Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

Laboratory Assessment of Patients with Suspected Rheumatic Musculoskeletal Diseases: Challenges and Pitfalls

Author(s): Francesco Carubbi*, Alessia Alunno, Paola Cipriani, Onelia Bistoni, Rosa Scipioni, Valiki Liakouli, Piero Ruscitti, Onorina Berardicurti, Salvatore Di Bartolomeo, Roberto Gerli and Roberto Giacomelli

Volume 15, Issue 1, 2019

Page: [27 - 43] Pages: 17

DOI: 10.2174/1573397114666180320113603

Price: $65

Abstract

Current patient care in rheumatology relies primarily on a combination of traditional clinical assessment and standard laboratory tests. Investigators seek to discover new biomarkers and novel technologies to boost the research in this field. Mechanistic biomarkers such as cytokines, cell types, antibodies, signaling molecules, are rooted in the mechanism underlying the disease and can guide the clinical management of the disease. Conversely, descriptive biomarkers are byproducts of the disease process, depict the state of a disease but are not involved in its pathogenesis.

In this article, we reviewed the field of common laboratory biomarkers in rheumatology, highlighting both their descriptive or mechanistic value as well as their role in clinical practice.

Keywords: Laboratory, assessment, rheumatology, biomarkers, pathogenesis, mechanistic value.

[1]
Atkinson Jr AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69(3): 89-95.
[2]
Robinson WH, Lindstrom TM, Cheung RK, Sokolove J. Mechanistic biomarkers for clinical decision making in rheumatic diseases. Nat Rev Rheumatol 2013; 9(5): 267-76.
[3]
Robinson WH, Mao R. Biomarkers to guide clinical therapeutics in rheumatology? Curr Opin Rheumatol 2016; 28(2): 168-75.
[4]
Guma M, Tiziani S, Firestein GS. Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nat Rev Rheumatol 2016; 12(5): 269-81.
[5]
Rosa Neto NS, de Carvalho JF, Shoenfeld Y. Screening tests for inflammatory activity: applications in rheumatology. Mod Rheumatol 2009; 19(5): 469-77.
[6]
Black S, Kushner I, Samols D. C-reactive Protein. J Biol Chem 2004; 279(47): 48487-90.
[7]
Kushner I, Rzewnicki D, Samols D. What does minor elevation of C-reactive protein signify? Am J Med 2006; 119(2): 166.e17-28.
[8]
Mohan C, Assassi S. Biomarkers in rheumatic diseases: how can they facilitate diagnosis and assessment of disease activity? BMJ 2015; 351: h5079.
[9]
Jou JM, Lewis SM, Briggs C, Lee SH, De La Salle B, McFadden S. ICSH review of the measurement of the erythocyte sedimentation rate. Int J Lab Hematol 2011; 33(2): 125-32.
[10]
Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 1999; 265(2): 501-23.
[11]
Marhaug G, Dowton SB. Serum amyloid A: an acute phase apolipoprotein and precursor of AA amyloid. Baillieres Clin Rheumatol 1994; 8(3): 553-73.
[12]
Recalcati S, Invernizzi P, Arosio P, Cairo G. New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. J Autoimmun 2008; 30(1-2): 84-9.
[13]
Knovich MA, Storey JA, Coffman LG, Torti SV, Torti FM. Ferritin for the clinician. Blood Rev 2009; 23(3): 95-104.
[14]
Cohen LA, Gutierrez L, Weiss A, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 2010; 116(9): 1574-84.
[15]
Ong SY, Nicoll AJ, Delatycki MB. How should hyperferritinaemia be investigated and managed? Eur J Intern Med 2016; 33: 21-7.
[16]
Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med 2013; 11: 185.
[17]
Ruscitti P, Cipriani P, Di Benedetto P, et al. Increased level of H-ferritin and its imbalance with L-ferritin, in bone marrow and liver of patients with adult onset Still’s disease, developing macrophage activation syndrome, correlate with the severity of the disease. Autoimmun Rev 2015; 14(5): 429-37.
[18]
Ruscitti P, Ciccia F, Cipriani P, et al. The CD68(+)/H-ferritin(+) cells colonize the lymph nodes of the patients with adult onset Still’s disease and are associated with increased extracellular level of H-ferritin in the same tissue: correlation with disease severity and implication for pathogenesis. Clin Exp Immunol 2016; 183(3): 397-404.
[19]
Maruna P, Nedelníková K, Gürlich R. Physiology and genetics of procalcitonin. Physiol Res 2000; 49(Suppl. 1): S57-61.
[20]
Meisner M, Adina H, Schmidt J. Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit Care 2005; 10(1): R1.
[21]
Becker KL, Nylén ES, White JC, Müller B, Snider RH Jr. Clinical review 167: Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab 2004; 89(4): 1512-25.
[22]
Meisner M, Adina H, Schmidt J. Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit Care 2006; 10(1): R1.
[23]
Serio I, Arnaud L, Mathian A, Hausfater P, Amoura Z. Can procalcitonin be used to distinguish between disease flare and infection in patients with systemic lupus erythematosus: a systematic literature review. Clin Rheumatol 2014; 33(9): 1209-15.
[24]
Shaikh MM, Hermans LE, van Laar JM. Is serum procalcitonin measurement a useful addition to a rheumatologist’s repertoire? A review of its diagnostic role in systemic inflammatory diseases and joint infections. Rheumatology (Oxford) 2015; 54(2): 231-40.
[25]
Sato H, Tanabe N, Murasawa A, et al. Procalcitonin is a specific marker for detecting bacterial infection in patients with rheumatoid arthritis. J Rheumatol 2012; 39(8): 1517-23.
[26]
Delèvaux I, André M, Colombier M, et al. Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Ann Rheum Dis 2003; 62(4): 337-40.
[27]
Buhaescu I, Yood RA, Izzedine H. Serum procalcitonin in systemic autoimmune diseases--where are we now? Semin Arthritis Rheum 2010; 40(2): 176-83.
[28]
Herrmann K, Schinke S, Csernok E, Moosig F, Holle JU. Diagnostic Value of Procalcitonin in ANCA-Associated Vasculitis (AAV) to Differentiate Between Disease Activity, Infection and Drug Hypersensitivity. Open Rheumatol J 2015; 9: 71-6.
[29]
Chen DY, Chen YM, Ho WL, Chen HH, Shen GH, Lan JL. Diagnostic value of procalcitonin for differentiation between bacterial infection and non-infectious inflammation in febrile patients with active adult-onset Still’s disease. Ann Rheum Dis 2009; 68(6): 1074-5.
[30]
O’Connell TX, Horita TJ, Kasravi B. Understanding and interpreting serum protein electrophoresis. Am Fam Physician 2005; 71(1): 105-12.
[31]
Quartuccio L, Isola M, Baldini C, et al. Biomarkers of lymphoma in Sjögren’s syndrome and evaluation of the lymphoma risk in prelymphomatous conditions: results of a multicenter study. J Autoimmun 2014; 51: 75-80.
[32]
Quartuccio L, Isola M, Baldini C, et al. Clinical and biological differences between cryoglobulinaemic and hypergammaglobulinaemic purpura in primary Sjögren’s syndrome: results of a large multicentre study. Scand J Rheumatol 2015; 44(1): 36-41.
[33]
Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol 2016; 12(7): 383-401.
[34]
Prohászka Z, Nilsson B, Frazer-Abel A, Kirschfink M. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control. Immunobiology 2016; 221(11): 1247-58.
[35]
Sheldon J. Laboratory testing in autoimmune rheumatic diseases. Best Pract Res Clin Rheumatol 2004; 18(3): 249-69.
[36]
Ho A, Barr SG, Magder LS, Petri M. A decrease in complement is associated with increased renal and hematologic activity in patients with systemic lupus erythematosus. Arthritis Rheum 2001; 44(10): 2350-7.
[37]
Birmingham DJ, Irshaid F, Nagaraja HN, et al. The complex nature of serum C3 and C4 as biomarkers of lupus renal flare. Lupus 2010; 19(11): 1272-80.
[38]
Macedo AC, Isaac L. Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway. Front Immunol 2016; 7: 55.
[39]
Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 2012; 64(4): 1215-26.
[40]
van Vollenhoven RF, Petri MA, Cervera R, et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 2012; 71(8): 1343-9.
[41]
Stohl W, Hiepe F, Latinis KM, et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 2012; 64(7): 2328-37.
[42]
Petri MA, van Vollenhoven RF, Buyon J, et al. Baseline predictors of systemic lupus erythematosus flares: data from the combined placebo groups in the phase III belimumab trials. Arthritis Rheum 2013; 65(8): 2143-53.
[43]
Gorevic PD. Rheumatoid factor, complement, and mixed cryoglobulinemia. Clin Dev Immunol 2012; 2012: 439018.
[44]
Sturfelt G, Truedsson L. Complement in the immunopathogenesis of rheumatic disease. Nat Rev Rheumatol 2012; 8(8): 458-68.
[45]
Seelen MA, Roos A, Wieslander J, et al. Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA. J Immunol Methods 2005; 296(1-2): 187-98.
[46]
Holman H, Robbins W. Antinuclear antibodies in systemic lupus erythematosus. Arthritis Rheum 1959; 2: 468-71.
[47]
Chan EK, Damoiseaux J, Carballo OG, et al. Report of the First International Consensus on Standardized Nomenclature of Antinuclear Antibody HEp-2 Cell Patterns 2014-2015. Front Immunol 2015; 6: 412.
[48]
Coons AH, Kaplan MH. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 1950; 91(1): 1-13.
[49]
Moore AE, Sabachewsky L, Toolan HW. Culture characteristics of four permanent lines of human cancer cells. Cancer Res 1955; 15(9): 598-602.
[50]
Agmon-Levin N, Damoiseaux J, Kallenberg C, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis 2014; 73(1): 17-23.
[51]
Mahler M, Meroni PL, Bossuyt X, Fritzler MJ. Current concepts and future directions for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. J Immunol Res 2014; 2014: 315179.
[52]
Scholz J, Grossmann K, Knütter I, et al. Second generation analysis of antinuclear antibody (ANA) by combination of screening and confirmatory testing. Clin Chem Lab Med 2015; 53(12): 1991-2002.
[53]
Meroni PL, Schur PH. ANA screening: an old test with new recommendations. Ann Rheum Dis 2010; 69(8): 1420-2.
[54]
Nordal EB, Songstad NT, Berntson L, Moen T, Straume B, Rygg M. Biomarkers of chronic uveitis in juvenile idiopathic arthritis: predictive value of antihistone antibodies and antinuclear antibodies. J Rheumatol 2009; 36(8): 1737-43.
[55]
Tan EM, Feltkamp TE, Smolen JS, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum 1997; 40(9): 1601-11.
[56]
Tozzoli R, Bonaguri C, Melegari A, Antico A, Bassetti D, Bizzaro N. Current state of diagnostic technologies in the autoimmunology laboratory. Clin Chem Lab Med 2013; 51(1): 129-38.
[57]
Bentow C, Swart A, Wu J, et al. Clinical performance evaluation of a novel rapid response chemiluminescent immunoassay for the detection of autoantibodies to extractable nuclear antigens. Clin Chim Acta 2013; 424: 141-7.
[58]
Caro Pérez A, Kumble S, Kumble KD, et al. Evaluation of a multiplex ELISA for autoantibody profiling in patients with autoimmune connective tissue diseases. Autoimmune Dis 2014; 2014: 896787.
[59]
Breda L, Nozzi M, De Sanctis S, Chiarelli F. Laboratory tests in the diagnosis and follow-up of pediatric rheumatic diseases: an update. Semin Arthritis Rheum 2010; 40(1): 53-72.
[60]
Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome: A consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis 2017; 76(1): 9-16.
[61]
van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 2013; 72(11): 1747-55.
[62]
Kayser C, Fritzler MJ. Autoantibodies in systemic sclerosis: unanswered questions. Front Immunol 2015; 6: 167.
[63]
Quartuccio L, Baldini C, Bartoloni E, et al. Anti-SSA/SSB-negative Sjögren’s syndrome shows a lower prevalence of lymphoproliferative manifestations, and a lower risk of lymphoma evolution. Autoimmun Rev 2015; 14(11): 1019-22.
[64]
Pisetsky DS. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol 2012; 144(1): 32-40.
[65]
Atamaniuk J, Hsiao YY, Mustak M, et al. Analysing cell-free plasma DNA and SLE disease activity. Eur J Clin Invest 2011; 41(6): 579-83.
[66]
Bartoloni E, Ludovini V, Alunno A, et al. Increased levels of circulating DNA in patients with systemic autoimmune diseases: A possible marker of disease activity in Sjögren’s syndrome. Lupus 2011; 20(9): 928-35.
[67]
Pisetsky DS. Anti-DNA antibodies--quintessential biomarkers of SLE. Nat Rev Rheumatol 2016; 12(2): 102-10.
[68]
Werwitzke S, Trick D, Kamino K, et al. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB x NZW)F1 mouse. Arthritis Rheum 2005; 52(11): 3629-38.
[69]
Egner W. The use of laboratory tests in the diagnosis of SLE. J Clin Pathol 2000; 53(6): 424-32.
[70]
Kavanaugh AF, Solomon DH. Guidelines for immunologic laboratory testing in the rheumatic diseases: anti-DNA antibody tests. Arthritis Rheum 2002; 47(5): 546-55.
[71]
Steiman AJ, Urowitz MB, Ibañez D, Li TT, Gladman DD, Wither J. Anti-dsDNA and Antichromatin Antibody Isotypes in Serologically Active Clinically Quiescent Systemic Lupus Erythematosus. J Rheumatol 2015; 42(5): 810-6.
[72]
Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013; 65(1): 1-11.
[73]
Falk RJ, Terrell RS, Charles LA, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA 1990; 87(11): 4115-9.
[74]
Nolan SL, Kalia N, Nash GB, Kamel D, Heeringa P, Savage CO. Mechanisms of ANCA-mediated leukocyte-endothelial cell interactions in vivo. J Am Soc Nephrol 2008; 19(5): 973-84.
[75]
Schlieben DJ, Korbet SM, Kimura RE, Schwartz MM, Lewis EJ. Pulmonary-renal syndrome in a newborn with placental transmission of ANCAs. Am J Kidney Dis 2005; 45(4): 758-61.
[76]
Jarrot PA, Kaplanski G. Pathogenesis of ANCA-associated vasculitis: An update. Autoimmun Rev 2016; 15(7): 704-13.
[77]
Savige J, Gillis D, Benson E, et al. International Consensus Statement on Testing and Reporting of Antineutrophil Cytoplasmic Antibodies (ANCA). Am J Clin Pathol 1999; 111(4): 507-13.
[78]
Savige J, Dimech W, Fritzler M, et al. Addendum to the International Consensus Statement on testing and reporting of antineutrophil cytoplasmic antibodies. Quality control guidelines, comments, and recommendations for testing in other autoimmune diseases. Am J Clin Pathol 2003; 120(3): 312-8.
[79]
Csernok E, Moosig F. Current and emerging techniques for ANCA detection in vasculitis. Nat Rev Rheumatol 2014; 10(8): 494-501.
[80]
Russell KA, Wiegert E, Schroeder DR, Homburger HA, Specks U. Detection of anti-neutrophil cytoplasmic antibodies under actual clinical testing conditions. Clin Immunol 2002; 103(2): 196-203.
[81]
Csernok E, Holle JU. Twenty-eight years with antineutrophil cytoplasmic antibodies (ANCA): how to test for ANCA - evidence-based immunology? Auto Immun Highlights 2010; 1(1): 39-43.
[82]
Damoiseaux J, Csernok E, Rasmussen N, et al. Detection of antineutrophil cytoplasmic antibodies (ANCAs): a multicentre European Vasculitis Study Group (EUVAS) evaluation of the value of indirect immunofluorescence (IIF) versus antigen-specific immunoassays. Ann Rheum Dis 2017; 76(4): 647-53.
[83]
Kallenberg CG. Usefulness of antineutrophil cytoplasmic autoantibodies in diagnosing and managing systemic vasculitis. Curr Opin Rheumatol 2016; 28(1): 8-14.
[84]
Kemna MJ, Damoiseaux J, Austen J, et al. ANCA as a predictor of relapse: useful in patients with renal involvement but not in patients with nonrenal disease. J Am Soc Nephrol 2015; 26(3): 537-42.
[85]
Gao Y, Zhao MH. Review article: Drug-induced anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrology (Carlton) 2009; 14(1): 33-41.
[86]
Csernok E, Lamprecht P, Gross WL. Clinical and immunological features of drug-induced and infection-induced proteinase 3-antineutrophil cytoplasmic antibodies and myeloperoxidase-antineutrophil cytoplasmic antibodies and vasculitis. Curr Opin Rheumatol 2010; 22(1): 43-8.
[87]
McAdoo SP, Hall A, Levy J, Salama AD, Pusey CD. Proteinase-3 antineutrophil cytoplasm antibody positivity in patients without primary systemic vasculitis. J Clin Rheumatol 2012; 18(7): 336-40.
[88]
Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4(2): 295-306.
[89]
Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol 2011; 7(6): 330-9.
[90]
Arad A, Proulle V, Furie RA, Furie BC, Furie B. β2-Glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model. Blood 2011; 117(12): 3453-9.
[91]
Ioannou Y, Zhang JY, Passam FH, et al. Naturally occurring free thiols within beta 2-glycoprotein I in vivo: Nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood 2010; 116(11): 1961-70.
[92]
Ioannou Y, Zhang JY, Qi M, et al. Novel assays of thrombogenic pathogenicity in the antiphospholipid syndrome based on the detection of molecular oxidative modification of the major autoantigen β2-glycoprotein I. Arthritis Rheum 2011; 63(9): 2774-82.
[93]
de Groot PG, Meijers JC. β(2) -Glycoprotein I: evolution, structure and function. J Thromb Haemost 2011; 9(7): 1275-84.
[94]
Meroni PL. Anti-beta-2 glycoprotein I epitope specificity: from experimental models to diagnostic tools. Lupus 2016; 25(8): 905-10.
[95]
Misasi R, Capozzi A, Longo A, et al. “New” antigenic targets and methodological approaches for refining laboratory diagnosis of antiphospholipid syndrome. J Immunol Res 2015; 2015: 858542.
[96]
Pengo V, Banzato A, Bison E, et al. Laboratory testing for antiphospholipid syndrome. Int J Lab Hematol 2016; 38(Suppl. 1): 27-31.
[97]
Pengo V, Tripodi A, Reber G, et al. Update of the guidelines for lupus anticoagulant detection. J Thromb Haemost 2009; 7(10): 1737-40.
[98]
Willis R, Lakos G, Harris EN. Standardization of antiphospholipid antibody testing--historical perspectives and ongoing initiatives. Semin Thromb Hemost 2014; 40(2): 172-7.
[99]
Martinuzzo ME, Barrera LH. D 'adamo MA, Otaso JC, Gimenez MI, Oyhamburu J. Frequent false-positive results of lupus anticoagulant tests in plasmas of patients receiving the new oral anticoagulants and enoxaparin. Int J Lab Hematol 2014; 36(2): 144-50.
[100]
Galli M, Borrelli G, Jacobsen EM, et al. Clinical significance of different antiphospholipid antibodies in the WAPS (warfarin in the antiphospholipid syndrome) study. Blood 2007; 110(4): 1178-83.
[101]
Moore GW. Recent guidelines and recommendations for laboratory detection of lupus anticoagulants. Semin Thromb Hemost 2014; 40(2): 163-71.
[102]
Meroni PL, Chighizola CB, Rovelli F, Gerosa M. Antiphospholipid syndrome in 2014: More clinical manifestations, novel pathogenic players and emerging biomarkers. Arthritis Res Ther 2014; 16(2): 209.
[103]
Dörner T, Egerer K, Feist E, Burmester GR. Rheumatoid factor revisited. Curr Opin Rheumatol 2004; 16(3): 246-53.
[104]
Taylor P, Gartemann J, Hsieh J, Creeden J. A systematic review of serum biomarkers anti-cyclic citrullinated Peptide and rheumatoid factor as tests for rheumatoid arthritis. Autoimmune Dis 2011; 2011: 815038.
[105]
Bouvet JP, Wu YX, Pillot J. Restricted heterogeneity of polyclonal rheumatoid factors. Arthritis Rheum 1987; 30(9): 998-1005.
[106]
Male D, Roitt IM, Hay FC. Analysis of immune complexes in synovial effusions of patients with rheumatoid arthritis. Clin Exp Immunol 1980; 39(2): 297-306.
[107]
Balandraud N, Roudier J, Roudier C. Epstein-Barr virus and rheumatoid arthritis. Autoimmun Rev 2004; 3(5): 362-7.
[108]
Breedveld FC, Otten HG, Daha MR. Rheumatoid factor production in the joint. Scand J Rheumatol Suppl 1995; 101: 183-5.
[109]
del Puente A, Knowler WC, Pettitt DJ, Bennett PH. The incidence of rheumatoid arthritis is predicted by rheumatoid factor titer in a longitudinal population study. Arthritis Rheum 1988; 31(10): 1239-44.
[110]
Bonagura VR, Agostino N, Børretzen M, Thompson KM, Natvig JB, Morrison SL. Mapping IgG epitopes bound by rheumatoid factors from immunized controls identifies disease-specific rheumatoid factors produced by patients with rheumatoid arthritis. J Immunol 1998; 160(5): 2496-505.
[111]
Sun J, Zhang Y, Liu L, Liu G. Diagnostic accuracy of combined tests of anti cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis: A meta-analysis. Clin Exp Rheumatol 2014; 32(1): 11-21.
[112]
Vallbracht I, Rieber J, Oppermann M, Förger F, Siebert U, Helmke K. Diagnostic and clinical value of anti-cyclic citrullinated peptide antibodies compared with rheumatoid factor isotypes in rheumatoid arthritis. Ann Rheum Dis 2004; 63(9): 1079-84.
[113]
Lindqvist E, Eberhardt K, Bendtzen K, Heinegård D, Saxne T. Prognostic laboratory markers of joint damage in rheumatoid arthritis. Ann Rheum Dis 2005; 64(2): 196-201.
[114]
Le Loët X, Brazier M, Mejjad O, et al. Serum IgA rheumatoid factor and pyridinoline in very early arthritis as predictors of erosion(s) at two years: A simple model of prediction from a conservatively treated community-based inception cohort. Arthritis Care Res (Hoboken) 2010; 62(12): 1739-47.
[115]
Aletaha D, Blüml S. Therapeutic implications of autoantibodies in rheumatoid arthritis. RMD Open 2016; 2(1): e000009.
[116]
De Rycke L, Verhelst X, Kruithof E, et al. Rheumatoid factor, but not anti-cyclic citrullinated peptide antibodies, is modulated by infliximab treatment in rheumatoid arthritis. Ann Rheum Dis 2005; 64(2): 299-302.
[117]
Bobbio-Pallavicini F, Caporali R, Alpini C, et al. High IgA rheumatoid factor levels are associated with poor clinical response to tumour necrosis factor alpha inhibitors in rheumatoid arthritis. Ann Rheum Dis 2007; 66(3): 302-7.
[118]
Gonzalez A, Icen M, Kremers HM, et al. Mortality trends in rheumatoid arthritis: the role of rheumatoid factor. J Rheumatol 2008; 35(6): 1009-14.
[119]
Perry E, Kelly C, Eggleton P, De Soyza A, Hutchinson D. The lung in ACPA-positive rheumatoid arthritis: An initiating site of injury? Rheumatology (Oxford) 2014; 53(11): 1940-50.
[120]
Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment. Autoimmun Rev 2014; 13(11): 1114-20.
[121]
Snir O, Widhe M, von Spee C, et al. Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: association with HLA-DRB1 alleles. Ann Rheum Dis 2009; 68(5): 736-43.
[122]
Pratesi F, Petit Teixeira E, Sidney J, et al. HLA shared epitope and ACPA: just a marker or an active player? Autoimmun Rev 2013; 12(12): 1182-7.
[123]
Rönnelid J, Wick MC, Lampa J, et al. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early rheumatoid arthritis: anti-CP status predicts worse disease activity and greater radiological progression. Ann Rheum Dis 2005; 64(12): 1744-9.
[124]
Bizzaro N, Bartoloni E, Morozzi G, et al. Anti-cyclic citrullinated peptide antibody titer predicts time to rheumatoid arthritis onset in patients with undifferentiated arthritis: Results from a 2-year prospective study. Arthritis Res Ther 2013; 15(1): R16.
[125]
Alessandri C, Bombardieri M, Papa N, et al. Decrease of anti-cyclic citrullinated peptide antibodies and rheumatoid factor following anti-TNFalpha therapy (infliximab) in rheumatoid arthritis is associated with clinical improvement. Ann Rheum Dis 2004; 63(10): 1218-21.
[126]
Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med 2007; 146(11): 797-808.
[127]
Caterbi S, Bistoni O, Alunno A, Bartoloni E, Gerli R. Anticyclic Citrullinated Peptide Antibodies in Patients with Rheumatic Diseases other than Rheumatoid Arthritis: Clinical or Pathogenic Significance? J Rheumatol 2015; 42(6): 1063-4.
[128]
Snir O, Widhe M, Hermansson M, et al. Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum 2010; 62(1): 44-52.
[129]
Luime JJ, Colin EM, Hazes JM, Lubberts E. Does anti-mutated citrullinated vimentin have additional value as a serological marker in the diagnostic and prognostic investigation of patients with rheumatoid arthritis? A systematic review. Ann Rheum Dis 2010; 69(2): 337-44.
[130]
Syversen SW, Goll GL, van der Heijde D, et al. Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: Results from a 10-year prospective study. Ann Rheum Dis 2010; 69(2): 345-51.
[131]
Brouet JC, Clauvel JP, Danon F, Klein M, Seligmann M. Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 1974; 57(5): 775-88.
[132]
Ferri C. Mixed cryoglobulinemia. Orphanet J Rare Dis 2008; 3: 25.
[133]
Tissot JD, Schifferli JA, Hochstrasser DF, et al. Two-dimensional polyacrylamide gel electrophoresis analysis of cryoglobulins and identification of an IgM-associated peptide. J Immunol Methods 1994; 173(1): 63-75.
[134]
Ramos-Casals M, Stone JH, Cid MC, Bosch X. The cryoglobulinaemias. Lancet 2012; 379(9813): 348-60.
[135]
Saadoun D, Sellam J, Ghillani-Dalbin P, Crecel R, Piette JC, Cacoub P. Increased risks of lymphoma and death among patients with non-hepatitis C virus-related mixed cryoglobulinemia. Arch Intern Med 2006; 166(19): 2101-8.
[136]
Sargur R, White P, Egner W. Cryoglobulin evaluation: best practice? Ann Clin Biochem 2010; 47(Pt 1): 8-16.
[137]
Vermeersch P, Gijbels K, Mariën G, et al. A critical appraisal of current practice in the detection, analysis, and reporting of cryoglobulins. Clin Chem 2008; 54(1): 39-43.
[138]
Motyckova G, Murali M. Laboratory testing for cryoglobulins. Am J Hematol 2011; 86(6): 500-2.
[139]
Takada S, Shimizu T, Hadano Y, et al. Cryoglobulinemia (review). Mol Med Rep 2012; 6(1): 3-8.
[140]
Carubbi F, Zugaro L, Cipriani P, et al. Safety and efficacy of intra-articular anti-tumor necrosis factor α agents compared to corticosteroids in a treat-to-target strategy in patients with inflammatory arthritis and monoarthritis flare. Int J Immunopathol Pharmacol 2016; 29(2): 252-66.
[141]
Courtney P, Doherty M. Joint aspiration and injection and synovial fluid analysis. Best Pract Res Clin Rheumatol 2013; 27(2): 137-69.
[142]
Kitridou RC, Schumacher HR Jr, Sbarbaro JL, Hollander JL. Recurrent hemarthrosis after prosthetic knee arthroplasty: identification of metal particles in the synovial fluid. Arthritis Rheum 1969; 12(5): 520-8.
[143]
Hunter T, Gordon DA, Ogryzlo MA. The ground pepper sign of synovial fluid: a new diagnostic feature of ochronosis. J Rheumatol 1974; 1(1): 45-53.
[144]
Rosenthal AK, Ryan LM. Calcium Pyrophosphate Deposition Disease. N Engl J Med 2016; 374(26): 2575-84.
[145]
Pascual E, Jovaní V. Synovial fluid analysis. Best Pract Res Clin Rheumatol 2005; 19(3): 371-86.
[146]
Sivera F, Andrés M, Carmona L, et al. Multinational evidence-based recommendations for the diagnosis and management of gout: integrating systematic literature review and expert opinion of a broad panel of rheumatologists in the 3e initiative. Ann Rheum Dis 2014; 73(2): 328-35.
[147]
Zhang W, Doherty M, Bardin T, et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: Terminology and diagnosis. Ann Rheum Dis 2011; 70(4): 563-70.
[148]
Hamilton E, Pattrick M, Hornby J, Derrick G, Doherty M. Synovial fluid calcium pyrophosphate dihydrate crystals and alizarin red positivity: analysis of 3000 samples. Br J Rheumatol 1990; 29(2): 101-4.
[149]
Shmerling RH, Delbanco TL, Tosteson AN, Trentham DE. Synovial fluid tests. What should be ordered? JAMA 1990; 264(8): 1009-14.
[150]
Shmerling RH. Synovial fluid analysis. A critical reappraisal. Rheum Dis Clin North Am 1994; 20(2): 503-12.
[151]
Brannan SR, Jerrard DA. Synovial fluid analysis. J Emerg Med 2006; 30(3): 331-9.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy