Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Electrochemical Characterization of Gold-Nanostructured Platinum Substrates and Application to Determination of Hg(II) at Trace Levels

Author(s): Pham Thi Hai Yen, Vu Hai Dang, Pham Hong Phong and Vu Thi Thu Ha*

Volume 15, Issue 1, 2019

Page: [3 - 10] Pages: 8

DOI: 10.2174/1573411014666180320154119

Price: $65

Abstract

Objectives: To develop gold nanostructure on Pt substrate for detection of Hg(II) in environment by DPASV technique. Its structure was characterized by SEM and electrochemical performance was evaluated. The fabricated electrodes were used to measure Hg(II) samples in a concentration range from 2 to 100 ppb.

Method: Gold nanoparticles (AuNPs) and AuNDs were deposited on platinum substrates by applying potential of +0.50 V for AuNPs deposition and galvanostatic of -50 mA for AuNDs/Pt in a solution 20 mM HAuCl4, 10 mM KI, 5 mM NH4Cl and 0.5 M H2SO4.The electrochemical behaviors of AuNPs/Pt and AuNDs/Pt were examined using CV in 5 mM K3[Fe(CN)6]/0.1 M PBS solution, pH = 7 and the detection of Hg(II) was performed by DPASV.

Results: The SEM images show that largest surface area was obtained at 120 s depositing time. Effective surface areas (ESA) of AuNPs and AuNDs are about 1.39 and 5.19 times higher than electrode geometric area. Calibration curves achieved with R2= 0.9978; 0.9975; 0.9973 and LOD= 0.55; 0.105 and 0.042 ppb for Au disk, AuNPs/Pt and AuNDs/Pt respectively. Reproducibility with ten measurements of 10, 40 and 80 ppb of Hg(II), RSD (%) were 3.5, 2.8 and 1.5 respectively. No significant effect on Hg(II) signals was found except CCu(II) with 100 times higher than CHg(II). Comparison with AAS, data difference between the two techniques is acceptable, at only 4.34%.

Conclusion: LOD for Hg(II) detection by AuNDs/Pt achieved 0.042 ppb with linear range of 2.0–100 ppb. Combining with a laboratory constructed galvano-potentiostat, it can be used in on-site measurement.

Keywords: Electrochemical sensor, gold nanoparticles, gold nanodendrites, mercury detection, trace levels, platinum Substrates.

Graphical Abstract

[1]
World Health Organization. Guidelines for drinking-water quality, 4th ed; WHO Press: Geneva, Switzerland, 2011.
[2]
Jeoung, M.S.; Choi, H.S. Spectrophotometric determination of trace Hg(II) in cetyltrimethylammonium bromide media. Bull. Korean Chem. Soc., 2004, 25(12), 1877-1880.
[3]
Pavlos, E.K.; Nikolaos, G.K.K. Selective mercury determination after membrane complexation and total reflection X-ray fluorescence analysis. Anal. Chem., 2004, 76(15), 4315-4319.
[4]
Ombaba, J.M. Total mercury determination in biological and environmental standard samples by gold amalgamation followed by cold vapor atomic absorption spectrometry. Microchem. J., 1996, 53(2), 195-200.
[5]
Shuvaeva, O.V.; Gustaytis, M.A.; Anoshin, G.N. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection. Anal. Chim. Acta, 2008, 621(2), 148-154.
[6]
Grobecker, K.H.; Detcheva, A. Validation of mercury determination by solid sampling Zeeman atomic absorption spectrometry and a specially designed furnace. Talanta, 2006, 70(5), 962-965.
[7]
Bagheri, H.; Gholami, A. Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent. Talanta, 2001, 55(6), 1141-1150.
[8]
Labatzke, T.; Schlemmer, G. Ultratrace determination of mercury in water following EN and EPA standards using atomic fluorescence spectrometry. Anal. Bioanal. Chem., 2004, 378, 1075-1082.
[9]
Ugo, P.; Zampieri, S.; Moretto, L.M.; Paolucci, D. Determination of mercury in process and lagoon waters by inductively coupled plasma-mass spectrometric analysis after electrochemical preconcentration: comparison with anodic stripping at gold and polymer coated electrodes. Anal. Chim. Acta, 2001, 434(2), 291-300.
[10]
Passariello, B.; Barbaro, M.; Quaresima, S. Determination of mercury by inductively coupled plasma - mass spectrometry. Microchem. J., 1996, 54(4), 348-354.
[11]
Stroh, A.; Vollkopf, U.; Denoyer, E.R. Analysis of samples containing large amounts of dissolved solids using microsampling flow injection inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1992, 7(8), 1201-1205.
[12]
dos Santos, J.S.; de la Guárdia, M.; Pastor, A. Determination of organic and inorganic mercury species in water and sediment samples by HPLC on-line coupled with ICP-MS. Talanta, 2009, 80(1), 207-211.
[13]
Pereiro, R.I.; Díaz, C.A. Speciation of mercury, tin, and lead compounds by gas chromatography with microwave-induced plasma and atomic-emission detection (GC-MIP-AED). Anal. Bioanal. Chem., 2002, 372(1), 74-90.
[14]
Billon, G.; van den Berg, C.M. Gold and silver micro-wire electrodes for trace analysis of metals. Electroanalysis, 2004, 16(19), 1583-1591.
[15]
Okçu, F.; Ertaş, F.N.; Gökçel, H.I. Anodic stripping voltammetric behaviour of mercury in chloride medium and its determination at a gold film electrode. Turk. J. Chem., 2005, 29, 355-366.
[16]
Monterroso, S.C.C.; Carapuça, H.M.; Simão, J.E.J. Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential. Anal. Chim. Acta, 2004, 503(2), 203-212.
[17]
Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev., 2003, 27, 355-384.
[18]
Manivannan, A.; Seehra, M.S.; Tryk, D.A.; Fujishima, A. Analytical letters electrochemical detection of ionic mercury at boron-doped diamond electrodes. Anal. Lett., 2002, 35(2), 355-368.
[19]
Manivannan, A.; Seehra, M.S.; Fujishima, A. Detection of mercury at the ppb level in solution using boron-doped diamond electrode. Fuel Process. Technol., 2004, 85, 513-519.
[20]
Manivannan, A.; Ramakrishnan, L.; Seehra, M.S.; Granite, E.; Butler, J.E.; Tryk, D.A.; Fujishima, A. Mercury detection at boron doped diamond electrodes using a rotating disk technique. J. Electroanal. Chem., 2005, 577, 287-293.
[21]
Cesarino, I.; Gouveia-Caridade, C.; Pauliukaite, R. Cavalheiro, E der T.G.; Brett, C.M.A. Characterization and application of Bismuth-Film modified Graphite-Polyurethane composite electrodes. Electroanalysis, 2010, 22(13), 1437-1445.
[22]
Matysik, F.M. Miniaturization of electroanalytical systems. Anal. Bioanal. Chem., 2003, 375(1), 33-35.
[23]
Pinilla, J.M.; Hernández, L.; Conesa, A.J. Determination of mercury by open circuit adsorption stripping voltammetry on a platinum disk electrode. Anal. Chim. Acta, 1996, 319(1-2), 25-30.
[24]
Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Use of nanohybrid materials as electrochemical transducers for mercury sensors. Sens. Actuators B., 2012, 165(1), 143-150.
[25]
Welch, C.M.; Nekrassova, O.; Dai, X. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes. ChemPhysChem, 2004, 5(9), 1405-1410.
[26]
Wang, J.; Tian, B.; Lu, J. Remote electrochemical sensor for monitoring trace mercury. Electroanalysis, 1998, 10(6), 399-402.
[27]
Bonfil, Y.; Brand, M.; Kirowa-Eisner, E. Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal. Chim. Acta, 2000, 424(1), 65-76.
[28]
Huan, T.N.; Hung, L.Q.; Ha, V.T.T. Spirally oriented Au microelectrode array sensor for detection of Hg (II). Talanta, 2012, 94, 284-288.
[29]
Compton, R.G.; Banks, C.E. Understanding voltammetry, 2nd ed; Imperial College Press: London, 2010.
[30]
Uhlig, A.; Schnakemberg, U.; Hintsche, R. Highly sensitive heavy metal analysis on platinum- and gold-ultramicroelectrode arrays. Electroanalysis, 1997, 9(2), 125-129.
[31]
Ordeig, O.; Banks, C.E.; del Campo, J. Trace detection of mercury(II) using gold ultra-microelectrode arrays. Electroanalysis, 2006, 18(6), 573-578.
[32]
Salaün, P. van den Berg, del Campo, J.; Munoz, F.X.; Compton, R.G. Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal. Chem., 2006, 78(14), 5052-5060.
[33]
Wang, J.; Gründler, P.; Flechsig, G.U.; Jasinski, M.; Lu, J.; Wang, J.; Zhao, Z.; Tian, B. Hot-wire stripping potentiometric measurements of trace mercury. Anal. Chim. Acta, 1999, 396(1), 33-37.
[34]
Okçu, F.; Ertaş, F.N.; Gökçel, H.I. Determination of mercury in table salt samples by on-line medium exchange anodic stripping voltammetry. Talanta, 2008, 75, 442-446.
[35]
Hezard, T.; Fajerwerg, K.; Evrard, D. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis. J. Electroanal. Chem., 2012, 664, 46-52.
[36]
Laffont, L.; Hezard, T.; Gros, P. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step. Talanta, 2015, 141, 26-32.
[37]
Abollino, O.; Giacomino, A.; Malandrino, M. Determination of Mercury by Anodic Stripping Voltammetry with a Gold Nanoparticle-Modified Glassy Carbon Electrode. Electroanalysis, 2008, 20(1), 75-83.
[38]
Lin, Y.; Peng, Y.; Di, J. Electrochemical detection of Hg(II) ions based on nanoporous gold nanoparticles modified indium tin oxide electrode. Sens. Actuators B., 2015, 220, 1086-1090.
[39]
Okçu, F.; Ertaş, F.N.; Gökçel, H.I. Anodic stripping voltammetric behaviour of mercury in chloride medium and its determination at a gold film electrode. Turk. J. Chem., 2005, 29, 355-366.
[40]
Hezard, T.; Fajerwerg, K.; Evrard, D. Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection. Electrochim. Acta, 2012, 73, 15-22.
[41]
Rievaj, M. Mesároš. Š.; Bustin, D. Mercury traces determination by voltammetry on gold fibre microelectrode in some food samples. Chem. Pap., 1993, 47(1), 31-33.
[42]
Bernalte, E.; Marín Sánchez, C.; Pinilla Gil, E. Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sens. Actuators B., 2012, 161(1), 669-674.
[43]
Li, D.; Li, J.; Jia, X. Gold nanoparticles decorated carbon fiber mat as a novel sensing platform for sensitive detection of Hg(II). Electrochem. Commun., 2014, 42, 30-33.
[44]
Bernalte, E.; Sánchez, C.M.; Gil, E.P. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal. Chim. Acta, 2011, 689(1), 60-64.
[45]
Laschi, S.; Palchetti, I.; Mascini, M. Gold-based screen-printed sensor for detection of trace lead. Sens. Actuators B., 2006, 114(1), 460-465.
[46]
Gong, J.; Zhou, T.; Song, D. Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. Anal. Chem., 2010, 82, 567-573.
[47]
Widmann, A.; van den Berg, C.M.G. Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode. Electroanalysis, 2005, 17(10), 825-831.
[48]
Riso, R.D.; Waeles, M.; Monbet, P.; Chaumery, C.J. Measurements of trace concentrations of mercury in sea water by stripping chronopotentiometry with gold disk electrode: Influence of copper. Anal. Chim. Acta, 2000, 410(1-2), 97-105.
[49]
Giacomino, A.; Abollino, O.; Malandrino, M. Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode. Talanta, 2008, 75(1), 266-273.
[50]
Duy, P.K.; Yen, P.T.H.; Chun, S.; Ha, V.T.T.; Chung, H. Carbon fiber cloth-supported Au nanodendrites as a rugged surface-enhanced Raman scattering substrate and electrochemical sensing platform. Sens. Actuators B., 2016, 225, 377-383.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy