; Peng, S.; Liao, H.; Lehmann, J.; Zhang, Y. Tacrine-ferulic acid-nitric oxide (NO) donor trihybrids as potent, multifunctional acetyl- and butyrylcholinesterase inhibitors. J. Med. Chem., 2012, 55(9), 4309-4321.
[http://dx.doi.org/10.1021/jm300106z] [PMID: 22512543]
[44]
Fu, Y.; Mu, Y.; Lei, H.; Wang, P.; Li, X.; Leng, Q.; Han, L.; Qu, X.; Wang, Z.; Huang, X. Design, synthesis and evaluation of novel tacrine-ferulic acid hybrids as multifunctional drug candidates against Alzheimer’s disease. Molecules, 2016, 21(10), 1-10.
[http://dx.doi.org/10.3390/molecules21101338] [PMID: 27727187]
[45]
Chen, Y.; Lin, H.; Zhu, J.; Gu, K.; Li, Q.; He, S.; Lu, X.; Tan, R.; Pei, Y.; Wu, L.; Bian, Y.; Sun, H. Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer’s disease. RSC Advances, 2017, 7, 33851-33867.
[http://dx.doi.org/10.1039/C7RA04385F]
[46]
Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: from spice to drugs. Curr. Med. Chem., 2014, 21(2), 204-222.
[http://dx.doi.org/10.2174/092986732102131206115810] [PMID: 23590716]
[47]
Pallauf, K.; Rimbach, G.; Rupp, P.M.; Chin, D.; Wolf, I.M.A. Resveratrol and lifespan in model organisms. Curr. Med. Chem., 2016, 23(41), 4639-4680.
[http://dx.doi.org/10.2174/0929867323666161024151233] [PMID: 27781945]
[48]
Liu, Z.; Fang, L.; Zhang, H.; Gou, S.; Chen, L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg. Med. Chem., 2017, 25(8), 2387-2398.
[http://dx.doi.org/10.1016/j.bmc.2017.02.049] [PMID: 28302511]
[49]
Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.048] [PMID: 28064079]
[50]
Panek, D.; Wichur, T.; Godyń, J.; Pasieka, A.; Malawska, B. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Med. Chem., 2017, 9(15), 1835-1854.
[http://dx.doi.org/10.4155/fmc-2017-0094] [PMID: 28925729]
[51]
Romero, A.; Cacabelos, R.; Oset-Gasque, M.J.; Samadi, A.; Marco-Contelles, J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2013, 23(7), 1916-1922.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.017] [PMID: 23481643]
[52]
Martínez-Grau, A.; Marco, J.L. Friedländer reaction on 2-amino-3-cyano-4h-pyrans: synthesis of derivatives of 4h-pyran[2,3-b]-quinoline, new tacrine analogues. Bioorg. Med. Chem. Lett., 1997, 7, 3165-3170.
[http://dx.doi.org/10.1016/S0960-894X(97)10165-2]
[53]
Romero, A.; Marco-Contelles, J. Recent Developments on multi-target-directed tacrines for Alzheimer’s disease. I. The Pyranotacrines. Curr. Top. Med. Chem., 2017, 17(31), 3328-3335.
[http://dx.doi.org/10.2174/1568026618666180112155639] [PMID: 29332586]
[54]
Oset-Gasque, M.J. Marco-Contelles, J. New tacrines as anti-Alzheimer’s disease agents. II. The (Benzo)chromenopyranotacrines. Curr. Top. Med. Chem., 2017, 17, 3349-3360.
[http://dx.doi.org/10.2174/1568026618666180112155928] [PMID: 29332585]
[55]
Boulebd, H.; Ismaili, L.; Martin, H.; Bonet, A.; Chioua, M.; Marco Contelles, J.; Belfaitah, A. New (benz)imidazolopyridino tacrines as nonhepatotoxic, cholinesterase inhibitors for Alzheimer disease. Future Med. Chem., 2017, 9(8), 723-729.
[http://dx.doi.org/10.4155/fmc-2017-0019] [PMID: 28485637]
[56]
Minarini, A.; Milelli, A.; Simoni, E.; Rosini, M.; Bolognesi, M.L.; Marchetti, C.; Tumiatti, V. Multifunctional tacrine derivatives in Alzheimer’s disease. Curr. Top. Med. Chem., 2013, 13(15), 1771-1786.
[http://dx.doi.org/10.2174/15680266113139990136] [PMID: 23931443]
[57]
Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine derivatives and Alzheimer’s disease. Curr. Med. Chem., 2010, 17(17), 1825-1838.
[http://dx.doi.org/10.2174/092986710791111206] [PMID: 20345341]
[58]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[59]
Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Melchiorre, C. From dual binding site acetylcholinesterase inhibitors to multi-target-directed ligands (MTDLs): a step forward in the treatment of Alzheimer’s disease. Mini Rev. Med. Chem., 2008, 8(10), 960-967.
[http://dx.doi.org/10.2174/138955708785740652] [PMID: 18782050]
[60]
Chin, D.; Huebbe, P.; Pallauf, K.; Rimbach, G. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations. Curr. Med. Chem., 2013, 20(32), 3955-3985.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy