Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Metal-based Nanoparticles as Conductive Mediators in Electrochemical Sensors: A Mini Review

Author(s): Hassan Karimi-Maleh*, Fatemeh Karimi*, Abdollah FallahShojaei, Khalil Tabatabaeian, Mohammad Arshadi and Morteza Rezapour

Volume 15, Issue 2, 2019

Page: [136 - 142] Pages: 7

DOI: 10.2174/1573411014666180319152126

Price: $65

Abstract

Background: Modified electrodes are a new approach to improving the characteristics of the electrochemical sensors. The high conductivity and low charge transfer resistance are the major properties of new mediators for improving electrochemical sensors. Metal-based nanoparticles showed good electrical conductivity and can be selected as the suitbale mediator for modified electrodes.

Objective: Recently, metal-based nanoparticles, such as Au nanoparticle, TiO2 nanoparticle, Fe3O4 nanoparticle and etc. were suggested as the suitable mediator for modification of solid electrodes. The high surface area and low charge transfer resistance of metal-based nanoparticles, suggested the exceptional intermediate in the electrochemical sensors. Here, we tried to consider these exceptional effects through reviewing some of the recently published works.

Keywords: Metal-based nanoparticles, electrochemical sensors, Conductive mediators, modified electrodes, solid electrodes, DNA biosensors.

Graphical Abstract

[1]
Arabali, V.; Ebrahimi, M.; Gheibi, S.; Khaleghi, F.; Bijad, M.; Rudbaraki, A.; Abbasghorbani, M.; Ganjali, M.R. Bisphenol A analysis in food samples using modified nanostructure carbon paste electrode as a sensor. Food Anal. Methods, 2016, 9, 1763-1769.
[2]
Sabet, F.S.; Hosseini, M.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem., 2017, 220, 527-532.
[3]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst., 2013, 138, 1395-1404.
[4]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion-carbon nanotube composite glassy carbon electrode. Electrochim. Acta, 2011, 56, 4188-4196.
[5]
Gadhari, N.S.; Sanghavi, B.J.; Srivastava, A.K. Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk. Anal. Chim. Acta, 2011, 703, 31-40.
[6]
Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.R.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq., 2016, 213(1), 312-316.
[7]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[8]
Karimi-Maleh, H.; Sanati, A.L.; Gupta, V.K.; Yoosefian, M.; Asif, M.; Bahari, A. A voltammetric biosensor based on ionic liquid/NiO nanoparticlemodified carbon paste electrode for the determination ofnicotinamide adenine dinucleotide (NADH). Sens. Actuators B., 2014, 204, 647-654.
[9]
Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C, 2014, 35, 379-385.
[10]
Sanati, A.L.; Faridbod, F. Electrochemical Determination of Methyldopa by Graphene Quantum Dot / 1-butyl-3-methylimidazo-lium hexafluoro phosphate Nanocomposite Electrode. Int. J. Electrochem. Sci., 2017, 12, 7997-8005.
[11]
Kerman, K.; Chikae, M.; Yamamura, S.; Tamiya, E. Gold nanoparticle-based electrochemical detection of protein phosphorylation. Anal. Chim. Acta, 2007, 588, 26-33.
[12]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[13]
Parham, H.; Rahbar, N. Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste. J. Hazard. Mater., 2010, 177, 1077-1084.
[14]
Pumera, M.; Aldavert, M.; Mills, C.; Merkoçi, A.; Alegret, S. Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochim. Acta, 2005, 50, 3702-3707.
[15]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R. Electrochemical study of a novel high performance supercapacitor based on MnO2/Nitrogen-doped graphene nanocomposite. Appl. Surf. Sci., 2016, 366, 552-560.
[16]
Wang, H.; Zhou, Y.; Guo, Y.; Liu, W.; Dong, C.; Wu, Y.; Li, S.; Shuang, S. β-Cyclodextrin/Fe3O4 hybrid magnetic nano-composite modified glassy carbon electrode for tryptophan sensing. Sens. Actuators B Chem., 2012, 163, 171-178.
[17]
Raj, C.R.; Ohsaka, T. Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J. Electroanal. Chem., 2003, 540, 69-77.
[18]
Shabani-Nooshabadi, M.; Roostaee, M.; Karimi-Maleh, H. Incorporation of graphene oxide-NiO nanocomposite and n-hexyl-3-methylimidazolium hexafluoro phosphate into carbon paste electrode: application as an electrochemical sensor for simultaneous determination of benserazide, levodopa and tryptophan. J. Iran. Chem. Soc, 2017, 14, 955-961.
[19]
Gupta, V.K.; Karimi-Maleh, H.; Sadegh, R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci., 2015, 10, 303-316.
[20]
Liu, Z.M.; Jing, Y.F.; Wang, Z.L.; Zhan, H.J.; Shen, Q. Highly sensitive electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Graphene-Fe3O4 Nanocomposite. Sens. Lett., 2013, 11, 531-538.
[21]
Wang, Y.; Zhang, H.; Yao, D.; Pu, J.; Zhang, Y.; Gao, X.; Sun, Y. Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide. J. Solid State Electrochem., 2013, 17, 881-887.
[22]
Shabani-Nooshabadi, M.; Roostaee, M.; Tahernejad-Javazmi, F. Graphene oxide/NiO nanoparticle composite-ionic liquid modified carbon paste electrode for selective sensing of 4-chlorophenol in the presence of nitrite. J. Mol. Liq., 2016, 219, 142-148.
[23]
Shabani-Nooshabadi, M.; Roostaee, M. Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis. J. Mol. Liq., 2016, 220, 329-333.
[24]
Karimi-Maleh, H.; Moazampour, M.; Ensafi, A.A.; Mallakpour, S.; Hatami, M. An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ. Sci. Pollut. Res. Int., 2014, 21, 5879-5888.
[25]
Karimi-Maleh, H.; Moazampour, M.; Yoosefian, M.; Sanati, A.L.; Tahernejad-Javazmi, F.; Mahani, M. An electrochemical nanosensor for simultaneous voltammetric determination of ascorbic acid and Sudan I in food samples. Food Anal. Methods, 2014, 7, 2169-2176.
