[1]
Harde, H.; Das, M.; Jain, S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv., 2011, 8(11), 1407-1424.
[2]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid based drug delivery systems – an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372.
[3]
Zheng, C.; Wang, Y. Prediction of oral bioavailability: Challenges and strategies. J. Bioequivalence Bioavailab., 2013, 6, 1.
[4]
Caldwell, J.; Marsh, M.V. 2-metabolism of drugs by the gastrointestinal
tract, in: C.F. George, D.G. Shand (Eds) Presystemic drug
elimination, Butterworth-Heinemann. 1982, pp. 29-42.
[5]
Gavhane, Y.N.; Yadav, A.V. Loss of orally administered drugs in GI tract. Saudi Pharm. J., 2012, 20(4), 331-344.
[6]
Shen, D.D.; Kunze, K.L.; Thummel, K.E. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv. Drug Deliv. Rev., 1997, 27, 99-127.
[7]
Galetin, A.; Gertz, M.; Houston, J.B. Contribution of initestinal Cytochrome P450-mediated metabolism to drug-drug inhibition and induction. Drug Metab. Pharmacokinet., 2010, 25, 28-47.
[8]
Pouton, C.W. Formulation of poorly water-soluble drugs for oral administration:physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci., 2006, 29, 278-287.
[9]
Jannin, V.; Musakhanian, J.; Marchaud, D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv. Drug Deliv. Rev., 2008, 60, 734-746.
[10]
Porter, C.J.; Charman, W.N. In vitro assessment of oral lipid based formulations. Adv. Drug Deliv. Rev., 2001, 50(Suppl. 1), 127-147.
[11]
Pouton, C.W. Lipid formulations for oral administration of drugs: Nonemulsifying,self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), 93-98.
[12]
Hauss, D.J.; Fogal, S.E.; Ficorilli, J.V.; Price, C.A.; Roy, T.; Jayaraj, A.A.; Keirns, J.J. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J. Pharm. Sci., 1998, 87, 164-169.
[13]
Schwarz, C.; Mehnert, W.; Lucks, J.S.; Muller, R.H. Solid Lipid Nanoparticles (SLN) for controlled drug delivery. Production, characterization and sterilization. J. Control. Release, 1994, 30, 83-96.
[14]
Muller, R.H.; Mader, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50, 161-177.
[15]
Müller, R.H.; Runge, S.A.; Ravelli, V.; Thünemann, A.F.; Mehnert, W.; Souto, E.B. Cyclosporine-loaded solid lipid nanoparticles (SLN): Drug-lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm., 2008, 68, 535-544.
[16]
Muller, R.H.; Ruhl, D.; Runge, S.; Schulze-Forster, K.; Wolfgang, M. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res., 1997, 14, 458-462.
[17]
Ma, P.; Dong, X.; Swadley, C.L.; Gupte, A.; Leggas, M.; Ledebur, H.C.; Mumper, R.J. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome PGP–mediated multiple drug resistance in leukemia. J. Biomed. Nanotechnol., 2009, 5(2), 151-161.
[18]
Dong, X.; Mattingly, C.A.; Tseng, M.; Cho, M.; Liu, Y.; Adams, V.R.; Mumper, R.J. Doxorubicin and paclitaxelloaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-gp via ATP depletion. Cancer Res., 2009, 69, 3918-3926.
[19]
Ugazio, E.; Cavalli, R.; Gasco, M.R. Incorporation of cyclosporin A in Solid Lipid Nanoparticles (SLN). Int. J. Pharm., 2002, 241, 341-344.
[20]
Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body distribution of camptothecin solid lipid nanopa rticles after oral administration. Pharm. Res., 1999, 16, 751-757.
[21]
Zara, G.P.; Cavalli, R.; Fundaro, A.; Vighetto, D.; Gasco, M.R. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J. Pharm. Sci., 2002, 91, 1324-1333.
[22]
Cavalli, R.; Zara, G.P.; Caputo, O.; Bargoni, A.; Fundarò, A.; Gasco, M.R. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration, Part I — a pharmacokinetic study. Pharmacol. Res., 2000, 42, 541-545.
[23]
Bargoni, A.; Cavalli, R.; Zara, G.P.; Fundaro, A.; Caputo, O.; Gasco, M.R. Transmucosal transport of tobramycin incorporated in Solid Lipid Nanoparticles (SLN) after duodenal administration, Part II — tissue distribution. Pharmacol. Res., 2001, 43, 497-502.
[24]
Pandey, R.; Sharma, S.; Khuller, G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis., 2005, 85, 415-420.
[25]
García-Fuentes, M.; Prego, C.; Torres, D.; Alonso, M.J. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly (ethyleneglycol) as carriers for oral calcitonin delivery. Eur. J. Pharm. Sci., 2005, 25, 133-143.
[26]
Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327, 153-159.
[27]
Pinto, J.F.; Muller, R.H. Pellets as carriers of solid lipid nanoparticles (SLN) for oral administration of drugs. Die Pharm., 1999, 54, 506-509.
[28]
Kumar, S.; Randhawa, J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C, 2013, 33, 1842-1852.
[29]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[30]
Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 2007, 6, 231-248.
[31]
Muller, R.H.; Runge, S.; Ravelli, V.; Mehnert, W.; Thunemann, A.F.; Souto, E.B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm., 2006, 317, 82-89.
[32]
Tsai, M.J.; Huang, Y.B.; Wu, P.C.; Fu, Y.S.; Kao, Y.R.; Fang, J.Y.; Tsai, Y.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J. Pharm. Sci., 2011, 100, 547-557.
[33]
Chen, C.C.; Tsai, T.H.; Huang, Z.R.; Fang, J.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm., 2010, 74, 474-482.
[34]
Yuan, H.; Chen, J.; Du, Y.Z.; Hu, F.Q.; Zeng, S.; Zhao, H.L. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf. B Biointerfaces, 2007, 58, 157-164.
[35]
Westesen, K.; Bunjes, H.; Koch, M.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release, 1997, 48(2-3), 223-236.
[36]
Chen, C.C.; Tsai, T.H.; Huang, Z.R.; Fang, J.Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm., 2010, 74(3), 474-482.
[37]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[38]
Radtke, M.; Souto, E.B.; Müller, R.H. Nanostructured lipid carriers: A novel generation of solid lipid drug carriers. Pharm. Technol. Eur, 2005, 17(4), 45-50.
[39]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14, 282-295.
[40]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8, 2101-2141.
[41]
Wei, A.; Mehtala, J.G.; Patri, A.K. Challenges and opportunities in the advancement of nanomedicines. J. Control. Release, 2012, 164, 236-246.
[42]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7, 653-664.
[43]
Srinivas, P.R.; Philbert, M.; Vu, T.Q.; Huang, Q.; Kokini, J.L.; Saltos, E.; Chen, H.; Peterson, C.M.; Friedl, K.E.; McDade-Ngutter, C.; Hubbard, V.; Starke-Reed, P.; Miller, N.; Betz, J.M.; Dwyer, J.; Milner, J.; Ross, S.A. Nanotechnology research: Applications in nutritional sciences. J. Nutr., 2010, 140, 119-124.
[44]
Buzea, C.; Pacheco, I.; Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[45]
Irving, B. Nanoparticle drug delivery systems. Inno. Pharm. Biotechnol., 2007, 24, 58-62.
[46]
Abhilash, M. Potential applications of nanoparticles. Int. J. Pharma Bio Sci., 2010, 1(1), 1-12.
[47]
Cavalli, R.; Morel, S.; Gasco, M.R.; Chetoni, P.; Saettone, M.F. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm., 1995, 117(2), 243-246.
[48]
Mu¨ller, R.H.; Mader, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[49]
Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59(3), 299-307.
[50]
Mu¨hlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[51]
Desai, P.; Date, A.; Patravale, B. Overcoming poor oral bioavailability using nanoparticle formulations-opportunities and limitations. Drug Discov. Today. Technol., 2012, 9, 87-95.
[52]
Gursoy, R.N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 2004, 58, 173-182.
[53]
Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm., 2004, 278, 119-131.
[54]
Wandel, C.; Kim, R.B.; Stein, C.M. Inactive excipients such as Cremophor can affect in vivo drug disposition. Clin. Pharmacol. Ther., 2003, 73, 394-396.
[55]
Yang, S.; Zhu, J.; Lu, Y.; Ling, B.; Yang, C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm. Res., 1999, 16, 751-757.
[56]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[57]
Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59, 299-307.
[58]
Zur Muhlen, A.; Mehnert, W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie, 1998, 53, 552-555.
[59]
Prow, T.; Smith, J.N.; Grebe, R.; Salazar, J.H.; Wang, N.; Kotov, N.; Lutty, G.; Leary, J. Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol. Vis., 2006, 12, 606-615.
[60]
Puri, A. Loomis, Kristin.; Smith, Brandon.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[61]
Schubert, M.A.; Harms, M.; Muller-Goymann, C.C. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur. J. Pharm. Sci., 2006, 27(2-3), 226-236.
[62]
Priyanka, K.; Abdul Hasan Sathali, A. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J. Young Pharm., 2012, 4(3), 129-137.
[63]
Samein, L.H. Preparation and evaluation of Nystatin loaded-solid-lipid nanoparticles for topical delivery. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 592-597.
[64]
Khameneh, B.; Halimi, V.; Jaafari, M.R.; Golmohammadzadeh, S. Safranal-loaded solid lipid nanoparticles: Evaluation of sunscreen and moisturizing potential for topical applications. Iran. J. Basic Med. Sci., 2015, 18(1), 58-63.
[65]
Gomes, M.J.; Martins, S.; Ferreira, D.; Segundo, M.A.; Reis, S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. Int. J. Nanomedicine, 2014, 9, 1231-1242.
[66]
Khalil, R.M.; El-Bary, A.A.; Kassem, M.A.; Ghorab, M.M.; Ahmed, M.B. 1st Annual International Interdisciplinary Conference,
AIIC. 2013, 24-26 April, Azores, Portugal.
[67]
Kumar, P.P.; Gayatri, P.; Reddy, S.; Jaganmohan, S.; Rao, Y.M. atorvastatin loaded solidlipid nanoparticles: Formulation, optimization, and in-vitro characterization. IOSR-PHR, 2012, 2(5), 23-32.
[68]
Vitthal, K.U.; Pillai, M.M.; Kininge, P. Study of solid lipid nanoparticles as a carrier for bacoside. IJPBS, 2013, 3(3), 414-426.
[69]
Vijayan, V.; Shaik Aafreen, S.; Sakthivel, K.; Reddy, R. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne; JAD, 2013, pp. 282-286.
[70]
Mosallaei, N.; Malaekeh-Nikouei, B.; Golmohammadzadeh, S.; Jaafari, M.; Hanafi-Bojd, M. Docetaxel-Loaded Solid Lipid Nanoparticles: Preparation, Characterization. In vitro, and in vivo evaluations. J. Pharm. Sci., 2013, 102(6), 1994-2004.
[71]
Hao, J.; Fang, X.; Zhou, Y.; Wang, J.; Guo, F.; Li, F.; Peng, X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomedicine, 2011, 6, 683-692.
[72]
Li, S.; Ji, Z.; Zou, M.; Nie, X.; Shi, Y.; Cheng, G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech, 2011, 12(3), 1011-1018.
[73]
Thatipamula, R.; Palem, C.; Gannu, R.; Mudragada, S.; Yamsani, M. Formulation and in vitro characterization of Domperidon loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 2011, 19(1), 23-32.
[74]
Xie, S.; Zhu, L.; Dong, Z.; Wang, Y.; Wang, X.; Zhou, W.Z. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int. J. Nanomedicine, 2011, 6, 547-555.
[75]
Varshosaz, J.; Tabbakhian, M.; Mohammadi, M.Y. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J. Liposome Res., 2010, 20(4), 286-296.
[76]
Hu, L.; Xing, Q.; Meng, J.; Shang, C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2010, 11(2), 582-587.
[77]
Hu, L.; Jia, H.; Luo, Z.; Liu, C.; Xing, Q. Improvement of digoxin oral absorption in rabbits by incorporation into solid lipid nanoparticles. Pharmazie, 2010, 65(2), 110-113.
[78]
Varshosaz, J.; Minayian, M.; Moazen, E. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J. Liposome Res., 2010, 20(2), 115-123.
[79]
Xie, S.; Pan, B.; Wang, M.; Zhu, L.; Wang, F.; Dong, Z.; Wang, X.; Zhou, W. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine (Lond.), 2010, 5(5), 693-701.
[80]
Ekambaram, P.; Abdul Hasan Sathali, A. Formulation and evaluation of solid lipid nanoparticles of Ramipril. J. Young Pharm., 2011, 3(3), 216-220.
[81]
Kumar, V.V.; Chandrasekar, D.; Ramakrishna, S.; Kishan, V.; Rao, Y.M.; Diwan, P.V. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int. J. Pharm., 2007, 335(1-2), 167-175.
[82]
Wang, D.; Wang, X.; Li, X.; Ye, L. Preparation and characterization of solid lipid nanoparticles loaded with alpha-asarone. PDA J. Pharm. Sci. Technol., 2008, 62(1), 56-65.
[83]
Suresh, G.; Manjunath, K.; Venkateswarlu, V.; Satyanarayana, V. Preparation, Characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech, 2007, 8(1), E162-E170.
[84]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[85]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release, 2005, 107(2), 215-228.
[86]
Chakraborty, S.; Shukla, D.; Mishra, B.; Singh, S. Lipid-An emerging platform for oral delivery of drugs with poor bioavailability. Eur. J. Pharm. Biopharm., 2009, 73(1), 1-15.
[87]
Das, S.; Choudhary, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[88]
Crounse, R.G. Human pharmacology of griseofulvin: The effect of fat intake on gastrointestinal absorption. J. Invest. Dermatol., 1961, 37, 529-533.
[89]
Horter, D.; Dressman, J.B. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev., 2001, 46(1-3), 75-87.
[90]
Wagner, D.; Spahn-Langguth, H.; Hanafy, A.; Koggel, A.; Langguth, P. Intestinal drug efflux: Formulation and food effects. Adv. Drug Deliv. Rev., 2001, 50(1), S13-S31.
[91]
Touitou, E.; Barry, B.W. editors. Enhancement in drug delivery.
Florida: CRC Press. 2006.
[92]
Liversidge, G.G.; Cundy, K.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm., 1995, 125(1), 91-97.
[93]
Charman, W.N. Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts. J. Pharm. Sci., 2000, 89(8), 967-978.
[94]
Charman, W.N.; Porter, C.J.H.; Mithani, S.; Dressman, J.B. Physicochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH. J. Pharm. Sci., 1997, 86(3), 269-282.
[95]
Porter, C.J.H.; Charman, W.N. Intestinal lymphatic drug transport: An update. Adv. Drug Deliv. Rev., 2001, 50(1-2), 61-80.
[96]
Charman, S.A.; Charman, W.N.; Rogge, M.C.; Wilson, T.D.; Dutko, F.J.; Pouton, C.W. Self-emulsifying drug delivery systems: Formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res., 1992, 9(1), 87-93.
[97]
Li, C.; Fleisher, D.; Li, L.; Schwier, J.R.; Sweetana, S.A.; Vasudevan, V.; Zornes, L.L.; Pao, L.H.; Zhou, S.Y.; Stratford, R.E. Regional-dependent intestinal absorption and meal composition effects on systemic availability of LY303366, a lipopeptide antifungal agent, in dogs. J. Pharm. Sci., 2001, 90(1), 47-57.
[98]
Martinez, M.; Amidon, G.; Clarke, L.; Jones, W.W.; Mitra, A.; Riviere, J. Applying the biopharmaceutics classification system to veterinary pharmaceutical products. Part II. Physiological considerations. Adv. Drug Deliv. Rev., 2002, 54(6), 825-850.
[99]
Sanjula, B.; Shah, F.M.; Javed, A.; Alka, A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target., 2009, 17(3), 249-256.
[100]
Trevaskis, N.L.; Charman, W.N.; Porter, C.J. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Adv. Drug Deliv. Rev., 2008, 60(6), 702-716.
[101]
Khoo, S.M.; Shackleford, D.M.; Porter, C.J.H.; Edwards, G.A.; Charman, W.N. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm. Res., 2003, 20(9), 1460-145.
[102]
Porter, C.J.H.; Charman, W.N. Intestinal lymphatic drug transport: an update. Adv. Drug Deliv. Rev., 2001, 50(1-2), 61-80.
[103]
Florence, A.T. The oral absorption of micro-and nanoparticulates: neither exceptional nor unusual. Pharm. Res., 1997, 14, 259-266.
[104]
Bargoni, A.; Cavalli, R.; Caputo, O.; Fundarò, A.; Gasco, M.R.; Zara, G.P. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm. Res., 1998, 15, 745-750.
[105]
Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res., 1996, 13, 1838-1845.
[106]
Mei, Z.; Li, X.; Wu, Q.; Hu, S.; Yang, X. The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharm. Res., 2005, 51, 345-351.
[107]
Jepson, M.A.; Clark, M.A.; Foster, N.; Mason, C.M.; Bennett, M.K.; Simmons, N.L.; Hirst, B.H. Targeting to intestinal M cells. J. Anat., 1996, 189, 507.
[108]
Rieux, A.D.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release, 2006, 116, 1-27.
[109]
Goppert, T.M.; Muller, R.H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm., 2005, 302, 172-186.
[110]
Kumar, V.V.; Chandrasekar, D.; Ramakrishna, S.; Kishan, V.; Rao, Y.M.; Diwan, P.V. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int. J. Pharm., 2007, 335(1-2), 167-175.
[111]
Wang, D.; Wang, X.; Li, X.; Ye, L. Preparation and characterization of solid lipid nanoparticles loaded with α-asarone. PDA J. Pharm. Sci. Technol., 2008, 62(1), 56-65.
[112]
Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys., 2008, 3(2), 146-154.
[113]
Almeida, A.J.; Runge, S.; Muller, R.H. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int. J. Pharm., 1997, 149(2), 255-265.
[114]
Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm. Res., 1999, 16, 751-757.
[115]
Mei, Z.; Li, X.; Wu, Q.; Hu, S.; Yang, S. The research on the anti-inflammatory activity and hepatotoxicity of tripolide-loaded solid lipid nanoparticle. Pharm. Res., 2005, 51(4), 345-351.
[116]
Ekambaram, P. Abdul Hasan sathali, A.; Priyanka, K.; Solid lipid nanoparticles: A review. Sci. Revs. Chem. Commun, 2012, 2(1), 80-102.
[117]
Mehnart, W.; Mader, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47, 165-196.
[118]
Basu, B.; Garala, K.; Bhalodia, R.; Joshi, B.; Mehta, K. Solid lipid nanoparticles: A promising tool for drug delivery system. J. Pharm. Res., 2010, 3(1), 84-92.
[119]
Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Muller, R.H.; Rosenecker, J. Application of novel Solid lipid nanoparticles (SLN)- gene vector formulations based on a diametric HIV-1 VAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21, 1662-1669.
[120]
Hayes, M.E.; Drummond, D.C.; Kirpotin, D.B. Self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Ther., 2006, 13, 646-651.
[121]
Pedersen, N.; Hansen, S.; Heydenreich, A.V.; Kristensen, H.G.; Poulsen, H.S. Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur. J. Pharm. Biopharm., 2006, 62, 155-162.
[122]
Shenoy, V.S.; Vijay, I.K.; Murthy, R.S. Tumour targeting: Biological factors and formulation advances in injectable lipid nanoparticles. J. Pharm. Pharmacol., 2005, 57, 411-422.
[123]
Murthy, R.S. Solid lipid nanoparticles as carriers for anti-cancer drugs to solid tumours. Drug Deliv., 2005, 12, 385-392.
[124]
Ruckmani, K.; Sivakumar, M.; Ganeshkumar, P.A. Methotrexate loaded Solid Lipid Nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol., 2006, 6, 2991-2995.
[125]
Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59, 299-307.
[126]
Lu, B.; Xiong, S.B.; Yang, H.; Yin, X.D.; Chao, R.B. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymphnode metastases. Eur. J. Pharm. Sci., 2006, 28, 86-95.
[127]
Wong, H.L.; Rauth, A.M.; Bendayan, R. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res., 2006, 23, 1574-1585.
[128]
Almeida, A.J.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59, 478-490.
[129]
Muller, R.H.; Mader, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for controlled drug delivery -a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[130]
Venkateswarlu, V.; Manjunath, K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release, 2004, 95, 627-638.
[131]
Vyas, S.P.; Khar, R.K. Controlled Drug Delivery - Concepts and Advances, 1st ed; Vallabh Prakashan, 2002, pp. 38-50.
[132]
Jain, N.K. Controlled and Novel Drug Delivery, 1st ed; CBS Publishers and Distributors, 1997, pp. 3-28.
[133]
Lang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59, 299-307.
[134]
Reddy, L.H.; Murthy, R.S.R. Etoposide-loaded nanoparticles made from glyceride lipids: Formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech, 2005, 6(2), 24.
[135]
Uner, M.; Yener, G. Importance of Solid Lipid Nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[136]
Kaur, S.; Nautyal, U.; Singh, R.; Singh, S.; Devi, A. Nanostructure Lipid Carrier (NLC): The new generation of lipid nanoparticles. Asian Pac. J. Health Sci, 2015, 2(2), 76-93.
[137]
Muller, R.H.; Radtke, M.; Wissing, S.A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54, S131-S155.
[138]
Mei, Z.; Wu, Q.; Hu, S.; Li, X.; Yang, X. Tripolide loaded solid lipid nanoparticle hydrogel for topical application. Drug Dev. Ind. Pharm., 2005, 31, 161-168.
[139]
Souto, E.B.; Muller, R.H. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie, 2006, 61, 431-437.
[140]
Chen, H.; Chang, X.; Du, D.; Liu, W.; Liu, J.; Weng, T.; Yang, Y.; Xu, H.; Yang, X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J. Control. Release, 2006, 110, 296-306.
[141]
Jenning, V.; Schafer-Korting, M.; Gohla, S. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. J. Control. Release, 2000, 66, 115-126.
[142]
Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 2007, 328(2), 191-195.
[143]
Choi, M.J.; Kim, J.H.; Maibach, H.I. Topical DNA vaccination with DNA/Lipid based complex. Curr. Drug Deliv., 2006, 3, 37-45.
[144]
Jain, S.K.; Chourasia, M.K.; Masuriha, R. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Deliv., 2005, 12, 207-215.
[145]
Khameneh, B.; Halimi, V.; Jaafari, M.R.; Golmohammadzadeh, Sh. Safranal-loaded solid lipid nanoparticles: Evaluation of sunscreen and moisturizing potential for topical applications. Iran. J. Basic Med. Sci., 2015, 18, 58-63.
[146]
Lai, F.; Wissing, S.A.; Muller, R.H.; Fadda, A.M. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agriculture application: Preparation and characterization. AAPS PharmSciTech, 2006, 7E2