[1]
World Health Organization. Guidelines for drinking-water quality, 4th ed; WHO Press: Geneva, Switzerland, 2011.
[2]
Jeoung, M.S.; Choi, H.S. Spectrophotometric determination of trace Hg(II) in cetyltrimethylammonium bromide media. Bull. Korean Chem. Soc., 2004, 25(12), 1877-1880.
[3]
Pavlos, E.K.; Nikolaos, G.K.K. Selective mercury determination after membrane complexation and total reflection X-ray fluorescence analysis. Anal. Chem., 2004, 76(15), 4315-4319.
[4]
Ombaba, J.M. Total mercury determination in biological and environmental standard samples by gold amalgamation followed by cold vapor atomic absorption spectrometry. Microchem. J., 1996, 53(2), 195-200.
[5]
Shuvaeva, O.V.; Gustaytis, M.A.; Anoshin, G.N. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection. Anal. Chim. Acta, 2008, 621(2), 148-154.
[6]
Grobecker, K.H.; Detcheva, A. Validation of mercury determination by solid sampling Zeeman atomic absorption spectrometry and a specially designed furnace. Talanta, 2006, 70(5), 962-965.
[7]
Bagheri, H.; Gholami, A. Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent. Talanta, 2001, 55(6), 1141-1150.
[8]
Labatzke, T.; Schlemmer, G. Ultratrace determination of mercury in water following EN and EPA standards using atomic fluorescence spectrometry. Anal. Bioanal. Chem., 2004, 378, 1075-1082.
[9]
Ugo, P.; Zampieri, S.; Moretto, L.M.; Paolucci, D. Determination of mercury in process and lagoon waters by inductively coupled plasma-mass spectrometric analysis after electrochemical preconcentration: comparison with anodic stripping at gold and polymer coated electrodes. Anal. Chim. Acta, 2001, 434(2), 291-300.
[10]
Passariello, B.; Barbaro, M.; Quaresima, S. Determination of mercury by inductively coupled plasma - mass spectrometry. Microchem. J., 1996, 54(4), 348-354.
[11]
Stroh, A.; Vollkopf, U.; Denoyer, E.R. Analysis of samples containing large amounts of dissolved solids using microsampling flow injection inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1992, 7(8), 1201-1205.
[12]
dos Santos, J.S.; de la Guárdia, M.; Pastor, A. Determination of organic and inorganic mercury species in water and sediment samples by HPLC on-line coupled with ICP-MS. Talanta, 2009, 80(1), 207-211.
[13]
Pereiro, R.I.; Díaz, C.A. Speciation of mercury, tin, and lead compounds by gas chromatography with microwave-induced plasma and atomic-emission detection (GC-MIP-AED). Anal. Bioanal. Chem., 2002, 372(1), 74-90.
[14]
Billon, G.; van den Berg, C.M. Gold and silver micro-wire electrodes for trace analysis of metals. Electroanalysis, 2004, 16(19), 1583-1591.
[15]
Okçu, F.; Ertaş, F.N.; Gökçel, H.I. Anodic stripping voltammetric behaviour of mercury in chloride medium and its determination at a gold film electrode. Turk. J. Chem., 2005, 29, 355-366.
[16]
Monterroso, S.C.C.; Carapuça, H.M.; Simão, J.E.J. Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential. Anal. Chim. Acta, 2004, 503(2), 203-212.
[17]
Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev., 2003, 27, 355-384.
[18]
Manivannan, A.; Seehra, M.S.; Tryk, D.A.; Fujishima, A. Analytical letters electrochemical detection of ionic mercury at boron-doped diamond electrodes. Anal. Lett., 2002, 35(2), 355-368.
[19]
Manivannan, A.; Seehra, M.S.; Fujishima, A. Detection of mercury at the ppb level in solution using boron-doped diamond electrode. Fuel Process. Technol., 2004, 85, 513-519.
[20]
Manivannan, A.; Ramakrishnan, L.; Seehra, M.S.; Granite, E.; Butler, J.E.; Tryk, D.A.; Fujishima, A. Mercury detection at boron doped diamond electrodes using a rotating disk technique. J. Electroanal. Chem., 2005, 577, 287-293.
[21]
Cesarino, I.; Gouveia-Caridade, C.; Pauliukaite, R. Cavalheiro, E der T.G.; Brett, C.M.A. Characterization and application of Bismuth-Film modified Graphite-Polyurethane composite electrodes. Electroanalysis, 2010, 22(13), 1437-1445.
[22]
Matysik, F.M. Miniaturization of electroanalytical systems. Anal. Bioanal. Chem., 2003, 375(1), 33-35.
[23]
Pinilla, J.M.; Hernández, L.; Conesa, A.J. Determination of mercury by open circuit adsorption stripping voltammetry on a platinum disk electrode. Anal. Chim. Acta, 1996, 319(1-2), 25-30.
[24]
Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Use of nanohybrid materials as electrochemical transducers for mercury sensors. Sens. Actuators B., 2012, 165(1), 143-150.
[25]
Welch, C.M.; Nekrassova, O.; Dai, X. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes. ChemPhysChem, 2004, 5(9), 1405-1410.
[26]
Wang, J.; Tian, B.; Lu, J. Remote electrochemical sensor for monitoring trace mercury. Electroanalysis, 1998, 10(6), 399-402.
[27]
Bonfil, Y.; Brand, M.; Kirowa-Eisner, E. Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal. Chim. Acta, 2000, 424(1), 65-76.
[28]
Huan, T.N.; Hung, L.Q.; Ha, V.T.T. Spirally oriented Au microelectrode array sensor for detection of Hg (II). Talanta, 2012, 94, 284-288.
[29]
Compton, R.G.; Banks, C.E. Understanding voltammetry, 2nd ed; Imperial College Press: London, 2010.
[30]
Uhlig, A.; Schnakemberg, U.; Hintsche, R. Highly sensitive heavy metal analysis on platinum- and gold-ultramicroelectrode arrays. Electroanalysis, 1997, 9(2), 125-129.
[31]
Ordeig, O.; Banks, C.E.; del Campo, J. Trace detection of mercury(II) using gold ultra-microelectrode arrays. Electroanalysis, 2006, 18(6), 573-578.
[32]
Salaün, P. van den Berg, del Campo, J.; Munoz, F.X.; Compton, R.G. Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal. Chem., 2006, 78(14), 5052-5060.
[33]
Wang, J.; Gründler, P.; Flechsig, G.U.; Jasinski, M.; Lu, J.; Wang, J.; Zhao, Z.; Tian, B. Hot-wire stripping potentiometric measurements of trace mercury. Anal. Chim. Acta, 1999, 396(1), 33-37.
[34]
Okçu, F.; Ertaş, F.N.; Gökçel, H.I. Determination of mercury in table salt samples by on-line medium exchange anodic stripping voltammetry. Talanta, 2008, 75, 442-446.
[35]
Hezard, T.; Fajerwerg, K.; Evrard, D. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis. J. Electroanal. Chem., 2012, 664, 46-52.
[36]
Laffont, L.; Hezard, T.; Gros, P. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step. Talanta, 2015, 141, 26-32.
[37]
Abollino, O.; Giacomino, A.; Malandrino, M. Determination of Mercury by Anodic Stripping Voltammetry with a Gold Nanoparticle-Modified Glassy Carbon Electrode. Electroanalysis, 2008, 20(1), 75-83.
[38]
Lin, Y.; Peng, Y.; Di, J. Electrochemical detection of Hg(II) ions based on nanoporous gold nanoparticles modified indium tin oxide electrode. Sens. Actuators B., 2015, 220, 1086-1090.
[39]
Okçu, F.; Ertaş, F.N.; Gökçel, H.I. Anodic stripping voltammetric behaviour of mercury in chloride medium and its determination at a gold film electrode. Turk. J. Chem., 2005, 29, 355-366.
[40]
Hezard, T.; Fajerwerg, K.; Evrard, D. Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection. Electrochim. Acta, 2012, 73, 15-22.
[41]
Rievaj, M. Mesároš. Š.; Bustin, D. Mercury traces determination by voltammetry on gold fibre microelectrode in some food samples. Chem. Pap., 1993, 47(1), 31-33.
[42]
Bernalte, E.; Marín Sánchez, C.; Pinilla Gil, E. Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sens. Actuators B., 2012, 161(1), 669-674.
[43]
Li, D.; Li, J.; Jia, X. Gold nanoparticles decorated carbon fiber mat as a novel sensing platform for sensitive detection of Hg(II). Electrochem. Commun., 2014, 42, 30-33.
[44]
Bernalte, E.; Sánchez, C.M.; Gil, E.P. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal. Chim. Acta, 2011, 689(1), 60-64.
[45]
Laschi, S.; Palchetti, I.; Mascini, M. Gold-based screen-printed sensor for detection of trace lead. Sens. Actuators B., 2006, 114(1), 460-465.
[46]
Gong, J.; Zhou, T.; Song, D. Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. Anal. Chem., 2010, 82, 567-573.
[47]
Widmann, A.; van den Berg, C.M.G. Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode. Electroanalysis, 2005, 17(10), 825-831.
[48]
Riso, R.D.; Waeles, M.; Monbet, P.; Chaumery, C.J. Measurements of trace concentrations of mercury in sea water by stripping chronopotentiometry with gold disk electrode: Influence of copper. Anal. Chim. Acta, 2000, 410(1-2), 97-105.
[49]
Giacomino, A.; Abollino, O.; Malandrino, M. Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode. Talanta, 2008, 75(1), 266-273.
[50]
Duy, P.K.; Yen, P.T.H.; Chun, S.; Ha, V.T.T.; Chung, H. Carbon fiber cloth-supported Au nanodendrites as a rugged surface-enhanced Raman scattering substrate and electrochemical sensing platform. Sens. Actuators B., 2016, 225, 377-383.