[1]
Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem., 2005, 108, 2-14.
[2]
Williams, D.E. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem., 1999, 57, 1-16.
[3]
Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanisms. Sens. Lett., 2005, 3, 274-295.
[4]
Moos, R. A brief overview on automotive exhaust gas sensors based on electroceramics. Int. J. Appl. Ceram. Technol., 2005, 2, 401-413.
[5]
Janke, D. A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts. Solid State Ion., 1981, 3-4, 599-604.
[6]
Moos, R.; Schönauer, D. Review: Recent developments in the field of automotive exhaust gas ammonia sensing. Sens. Lett., 2008, 6, 821-825.
[7]
Zosel, J.; Müller, R.; Vashook, V.; Guth, U. Response behaviour of perovskites and Au/oxide composites as HC-electrodes in different combustibles. Solid State Ion., 2004, 175, 531-533.
[8]
Wang, Z.; Hu, X. Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films, 1999, 352, 62-65.
[9]
Vaishanv, V.S.; Patel, P.D.; Patel, N.G. Indium tin oxide thin-film sensor for detection of Volatile Organic Compounds (VOCs). Mater. Manuf. Process., 2006, 21, 257-261.
[10]
Barbi, G.B.; Santos, J.P.; Serrini, P.; Gibson, P.N.; Horrillo, M.C.; Manes, L. Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments. Sens. Actuators B Chem., 1995, 25, 559-563.
[11]
Patel, N.G.; Makhija, K.K.; Panchal, C.J. Fabrication of carbon dioxide gas sensor and its alarm system using Indium Tin Oxide (ITO) thin films. Sens. Actuators B Chem., 1994, 21, 193-197.
[12]
Hoefer, U. Kühner, G.; Schweizer, W.; Sulz, G.; Steiner, K. CO and CO2 thin-film SnO2 gas sensors on Si substrates. Sens. Actuators B Chem., 1994, 22, 115-119.
[13]
Kanazawa, E.; Sakai, G.; Shimanoe, K.; Kanmura, Y.; Teraoka, Y.; Miura, N.; Yamazoe, N. Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators B Chem., 2001, 77, 72-77.
[14]
Shieh, J.; Feng, H.M.; Hon, M.H.; Juang, H.Y. WO3 and W---Ti---O thin-film gas sensors prepared by sol-gel dip-coating. Sens. Actuators B Chem., 2002, 86, 75-80.
[15]
Chung, W.Y.; Sakai, G.; Shimanoe, G.; Miura, N.; Lee, D.D.; Yamazoe, N. Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sens. Actuat. B., 1998, 46, 139-145.
[16]
Shieh, J.; Feng, H.M.; Hon, M.H.; Juang, H.Y. WO3 and WTiO thin-film gas sensors prepared by sol-gel dip-coating. Sens. Actuat. B., 2002, 86, 75-80.
[17]
Winter, R.; Scharnagl, K.; Fuchs, A.; Doll, T.; Eisele, I. Molecular beam evaporation-grown indium oxide and indium aluminium films for low-temperature gas sensors. Sens. Actuat. B., 2000, 66, 85-87.
[18]
Steffes, H.; Imawan, C.; Solzbacher, F.; Obermeier, E. Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sens. Actuators B Chem., 2001, 78, 106-112.
[19]
Jones, T.A.; Bott, B. Gas-induced electrical conductivity changes in metal phthalocyanines. Sens. Actuators, 1986, 9, 27-37.
[20]
Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of Semiconducting Oxides. Science, 2001, 291, 1947-1949.
[21]
Wang, Z.L.; Pan, Z.W.; Dai, Z.R. US Patent No: 0094450, A1, 2002.
[22]
Yazawa, M.; Koguchi, M.; Muto, A.; Ozawa, M.; Hiruma, K. Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett., 1992, 61, 2051.
[23]
Adachi, M.; Harada, T. Formation of huge length silica nanotubes by a templating mechanism in the Laurylamine/Tetraethoxysilane System. Langmuir, 1999, 15, 7097.
[24]
Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature (London), 1998, 391, 775.
[25]
Choi, Y.C.; Kim, W.S.; Park, Y.S.; Lee, S.M.; Bae, D.J.; Lee, H.Y.; Park, G.S.; Choi, W.B.; Lee, N.S.; Kim, J.M. Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge. Adv. Mater., 2000, 12, 746-750.
[26]
Morales, A.M.; Leiber, C.M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279, 208.
[27]
Trentler, T.J.; Hickman, K.M.; Goel, S.C.; Viano, A.M.; Gibbons, P.C.; Buhro, W.E. Solution-Liquid-Solid growth of crystalline III-V Semiconductors: An analogy to vapor-liquid-solid growth. Science, 1995, 270, 1791.
[28]
Jiang, X.; Herricks, T.; Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett., 2002, 2, 1333.
[29]
Fu, Y.Y.; Wang, R.M.; Xu, J.; Chen, J.; Yan, Y.; Narlikar, A.V.; Zhang, H. Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem. Phys. Lett., 2003, 379, 373.
[30]
Özgür, Ü.; Alivov, Ya.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys., 2005, 98, 041301.
[31]
Grosse, P.; Schmitte, F.J.; Frank, G.; Kostlin, H. Preparation and growth of SnO2 thin films and their optical and electrical properties. Thin Solid Films, 1982, 90, 309-315.
[32]
Bellingham, J.R.; Mackenzie, A.P.; Phillips, W.A. Precise measurements of oxygen-content - oxygen vacancies in transparent conducting indium oxide-films. Appl. Phys. Lett., 1991, 58, 2506-2508.
[33]
Qian, L.H.; Wang, K. Li., Y.; Fang, H.T.; Lu, Q.H.; Ma, X.L. CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys., 2006, 10, 82-84.
[34]
Kuang, Q.; Lao, C.S.; Wang, Z.L.; Xie, Z.X.; Zheng, L.S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc., 2007, 129, 6070-6071.
[35]
Kuang, Q.; Lao, C.S.; Li, Z.; Liu, Y.Z.; Xie, Z.X.; Zheng, L.S.; Wang, Z.L. Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C, 2008, 112, 11539-11544.
[36]
Kumar, V.; Sen, S.; Muthe, K.P.; Gaur, N.K.; Gupta, S.K.; Yakhmi, J.V. Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens. Actuat. B., 2009, 138, 587-590.
[37]
Choi, S.H.; Yee, S.M.; Ji, H.J.; Choi, J.W.; Cho, Y.S.; Kim, G.T. Smart gas sensor and noise properties of single ZnO nanowire. Jpn. J. Appl. Phys., 2009, 48, 06FD13.
[38]
Zeng, Z.M.; Wang, K.; Zhang, Z.X.; Chen, J.J.; Zhou, W.L. The detection of H2S at room by using individual indium oxide nanowire transistors. Nanotechnology, 2009, 20, 045503.
[39]
Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett., 2005, 5, 667-673.
[40]
Chen, X.H.; Moskovits, M. Observing catalysis through the agency of the participating electrons: Surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett., 2007, 7, 807-812.
[41]
Liao, L.; Mai, H.X.; Yuan, Q.; Lu, H.B.; Li, J.C.; Liu, C.; Yan, C.H.; Shen, Z.X.; Yu, T. Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism. J. Phys. Chem. C, 2008, 112, 9061-9065.
[42]
Comini, E.; Faglia, G.; Sberveglieri, Z.G.; Pan, W.; Wang, Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett., 2002, 81, 1869-1871.
[43]
Fan, Z.; Lu, J.G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett., 2006, 86, 23510-123512.
[44]
Tien, L.C.; Sadik, P.W.; Norton, D.P.; Voss, L.F.; Pearton, S.J.; Wang, H.T.; Kang, B.S.; Ren, F.; Jun, J.; Lin, J. Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl. Phys. Lett., 2005, 87, 222106-222108.
[45]
Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett., 2005, 86, 243503-243505.
[46]
Zhang, D.; Liu, Z.; Li, C.; Tang, T.; Liu, X.; Han, S.; Lei, B.; Zhou, C. Detection of NO2 down to ppb levels using individual and multiple In2 O3 nanowire devices. Nano Lett., 2004, 4, 1919-1924.
[47]
Snow, E.S.; Perkins, F.K.; Robinson, J.A. Chemical vapor detection using single-walled carbon nanotubes. Chem. Soc. Rev., 2006, 35, 790-798.
[48]
Francioso, L.; Taurino, A.M.; Forleo, A.; Siciliano, P. TiO2 nanowires array fabrication and gas sensing properties. Sens. Actuators B., 2008, 130, 70-76.
[49]
Kim, D.I.; Rothschild, A.; Lee, B.H.; Kim, D.Y.; Jo, S.M.; Tuller, H.L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett., 2006, 6, 2009-2013.
[50]
Tai, W.P.; Oh, J.H. Fabrication and humidity sensing properties of nanostructured TiO2 -SnO2 thin films. Sens. Actuat. B., 2002, 85, 154-157.
[51]
Liu, J.; Wang, X.; Peng, Q.; Li, Y. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater., 2005, 17, 764-767.
[52]
Raible, I.; Burghard, M.; Schlecht, U.; Yasuda, A.; Vossmeyer, T. V2 O5 nanofibers: Novel gas sensors with extremely high sensitivity and selectivity to amines. Sens. Actuat. B., 2005, 106, 730-735.
[53]
Gou, X.; Wang, G.; Yang, J.; Park, J.; Wexler, D. Chemical synthesis, characterization and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem., 2008, 18, 965-969.
[54]
Wang, C.; Fu, X.Q.; Xue, X.Y.; Wang, Y.G.; Wang, T.H. Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption. Nanotechnology, 2007, 18, 145506-145510.
[55]
Polleux, J.; Gurlo, A.; Barsan, N.; Weimar, U.; Antonietti, M.; Niederberger, M. Template-free synthesis and assembly of singlecrystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. Int. Ed., 2006, 45, 261-265.
[56]
Rout, C.S.; Ganesh, K.; Govindaraj, A.; Rao, C.N.R. Sensors for the nitrogen oxides, NO2, NO, and N2 O, based on In2 O3 and WO3 nanowires. Appl. Phys., A., 2006, 85, 241-246.
[57]
Kim, Y.S.; Ha, S.C.; Kim, K. Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl. Phys. Lett., 2005, 86, 213105-1-213105-3.
[58]
Raible, I.; Burghard, M.; Schlecht, U.; Yasuda, A.; Vossmeyer, T. V2O5 nanofibres: Novel gas sensors with extremely high sensitivity and selectivity to amines. Sens. Actuators B Chem., 2005, 106(2), 730-735.
[59]
Liu, J.; Wang, X.; Peng, Q.; Y, Li. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater., 2005, 17, 764-767.
[60]
Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2 O3 nanowires by doping control. Appl. Phys., A., 2004, 79, 439-442.
[61]
Short, L.C.; Benter, T. Selective measurement of HCHO in urine using direct liquid-phase fluorimetric analysis. Clin. Chem. Lab. Med., 2005, 43, 178-182.
[62]
Gupta, V.K.; Naveen, M.; Kumawat, L.; Singh, A.K. Selective naked-eye detection of Mg2+ ion using a coumarin-derived fluorescent probe. Sens. Actuator. B., 2015, 207, 216-223.
[63]
Yola, M.L.; Gupta, V.K.; Tanju , Eren.; Şen, A.E. Atar., N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
[64]
Gupta, V.K.; Mergu, N.; Kumawat, L.K.; Singh, A.K. A reversible fluorescence “off-on-off” sensor for sequential detection of Aluminum and Acetate/Fluoride ions. Talanta, 2015, 144, 80-89.
[65]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Beitollahi, H.; Atar, N.; Yola, M.L.; Gupta, V.K.; Ensafi, A.A. Modification of pencil graphite electrode surface by polypyrrolee/functionalize multiwall carbon nanotubes; Application for the preparation of DNA biosensor for 6-mercatopurine anticancer drug detection. Ind. Eng. Chem. Res., 2015, 54(14), 3634-3639.