[26]
Liu, Y.; Yin, F.; Long, Y.; Zhang, Z.; Yao, S. Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques. J. Colloid. Int. Sci., 2003, 258, 75-81.
[27]
Agüí, L.; Peña-Farfal, C.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode. Talanta, 2007, 74, 412-420.
[28]
Zhang, S.; Wang, N.; Yu, H.; Niu, Y.; Sun, C. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry, 2005, 67, 15-22.
[29]
Wang, M.; Sun, C.; Wang, L.; Ji, X.; Bai, Y.; Li, T.; Li, J. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. J. Pharm. Biomed., 2003, 33, 1117-1125.
[30]
Cai, H.; Wang, Y.; He, P.; Fang, Y. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal. Chim. Acta, 2002, 469, 165-172.
[31]
Kang, J.; Li, X.; Wu, G.; Wang, Z.; Lu, X. A new scheme of hybridization based on the Aunano-DNA modified glassy carbon electrode. Anal. Biochem., 2007, 364, 165-170.
[32]
Ozsoz, M.; Erdem, A.; Kerman, K.; Ozkan, D.; Tugrul, B.; Topcuoglu, N.; Ekren, H.; Taylan, M. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal. Chem., 2003, 75, 2181-2187.
[33]
Kerman, K.; Saito, M.; Morita, Y.; Takamura, Y.; Ozsoz, M.; Tamiya, E. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal. Chem., 2004, 76, 1877.
[34]
Xu, J.; Zhu, J.J.; Zhu, Y.; Gu, K.; Chen, H.Y. A novel biosensor of DNA immobilization on nano-gold modified ITO for the determination of mifepristone. Anal. Lett., 2001, 34, 503.
[35]
Zhang, L.; Jiang, X.; Wang, E.; Dong, S. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens. Bioelectron., 2005, 21, 337-345.
[36]
Zhang, H.; Lu, H.; Hu, N. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes. J. Phys. Chem., 2006, 110, 2171-2179.
[37]
Ju, H.X.; Liu, S.; Ge, B.; Lisdat, F. Se´ ller, F.W. Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity. Electroanalysis, 2002, 14, 141-147.
[38]
Fang, B.; Wang, G.; Zhang, W.; Li, M.; Kan, X. Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis, 2005, 17, 744-748.
[39]
Tan, X.; Zhang, J.; Tan, S.; Zhao, D.; Huang, Z.; Mi, Y.; Huang, Z. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/Chitosan modified glassy carbon electrode. Electroanalysis, 2009, 21, 514-1520.
[40]
Yin, H.; Cui, L.; Chen, Q.; Shi, W.; Ai, S.; Zhu, L.; Lu, L. Amperometric determination of bisphenol A in milk using PAMAM-Fe3O4 modified glassy carbon electrode. Food Chem., 2011, 125, 1097-1103.
[41]
Lai, G.S.; Zhang, H.L.; Han, D.Y. Electrocatalytic oxidation and voltammetric determination of dopamine at a Nafion/carbon-coated iron nanoparticles-chitosan composite film modified electrode. Mikrochim. Acta, 2008, 160, 233-239.
[42]
Bian, C.L.; Zeng, Q.X.; Yang, L.J.; Xiong, H.Y.; Zhang, X.H.; Wang, S.F. Voltammetric studies of the interaction of rutin with DNA and its analytical applications on the MWNTs-COOH/Fe3O4 modified electrode. Sens. Actuat. B., 2011, 156, 615-620.
[43]
Bavandpour, R.; Karimi-Maleh, H.; Asif, M.; Gupta, V.K.; Atar, N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq., 2016, 213, 369-373.
[44]
Karimi, F.; Fallah Shojaei, A.; Tabatabaeian, Kh.; Shakeri, S. CoFe2O4 nanoparticle/ionic liquid modified carbon paste electrode as an amplified sensor for epirubicin analysis as an anticancer drug. J. Mol. Liq., 2017, 242, 685-689.
[45]
Fallah Shojaei, A.; Tabatabaeian, Kh.; Shakeri, S.; Karimi, F. A novel 5-fluorouracile anticancer drug sensor based on ZnFe2O4 magnetic nanoparticles ionic liquids carbon paste electrode. Sens. Actuat. B., 2016, 230, 607-614.
[46]
Kumary, V.A. Divya1, J.; Mary Nancy, T.E. Sreevalsan, K. Voltammetric detection of paracetamol at cobalt ferrite nanoparticles modified glassy carbon electrode. Int. J. Electrochem. Sci., 2013, 28, 6610-6619.
[47]
Taei, M.; Hasanpour, F.; Salavati, H.; Mohammadian, S. Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Mikrochim. Acta, 2016, 183, 49-56.
[48]
Ensafi, A.A.; Rezaei, B.; Allafchian, A.R. Differential pulse voltammetric determination of methyldopa using MWCNTs modified glassy carbon decorated with NiFe2O4 nanoparticles. Ionics, 2015, 21, 1435-1444.
[49]
Luo, L.; Zhu, L.; Xu, Y.; Shen, L.; Wang, X.; Ding, Y.; Li, Q.; Deng, D. Hydrogen peroxide biosensor based on horseradish peroxidase immobilized on chitosan-wrapped NiFe2O4 nanoparticles. Mikrochim. Acta, 2011, 174, 55-61.
[50]
Ensafi, A.A.; Allafchian, A.R.; Rezaei, B.; Mohammadzadeh, R. Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry. Mater. Sci. Eng. C, 2013, 33, 202-208.
[51]
Jung, N.; Chung, D.Y.; Ryu, J.; Yoo, S.J.; Sung, Y.E. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today, 2014, 9, 433-456.
[52]
Nam, K.W.; Song, J.; Oh, K.H.; Choo, M.J.; Park, H.; Park, J.K.; Choi, J.W. Monodispersed PtCo nanoparticles on hexadecyltrimethylammonium bromide treated graphene as an effective oxygen reduction reaction catalyst for proton exchange membrane fuel cells. Carbon, 2012, 50, 3739-3747.
[53]
Guo, D.J. Cui, S.K. Hollow PtCo nanospheres supported on multi-walled carbon nanotubes for methanol electrooxidation. J. Colloid Interface Sci., 2009, 340, 53-57.
[54]
Che, X.; Yuan, R.; Chai, Y.; Li, J.; Song, Z.; Li, W. Amperometric glucose biosensor based on Prussian blue-multiwall carbon nanotubes composite and hollow PtCo nanochains. Electrochim. Acta, 2010, 55, 5420-5427.
[55]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141, 4311-4317.
[56]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT - Food. Sci. Technol., 2014, 57, 679-685.
[57]
Karimi-Maleh, H.; Fallah-Shojaei, A.; Tabatabaeian, Kh.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[58]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochim. Acta, 2016, 183, 2957-2964.
[59]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Moradi, R. Simultaneous detection of nalbuphine and diclofenac as important analgesic drugs in biological and pharmaceutical samples using a Pt:Co nanostructure-based electrochemical sensor. J. Electrochem. Soc., 2017, 164, B60-B65.
[60]
Moradi, R.; Sebt, S.A.; Karimi-Maleh, H.; Sadeghi, R.; Karimi, F.; Bahari, A.; Arabi, H. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys. Chem. Chem. Phys., 2013, 15, 5888-5897.
[61]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitro-benzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[62]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A novel strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids. Electroanalysis, 2016, 28, 366-371.
[63]
Khalilzadeh, M.A.; Karimi-Maleh, H.; Gupta, V.K. A nanostructure based electrochemical sensor for square wave voltammetric determination of l-Cysteine in the presence of high concentration of folic acid. Electroanalysis, 2015, 27, 1766-1773.
[64]
Afsharmanesh, E.; Karimi-Maleh, H.; Pahlavan, A.; Vahedi, J. Electrochemical behavior of morphine at ZnO/CNT nanocomposite room temperature ionic liquid modified carbon paste electrode and its determination in real samples. J. Mol. Liq., 2013, 181, 8-13.
[65]
Shahmiri, M.R.; Bahari, A.; Karimi-Maleh, H.; Hosseinzadeh, R.; Mirnia, N. Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuat. B., 2013, 177, 70-77.
[66]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[67]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[68]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[69]
Keivani, Z.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via a nanostructure modified sensor. J. Colloid Interface Sci., 2017, 507, 11-17.
[70]
Jiang, L.C.; Zhang, W.D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron., 2010, 25, 1402-1407.
[71]
Miao, X.M.; Yuan, R.; Chai, Y.Q.; Shi, Y.T.; Yuan, Y.Y. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J. Electroanal. Chem., 2008, 612, 157-163.
[72]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[73]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[74]
Liu, B.; Luo, L.; Ding, Y.; Si, X.; Wei, Y.; Ouyang, X.; Xu, D. Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode. Electrochim. Acta, 2014, 142, 336-342.
[75]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetil in pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan Inst. Chem. Eng., 2017, 80, 989-996.
[76]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of levodopa in the presence of vitamin B6 using carbon paste electrode modified with 1-Butyl-3 methylimidazolium hexafluorophosphate and CuO nanoparticles. Electroanalysis, 2017, 29, 1854-1859.
[77]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[78]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food Drug Anal., 2017, 25, 1000-1007.
[79]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H. Norouzi1, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy